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Abstract. Call Blocking Probabilities (CBP) are the key index of the call-level 
QoS in multirate networks supporting either CBR or elastic traffic. We review 
the Engset Multirate Loss Model, in a single link, for CBR traffic, and for elas-
tic traffic we propose the Connection Dependent Threshold Model with finite 
sources (f-CDTM). In f-CDTM, calls may adjust their traffic and bandwidth re-
quirements according to sets of thresholds. Furthermore, we present the f-
CDTM for a mixture of service-classes of finite and infinite sources. The pro-
posed models don’t have a product form solution; therefore the CBP calculation 
is based on approximate but recursive formulas used for the link occupancy dis-
tribution determination. The latter is complex since it requires enumeration and 
processing of the system state space. Simulation results validate our analysis. 

1   Introduction 

The classical Erlang Multirate Loss Model (EMLM) analyzes the call blocking behav-
ior of service-classes with different bandwidth-per-call requirements when they are 
accommodated in a single link loss system. Calls of each service-class arrive to the 
link according to a Poisson process and compete for the available link bandwidth un-
der the Complete Sharing (CS) policy. If the required bandwidth is available, calls are 
accepted and remain in the system for an arbitrarily distributed service time [1]; if not, 
calls are blocked and lost. The fact, that the EMLM is described by an efficient recur-
sive formula ([1],[2]), not only simplifies the determination of Call Blocking Prob-
ability (CBP), but also serves as the basis in the analysis of other loss models [3]-[5]. 

In [3], single and multi retry models are proposed, in which blocked calls can retry 
(one or more times) to be connected in the system with reduced bandwidth and in-
creased service time requirements. In [4], Single and Multi Threshold Models are pro-
posed, in which the bandwidth requirement of a new call may depend on one or more 
thresholds, which indicate the occupied link bandwidth, j. In [5] the retry and 
threshold models, as well as the EMLM, are generalized to the Connection Dependent 
Threshold Model (CDTM); a threshold model, in which the state dependency is indi-
vidualized among service-classes. In [6] the EMLM is extended to the Engset Multi-
rate Loss Model (EnMLM) where the offered traffic of each service-class k, comes 
from a finite number of Nk sources. In EnMLM the CBP calculation is based on a re-



cursive formula, similar to the EMLM. However, the determination of the link occu-
pancy distribution, G(j), which is essential for the CBP calculation, is complex. This 
is because the system state space needs enumeration and processing (in order for an 
equivalent system to be defined) prior to the G(j) calculation. 

In this paper, the EnMLM is extended to the CDTM for finite sources (f-CDTM), 
where each service-class has its own set of thresholds and calls may reduce their 
bandwidth and increase their service time requirements according to the value of j and 
the thresholds. We generalize the f-CDTM to include a mixture of service-classes 
with either finite or infinite sources. In the proposed models the determination of G(j), 
is complex, since the state space requires enumeration and processing. We evaluate 
the accuracy of the proposed models by comparing analytical with simulation CBP 
results. The comparison is based on the Relative Approximation Errors (RAE); as a 
reference point, we use the RAE of the corresponding infinite source models. 

In section 2 we propose the f-CDTM. We present the analytical model and prove 
the recursive formula used for the G(j) calculation (not for the general case, due to 
lack of space). We proceed to the generalization to the CDTM to include a mixture of 
service-classes of either finite or infinite number of sources. In section 3 we present 
application examples. We conclude in section 4. 

2   The proposed CDTM for finite sources (f-CDTM) 

A call of a service-class k is accepted in the system with its requirements (bkct
, μkct

-1), t 
=1, …, T(k), when Jkt-1

< j ≤  Jkt
, where JT(k) = C - bkcT(k)

 and T(k) is the number of 
thresholds (J) and of contingency bandwidth requirements of call k (Fig. 1). 
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Fig. 1. Principle of the f-CDTM 

 
Eq. (1) is proposed for the G(j)’s calculation. 
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•  δk(j)=1 when 1≤ j ≤C and bkc= 0, or, when j≤ Jkt
+bk and bkc> 0, otherwise δk(j)=0. 

•  δkct
(j)=1 when Jk t

+bkct
≥ j >Jkt-1

+bkct
, otherwise δkct

(j)=0. 
The CBP, BkcT(k)

, that a call k is blocked with its last bandwidth requirement, bkcT(k)
, 

is defined as BkcT(k) 
= Prob{ j > bkcT(k)

} and is given by: 
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To simplify the proof of (1), let us consider two service-classes only with the same 
single threshold, J0, and bandwidth and service-time requirements (b1,b2), 
( 1

2,1
1

−− µµ ), respectively. Calls of the 1st service-class use the pair (b1c, 
1

1
−
cµ ) when j 

>J0. Although this model does not have a PFS, we assume that Local Balance (LB) 
equations are valid for calls of the 1st service-class: 

)()()(]1[ 1111111 jGjbnEbjGbanN =−+−   for j-b1 ≤  J0 (3) 

)()()(]1)([ 11111111 jGjbnEbjGbannN cccccc =−++−   for j-b1c  > J0 (4) 

where: α1, α1c are the offered traffic loads per idle source of the 1st service-class, 
such that α1b1 = α1c b1c, and n1c is the number of in-service 1st service-class sources 
(calls) accepted in the system with b1c. 
As far as calls of the 2nd service-class are concerned, the L.B equation is of the form: 

