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Abstract. In this paper, using a simple hidden-terminal scenario, we
show that IEEE 802.11 exhibits substantial short-term unfairness, though
it provides long-term fairness. We analyze the short-term behavior using
embedded-Markov chain method to answer the following two questions:
(i) once a node gets control of the medium, what is the average number
of packets this node can transmit consecutively without experiencing any
collision, (%) once a node loses its control of the medium, what is the
average time the node has to wait before it gets control of the medium
again. The first question reflects on how long a node can capture the
medium, whereas the second question reflects on how long a node may
be starved. The analytical model is validated by the simulation results.
Our work is distinct from most of the work published in the literature
in two aspects: we focus on the short-term behavior rather than the
long-term, and the analytical method is adopted for the study.

1 Introduction

IEEE 802.11 [6] is the de facto standard for Wireless LANs, and it defines two
MAC protocols: Point Coordination Function (PCF) and Distributed Coordina-
tion Function (DCF). However, only the DCF is popular. As DCF operates in a
distributed manner, achieving fairness in accessing the medium is one of the most
challenging issues. Based on the length of the time over which we observe the
system, the fairness can be defined on a short-term basis and a long-term basis.
The short-term fairness automatically gives rise to long-term fairness, but not
the vice versa [7]. In particular, under certain scenarios, though the bandwidth
allocation is fair in a long-term, it is very unfair if we view the system from
a short-term viewpoint. The short-term fairness is important for the adaptive
traffic (e.g., TCP traffic) and for the delay- or jitter-sensitive traffic [7]. In this
paper, we aim to analyze the short-term unfairness of IEEE 802.11.

The duration, over which the short-term fairness should be measured, is dif-
ficult to define as it depends upon the requirements of applications as well as
upon the channel bandwidth. To get around this problem, Jain’s index [7] can
be used to reflect fairness over different time scales. Though the index is useful
in comparing fairness of two different protocols, the absolute value of the index



for a given protocol does not express the fairness of the protocol very clearly.
Therefore, we measure the short-term fairness in an alternate way by evaluating
the following two metrics: (i) once a node gets control of the medium, what
is the average number of packets this node can transmit consecutively without
experiencing any collision, (7i) once a node loses its control of the medium, what
is the average time the node has to wait before it gets control to the medium
again.

In this paper, using an embedded Markov chain model, the above two metrics
are measured based on the concepts of ‘expected state holding time’ and ‘expected
first passage time’. The analytical model is validated by the simulation results.
Our results show that the IEEE 802.11 exhibits substantial short-term unfairness
even in a very simple hidden-terminal scenario.

The remainder of the paper is organized as follows. In Section 2, using simu-
lation method, we show that IEEE 802.11 exhibits considerable short-term un-
fairness in the hidden-terminal scenario. In Section 3, the Markov chain model
is described. Section 4 presents the analytical and simulation results. Related
work is reviewed in Section 5 and the paper is concluded in Section 6.

2 Short-Term Unfairness in IEEE 802.11

To show the short-term unfairness in IEEE 802.11, we simulate the well-known
hidden-terminal scenario depicted in Figure 1. There are three nodes, A, B and
C, with two single-hop flows: flow from A to B, and flow from C to B. Since
nodes A and C cannot hear from each other, they may simultaneously try to
communicate with a common node, i.e., node B, resulting in a collision. In such
a situation, nodes A and C are referred as the hidden terminals of each other.

Fig. 1. Hidden-terminal Scenario

In the simulation, NS-2 with CMU wireless extensions [4] is used. For each
single-hop flow, a Constant Bit Rate (CBR) traffic is adopted, where each packet
is 1000-bytes long. The raw bandwidth is set with 2 Mbps, and the mazimum
throughput is about 1.4 Mbps due to the overhead of IEEE 802.11. The source
rate of each single flow is made greater than the medium capacity, since unfair-
ness occurs only when the system is overloaded.

The simulation results show that each flow gets an average throughput of
about 0.7 Mbps, indicating that the two flows share the medium fairly on a
long-term basis. However, if we compute the values of the two short-term metrics
defined in Section 1, the protocol exhibits substantial unfairness. For metric (i),
we find that, on an average, once a node gets control of the medium, it can
transmit about 6.4 packets consecutively without collision. For the metric (i),
once a node (say node C) loses control of the medium, it has to wait for the
other node (i.e., A) to transmit about 27 packets before it gets control of the
medium again. However, this does not mean that node A can transmit 27 packets



consecutively without collision. We illustrate this using the following example.
Consider that after node C loses control of the medium, node A gets control
of the medium and it transmits one or more packets consecutively. Then, one
or more collisions occur. After the collision(s), node A again gets control and
transmits one or more packets consecutively. In addition to the average values, we
also observed the corresponding mazimum values, which are equal to 35 and 160,
respectively, for the two metrics. This shows how much short-term unfairness is
ingrained in IEEE 802.11, which is unacceptable for jitter-sensitive traffic. In this
section, we explain how hidden-terminal problem causes short-term unfairness.

2.1 Basic Techniques in IEEE 802.11

IEEE 802.11 adopts the well-known binary exponential back-off (BEB) algorithm
as its contention resolution mechanism, which is described as follows. Every node
maintains a Contention Window (CW) and a back-off timer. Before every trans-
mission, the node first defers by a back-off timer, which is generated according
to equation (1), unless the back-off timer already contains a non-zero value, in
which case it is unnecessary to generate a new random back-off timer.

Backof fTime = Random() x SlotTime (1)

The SlotTime is specified by the physical layer, and the random value is
uniformly distributed over the range [0, CW]. For the first transmission attempt
of a packet, the CW is set to CW,,;,. Whenever a retransmission is initiated,
the CW is doubled until the CW,,,4. is reached. After that, the CW remains at
the maximum value until the retry limit (say, n) is reached. Once the retry limit
is reached, the CW will be reset to CW,,;,,. The CW is also reset to CW,in
whenever a transmission attempt is successful. For the convenience, we call each
retransmission attempt as a stage, whose number is in the range [0,n — 1].

To combat with the hidden-terminal problem, IEEE 802.11 defines a four-
way handshake, where a sequence of Request To Send (RTS), Clear To Send
(CTS), Data, and ACK frames, is transmitted for the transmission of every single
data packet. For the convenience, we call the exchange of RTS/CTS/Data/ACK
frames as a frame exchange sequence (FES). Moreover, FES (X, Y) represents
a FES between nodes X and Y, initiated by node X, implying node X sends
one packet successfully to node Y. Moreover, we call node X as the transmitting
node and Y as the receiving node, while all the other nodes are called the waiting
nodes. Note that the word ‘packet’ implies the protocol data unit (PDU) of a
higher layer whereas ‘frame’ is the MAC layer PDU.

When a FES is in progress, the waiting node freezes its back-off timer. After
the FES is successfully completed, all the nodes first defer for a DCF Inter-Frame
Space (DIFS) period. Then, the transmitting node generates a new random
value from its CW and backs-off before it initiates another FES. On the other
hand, the waiting node simply resumes to count down from its frozen back-
off timer. It is easy to see that the transmitting node may transmit several
packets consecutively before the waiting node’s back-off timer is reduced to zero.
Contrary to a successful transmission, when a collision occurs, all the colliding
nodes will generate a new random value from their corresponding CWs.



2.2 Explanation for the Short-term Unfairness

In the four-way handshake, once the RT'S/CTS has been completed successfully,
the hidden-terminal problem may not arise any more. For example, in Figure
1, once node B sends back a CTS to node A, node C overhears this CTS and
thus defers its transmission, avoiding collision. The four-way handshake solves
the hidden-terminal problem largely by introducing the RTS/CTS handshake
before the real Data frame is transmitted. However, it cannot eliminate the
problem completely as RT'S/CTS cannot always be transmitted successfully.

Now let us derive the condition under which the RT'S/CTS can be successful
when two hidden nodes (A and C) contend for the medium (Figure 1). The
condition is as follows: after a collision or a FES, the difference between the
back-off timers at the two hidden nodes should be large enough for node B to
send back a CTS to node A (C) before that node C (A) starts sending its RTS.
The minimum time difference required is equal to the transmission time of RTS
plus a Short Inter-Frame Space (SIFS). This can be expressed as:

| Z |> Len = TxTime(RTS) + SIFS (2)

where 7 is the difference between the back-off timer. Len is equal to about 19
slots when the slot time is 20 ps for DSSS [6]. It is easy to see that the condition
is difficult to satisfy when the CWs at the contending nodes are small (e.g., 31).

Now let us explain how the hidden-terminal problem causes short-term un-
fairness. Consider the situation that the CWs at nodes A and C are very small
(e.g., 31). As discussed above, under such situation, the transmission of RTSs
of nodes A and C may overlap partially, and as a result collide. The collision
may occur several times until the CWs are large enough to allow either node
(say, node A) to get control of the medium. Once the FES (A, B) is completed,
node A resets its CW to CW,,;, and backs-off before initiating another FES.
However, the remaining back-off timer at node C may be large compared to the
back-off timer at node A, and thus nodes A and B may exchange several more
FESs before node C’s back-off timer reduces to a small value.

Whenever the back-off timer at node C reduces to a small value, node C
contends for the medium. However, as the CW at node A is equal to CW,,;p,
the contention is most likely to result in a collision again. After the collision,
node A doubles its CW from CW,,;, whereas node C doubles its CW from a
larger value (at least 63). Therefore, the CW at node C is greater than that
at A, and node A is more likely to get control of the medium again. Moreover,
this process (i.e., several packet transmissions by node A, followed by collisions,
and then transmissions by node A again) may repeat several times, leading to
starvation at node C for a long period (compared to the time needed for a FES).

However, several mechanisms incorporated in IEEE 802.11 prevent node C
from starving completely, such as: (i) after every FES, node A will back-off before
initiating another FES, which gives node C a chance to contend for the medium
with node A; (ii) the CW at node C will be reset to CW,,;,, after the retry limit
n is reached. Once node C controls the medium, it can transmit consecutively in
a similar way, and thus the long-term fairness between the two flows is ensured.



3 Analytical Modeling

In this section, we model the hidden-terminal scenario in Figure 1 using an
embedded Markov chain.

3.1 Markov Chain Model

At any point of time, the medium is in one of the following five states: T,
Tg, T, Col and Idle, where T’y means that node A is getting the control of the
medium and transmitting its packet, i.e., FES(A, B) is in progress. Similarly, Tg
and T¢ correspond to nodes B and C, respectively. However, in our considered
scenario, T does not arise, as node B does not have any data packets to send.
State C'ol means that there is a collision on the medium, while state Idle means
that there is no transmissions or collisions over the medium. As our objective is
to analyze the fairness rather than the capacity utilization of the medium, we do
not need to consider the Idle state. As a result, only three states of the medium
are considered: T4, T, and Col. When the medium is either in T4 or in T¢, we
simply say that the medium is in a T state. Since the transition probabilities
among these three states depend on the values of CWs at nodes A and C, which,
in turn, are determined by the corresponding stages, the system can be modeled
using three random variables: state of the medium, stage at node A, and stage
at node C. Therefore, the system states are (T, k,1), (Tc, k,1), and (Col, k,1),
where k& and [ denote the stages at nodes A and C, respectively. Obviously,
k,1=0,...,(n—1). Note that we must use stages rather than the values of CW
to represent the system state, since once the CW reaches the maximum value,
it remains unchanged before resetting. When the medium is in state Ty, it is
easy to see that the stage at the transmitting node (i.e., node A) must be zero,
that is, only (T4, 0,1) system states are possible. Similarly, only (T¢, k, 0) system
states are possible. Therefore, if the retry limit is n, there are n? number of Col
states, and n number of states corresponding to each of T4 and T, and thus
the number of all possible system states is:

Ntate = ’I’L2 +2n (3)

From a Col state, whenever a transition occurs, the system can enter anyone
of the three kinds of states as shown in the leftmost diagram of Figure 2. If the
next state is also a Col state, both of the stages, k¥ and [, are incremented by
one, except that the stage is reset to zero whenever the retry limit n is reached.
On the other hand, if the next state is a T state, the stage at the transmitting
node is reset while the other stage remains unchanged.

In state T4, whenever node A transmits another packet, it is natural to view
this event as a self-transition. However, if we model the system in such a way, the
transition probabilities depend upon the remaining back-off timer at the waiting
node (i.e., node C), which in turn, depends upon how many times this timer has
been frozen, i.e., how many self-transitions have occurred in the T4 state. This
requires memorizing the history to obtain the current transition probabilities,
which violates the memoryless requirement of a Markov chain. Therefore, we
do not treat this event as a state transition. Rather, whenever in state T4, a



state transition occurs only when the system enters a Col state or a T¢ state.
Therefore, whenever the system enters a Ty state, the time that the system will
remain in that state depends on the number of packets that node A can transmit
consecutively before that node C controls the medium or that a collision occurs.
Similar explanation applies for the state T. The state transitions from a T
state are illustrated in the remaining diagrams of Figure 2. It is easy to see that
the chain obtained in such a way is an embedded Markov chain, modelling the
underlying semi-Markov process.

k'=(k+1) modn
I'=(I+1) mod n

I'=(I+1) mod n k'=(k+1) mod n

Fig. 2. State Transitions Diagrams

To illustrate the model clearly, we present the complete state transition dia-
gram in Figure 3, where we assume n=3.

T.0,0

Col0.2 @ Col,0.0 Col.2,0

Fig. 3. State Transition Diagram for n=3

3.2 Basic Analysis of the Model

For the convenience, rather than representing the system states using three vari-
ables as above, we assign a single variable to represent the states, by ordering
them as indicated in Table 1.

Table 1. Re-designating the State Variables

States Single Variable Range
(Ta 0,0) to(Ty 0,n-1) [0, n-1]
(T, 0,0) to(Tg, n-1,0) [n, 2n-1]
(Col, 0, 0) to (Col, n-1, n-1) [2n, n?+2n-1]




For the embedded Markov chain, we need to know the transition probability
matrix, P. Once we get the matrix P, we can find the steady state probability
vector, 7, by solving the following equation:

{W:W'P 7T=[7TQ,771,7T2,...],P:[pij] (4)
Symi=1i€[0,n?+2n—1]

In a discrete Markov chain, if the interval between two consecutive transitions
(including self-transition) is identical, the steady state probability m; reflects the
proportion of the time that the system is in state i. However, this is not true in
our model. For example, the interval between a T state and its next state is a
random variable. Therefore, m; can only tell us the probability that the system
enters state ¢ whenever a transition occurs [5]. To get the time average state
probability of being in state i, we must first analyze the holding time of state .

Let pj; denote the average time that the system will remain in state ¢ once
a transition from state j to 4 occurs. The p;; is given by:

0 pji =0
Li = { 1 pji > 0&i € [2n,n? + 2n — 1] (5)
r X num(j, i) pji > 0&i € [0,2n — 1]

Whenever the transition probability p;; is zero, the p;; must also be zero.
The holding time in a Col state, since it does not depend upon the previous or
present state, is assigned a unit value as in the second line of the above formula.
To express the holding time of a T state, let us define num(j,4), which denotes
the average number of packets the transmitting node can transmit consecutively
once the system reaches the T state (i.e., state ¢) from state j. Clearly, the
holding time of a T state is proportional to num(j, ). Moreover, we define the
‘FES time’ as the time needed for a FES to be completed, and ‘Col time’ as
the time needed to detect the collision, while r is the ratio between the ‘FES
time’ and the ‘Col time’. The ‘Col time’ is corresponding to the CTSTimeout
interval defined in [6], which is independent from the length of the Data frame.
Therefore, whenever the system enters a T state, the average holding time can
be represented by r x num(j, ), if the time required to detect a collision is unity.
This explains the last line of equation (5). From pj;, which corresponds to a
transition, we can get p;, the expected holding time of state i, as follows:

Hi = Z]‘ —ﬂj:ipﬂﬂji (6)

It is easy to see that the u; corresponding to a Col state is always equal to
one. Corresponding to a T state, we define num() in equation (7), which denotes
the average number of packets the transmitting node can transmit consecutively
once the system reaches state i.

num(i) =3 TPt num(j,i) i € [0,2n — 1] (7)

k3

As a result, formula (6) can be replaced by:
[ num(i) x ri € [0,2n — 1]
'ul{l i € [2n,n* +2n — 1] (8)
Now we can get p;, which represents the time average state probability of
state i [5]. Note that here we have ignored the time the meidum being idle.

T X [ .. 9
pi=—=——3147€[0,n*+2n—1] (9)
Zj”jxﬂj



3.3 Derivation of the Metrics

We now obtain the two metrics defined in Section 1. To recall, the first metric is,
once a node gets control of the medium, what is the average number of packets
this node can transmit consecutively without any collision. In our Markov chain
model, let us say for node A, it is not possible for the system to travel from one
T4 state to another T’y state without visiting a T or Col state. Moreover, once
the system enters a given T4 state (let us say, state i), the average number of
units of ‘FES time’ for which the system remains in that T4 state, is simply
equal to num(i), which is defined by equation (7). Therefore, the metric-1 can
be obtained by taking average of all num(i) corresponding to T4 states:

n—1 n—1
g N o )
Hmetric—1 = ZO ) x num(i); w(A) = Zom (10)

Since the behavior is identical at nodes A and C, the metric obtained for
node A are also applicable to node C.

Now, we recall that the second metric is, once a node loses its control of the
medium, what is the average time the node has to wait before it gets control to
the medium again. Since there are only two nodes (i.e., A and C) contending for
the medium (Figure 1), the metric, let us say for node C, can be replaced by: once
the medium is controlled by node A, what is the average number of packets that
A can transmit before the medium is controlled by node C. This simply implies
that once the system enters a T4 state, what is the average number of units of
‘FES time’ that the system can remain in any T4 state (via visiting Col state
in-between) before the system enters a T state. Note that the second metric
allows a visit to a Col state in-between two T4 states, which is not permitted
in the first metric.

Here we use the concept of “expected first passage time” [5], which means
that if the system starts in a given T4 state (let us say, state i), what is the
expected time after which the system will enter any T¢ state for the first time.
The expected first passage time, V;, can be expressed as follows [5]:

0 i€n,2n—1]
Vi{Ri—ksz;jvjie[O,n—l}u[2n,n2+2n—1] (11)

where R; is the immediate reward once the system enters state 7. For a T’y state,
it is equal to the corresponding num(i). Since all To states are the trapping
states, R; is zero for these states [5]. We should also assign R; with zero for all
Col states, as our objective is to obtain the number of FESs, rather than the
number of collisions. Therefore,

_ [ num(i)ie[0,n—1]
Ri_{O i € [n,n?+2n—1] (12)

In equation (11), p;j is a modified value of the transition probability p;;. Since
the T states are considered as trapping states, the transition probabilities out
of a T state is set to zero, whereas the self-transition probability for each T¢
state is set to one. Other transition probabilities remain unchanged. Therefore,



0 i€n2n—1]&j#i
py =131 i€n2n—1&j=i (13)
pij i € [0,n — 1] U [2n,n? + 2n — 1]

Obviously, V; corresponding to the trapping states (i.e., all T states) should
be zero. For all the other states, V; is equal to the ‘immediate reward’ R; plus
the expected reward earned from whatever state is entered next. This explains
the equation (11).

The metric-2 can be obtained by taking average over all V; values correspond-
ing to the T4 states:

n—1 n—1
7TZ . — .
H’met'ri672 = ZO ﬂ'(A) X Vvia W(A) - ;ﬂ-l (14)

To solve the above equations, we only need to know the transition probability
matrix P and the state holding time num(j,¢). The calculation of the above
values is not trivial. However, due to space limitation, we do not present it here.
Please refer to [8] for a detailed analysis.

4 Numerical Results

Here we evaluate the equations derived in Section 3, and compare the analytical
results with the simulation results. The simulation environment is the same
as described in Section 2. The results correspond to the case when CW,,;,=31,
Len=19, CW,,,,=1024, and n=7, which are typically used in IEEE 802.11. Since
our main objective is to analyze the behavior at T states, and the behavior at
nodes A and C is identical, we only present the results for T4 states.

State Probabilities: Table 2 presents the values of m; and p;. To recall,
m; represents the proportion of transitions entering state i, while p; reflects the
proportion of time spent in state i. The analytical results are quite close to
the simulation results. We also notice that, though the sum of m; is quite small
(about 0.24), the sum of p; is quite large (0.496). Since the T¢ states also have the
same values, the total fraction amount of time spent in T states is about 0.992,
implying that only a very small amount of time is spent in the large number of
Col states. The reason is that the ratio (i.e., r) between the ‘FES time’ and the
‘Col time’ is very large (i.e., 20 in our case). This shows the advantage of using
the short RTS/CTS frames before the transmission of the long Data frame.

Table 2. State Probabilities Comparison

From (Ta0,0) | (Ta01) | (TA02) | (Ta03) | (Ta04) | (TA05) | (TA08) Total
Model 0.025 0.031 0.037 0.038 0.037 0.035 0.032 0.236
Simulation | 0.025 0.038 0.039 0.039 0.037 0.034 0.031 0.243
Model 0.008 0.014 0.025 0.046 0.088 0.165 0.150 0.496
Simulation | 0.008 0.015 0.023 0.045 0.088 0.167 0.150 0.496

i

o

Expected State Holding Time: Table 3 presents the results of num(i),
which denotes the average number of packets node A can transmit consecutively
once the system enters a given T4 state (i.e., state 7). We see that the results
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match very closely. As the stage at the waiting node (i.e., node C) increases, the
num(i) also increases, which indicates that it becomes more unfair for node C.

Table 3. Expected Holding Time Comparison

num(i) | (Ta0,0) | (Ta,0,1) | (Ta,0,2) | (Ta0,3) | (Ta,04) | (Ta,0,5) | (Ta/0.6)
Model 1.006 | 1.450 | 2.143 | 3.830 | 7.496 | 14.858 | 14.893
Simulation | 1.002 | 1.206 | 1.829 | 3.616 | 7.461 | 15.336 | 15.348

Expected First Passage Time: Table 4 presents the results of V;, which
represents, if the system starts in a given T4 state (i.e., state i), what is the
expected number of FESs after which the system will enter any T state for the
first time. Again, the results obtained from the model are quite close to those
from simulation. When the stage at the waiting node (i.e., node C) increases
(from 0 to 4), the V; also increases. However, when the stage at the node C
further increases (i.e., from 4 to 5, and then 6), the V; decreases. First, let us
explain why the V; corresponding to the (T4, 0, 6) state is small. We recall that
V; is equal to the immediate reward (i.e., num(z)) plus the expected reward
earned from whatever state is entered next. When the system departs from the
(T4, 0, 6) state, the system is likely to enter state (Col, 1, 0) where the stage at
node C has been reset. From this Col state, the system is more likely to enter a
T¢ state, in comparison to, from other Col states. For instance, when the system
transits to a Col state from the (T4, 0, 5) state, the stage at node C will not be
reset, and the probability of transiting to a T¢ state is small. This implies that
after leaving (T4, 0, 6) state, the expected reward earned from the future states
is smaller in comparison to that after leaving the state (T4, 0, 5). Therefore, the
V; corresponding to (T4, 0, 6) is small compared to the (T4, 0, 5) state. Now,
we explain why the V; corresponding to the (T4, 0, 5) state is smaller than that
for the (T4, 0, 4) state. Since the state (T4, 0, 6) is a future state of (T4, 0, 5),
a small V; for (T4, 0, 6) will also affect the V; for the (T4, 0, 5) state. However,
the effect of the reset behavior decreases rapidly as the stage at the waiting node
becomes smaller than 4. From the above discussion, it is clear that the resetting
CW mechanism adopted in IEEE 802.11 improves the short-term fairness.

Table 4. Expected First Passage Time Comparison

Vi (Ta0.0) | (Ta0,1) | (Ta0,2) | (Ta0,3) | (Ta0,4) | (Ta0,5) | (T0,6)
Model 11.796 | 25.416 | 31.081 | 34.059 | 34.404 | 30.273 | 17.661
Simulation | 10.413 | 23.584 | 29.998 | 34.031 | 34.896 | 31.430 | 18.555

Metrics: Table 5 presents the values of the two metrics defined earlier. We
also present the corresponding maximum values. Again, the analytical results
match the simulation results. Note that the values of the two metrics differ
largely. The reason is that whenever the system departs from a T4 state, the
probability that the system enters a Col state is very large. After the collision(s),
the system is more likely to enter another T4 state (rather than a T state) as
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the CW at node A is smaller than that at node C. This may be repeated several
times, resulting in such a large difference.

Table 5. Comparison of the Metrics

From metric-1 Ma}x metric-2 M"’.‘X
metric-1 metric-2

Model 6.683 NA 27.379 NA

Simulation | 6.413 35 27.090 160

General Applications of the Model: The above results correspond to the
case when CW,,,;,=31, Len=19, CW,4,=1024, and n=7. By varying these pa-
rameters, the short-term behavior for other scenarios can be obtained. For exam-
ple, by making Len=TzTime(Data)+SIFS, we can model the two-way handshake
in the presence of hidden terminals. On the other hand, by making Len=0, we
can model anyone of the two handshakes without hidden terminals. By varying
n and CW,,;,, we can model different physical layers, such as FSSS, DSSS and
IR [6]. Moreover, since the model can predict the short-term behavior precisely,
it would also predict the long-term behavior accurately.

5 Discussion and related work
5.1 Future work

We have presented a novel embedded-Markov model to study the short-term un-
fairness in a simple 3-nodes hidden-terminal case. We are extending the model
to a more general scenario. However, it is necessary to mention that the mod-
elling process described in Section 3 is quite general for the study of short-term
behavior, especially the adoption of the first passage time.

Another focus is to propose a solution to cope with the short-term unfair-
ness problem. From the results, we have already seen that the resetting CW
mechanism improves the short-term fairness. Therefore, in addition to the stan-
dard resetting mechanism, we are of the opinion that the CW should also be
reset whenever the short-term unfairness occurs that can be detected using dy-
namic measurements. OQur preliminary results show that this method improves
the fairness. However, the aggregate throughput may degrade.

5.2 Related work

The fairness problem in wireless networks have been extensively addressed [9-
11]. However, most of these work do not consider the hidden-terminal problem
explicitly. Also, they mainly consider long-term unfairness. More importantly,
there is no analytical model predicting the unfairness in IEEE 802.11. In contrast,
in this paper, we have developed an analytical model to explain and predict the
short-term unfairness due to the hidden-terminal problem.

Several analytical models of IEEE 802.11 [1-3] have studied the long-term
behavior (i.e., capacity) by ignoring many details of the protocol and adopting
simplified assumptions. For example, the model in [1] overlooks the resetting
CW mechanism and assumes a constant collision probability, which is clearly
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imprecise as shown in our results. While these models are able to predict the long-
term behavior, they cannot be used to study the short-term behavior accurately
because the required details are lost in their models. In contrast, we model the
IEEE 802.11 in a detailed manner (e.g., by including the resetting mechanism
and all the possible collision states) to predict the short-term fairness precisely.
The authors of [7] have studied the short-term fairness by first developing two
fairness metrics and then applying the metrics in analyzing two MAC protocols:
CSMA/CA and ALOHA. Though IEEE 802.11 is mainly based on CSMA/CA,
it has many other features, and thus [7] cannot apply to IEEE 802.11. Moreover,
they have not considered the hidden-terminal problem and they mainly focus on
developing general fairness metrics, which are different from our work.

6 Conclusions

In this paper, we have presented an Embedded-Markov chain model for IEEE
802.11. Our model is novel in that it predicts the short-term unfairness of IEEE
802.11 very precisely, which is not available in the literature. The key concepts
used in the model include the ‘state holding time’ and the ‘first passage time’.
Our results show that IEEE 802.11 exhibits substantial short-term unfairness in
presence of hidden terminals. One important implication of our results is that
the resetting of the contention window may improve the short-term fairness.
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