)()()(]1[ 2222222 jGjbnEbjGbanN =−+−   for 1 ≤ j ≤ C (5) 

Equations (2) to (4) lead to a system of equations (6) to (8): 

)()2211()2(22]122[)1(11]111[ jGjbnbnEbjGbanNbjGbanN +=−+−+−+−  for 1 ≤ j ≤  J0+b1c (6) 

)()(]1)([)(]1[)(]1[ 1111112222211111 jjGbjGbannNbjGbanNbjGbanN cccc =−++−+−+−+−+−  forJ0+b1c<j ≤ J0+b1 (7) 

)()()(]1)([)(]1[ 112211111122222 jGbnbnEbjGbannNbjGbanN cccccc +=−++−+−+−  for J0+b1<j ≤ C (8) 

Eqs. (6)-(8) are combined into one for G(j)’s calculation, under two approximations: 
•  Migration approximation (M.A) in eq. (6): )( 11 jbnE cc  is negligible in the region 

1 ≤  j ≤  J0 + b1c, i.e. calls of the 1st service-class accepted with b1c are assumed to be 
negligible when 1 ≤  j ≤  J0 + b1c. 

•  Upward migration approximation (UA) in eq. (8): )( 11 jbnE is negligible in the re-
gion J0 + b1 < j ≤  C, i.e. calls of the 1st service-class, accepted with b1, are negligi-
ble when J0 + b1 < j ≤  C. The UA induces high RAE in the CBP results (section 3). 

Based on the M.A and U.A the calculation of G(j)’s is given by: 

)()()(]1)([
)(]1[)()(]1[

1111111

22222111111

jjGbjGjbannN
bjGbanNbjGjbanN

ccccc =−++−
+−+−+−+−

δ
δ

   for 1 < j ≤  C 
(9) 



δ2(j)=1 for 1 ≤ j ≤  J0 +b1 otherwise δ2(j)=0, δ2c(j)=1 for  j>J0+b1c otherwise δ2c(j)=0. 
Consider a single link that accommodates Kfin service-classes of finite sources and 

Kinf service-classes of infinite sources. Then, the calculation of G(j)’s is as follows  
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•  δk(j)=1 when 1≤ j ≤ C and bkc = 0, or, when j ≤ Jkt
+bk and bkc > 0, otherwise δk(j)=0. 

•  δkct
(j)=1 when Jk t

+bkct
≥j>Jkt-1

+bkct
, otherwise δkct

(j) = 0. This is the gener. f-CDTM. 

3   Numerical example - Evaluation 

We present an application example to show the performance of the generalized f-
CDTM. We compare the CBP approximation errors that appear in the f-CDTM, with 
that of CDTM (with infinite population). The analytical CBP results are compared 
with simulation results (mean values of 7 runs with 95% confidence interval). In 
graphs (Fig. 2), we compare the CBP results obtained by the infinite and finite models 
by using the Mean Relative Approximation Error (MRAE) of CBP: 
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where RAEk stands for the Relative Approximation Error for each service-class k: 

simk,

simk,ank,
k B

BB
RAE

−
=  

(12) 

where Bk,an ,Bk,sim are CBP obtained by analytical models and simulation, respectively. 
Consider a link of capacity C=50 b.u. and two service-classes which require b1= 10 

and b2=7 b.u., respectively. Calls of the 1st service-class arrive to the link according to 
a Poisson process, whereas the offered traffic-load is α1. Calls of the 2nd service-class 
arrive to the link according to a quasi-random process, whereas the offered traffic-
load per idle source is α2. Calls of the 1st service-class use their reduced bandwidth 
requirement b1c1

=8 b.u when j>J10
=30, while b1c2

=6 b.u when j >J11
=35. In the first 

case the offered traffic load is given by α1c1
=α1b1 / b1c1

, while in the second by α1c2
= 

α1b1/b1c2
. Similarly, calls of the 2nd service-class use their reduced bandwidth re-



quirement b2c1
=7 b.u when j>J10

=37. In that case the offered traffic-load of calls of 
the second service-class is given by α2c1

=α2b2 / b2c1
. Consider four values for the 

number of sources, N2, of the 2nd service-class. Table 1 shows the various values of N2 
and the corresponding values of α1, α2, α1c1

, α1c2
, α2c1

. The equivalent system used for 
the CBP calculation is: C=50019, b1=10000, b2=7001, b1c1

=8000, b1c2
=6000, b2c1

= 
4005, J10

=30000, J11
=35000 and J20

=37001. Fig. 2 shows the MRAE obtained from 
the generalized f-CDTM and the CDTM, for the four values of N2. At each point in 
the horizontal axis entitled “offered traffic” α1, α1c1

, α1c2
 are constant, while α2, α2c1 

are increased by 0.4/N2 and 0.7/N2 respectively, i.e. point 1 is 
(α1,α2,α1c1

,α1c2
,α2c1

)=(0.72, 2.4/N2, 0.9, 1.2, 4.2/N2), point 2:(α1,α2,α1c1
, 

α1c2
,α2c1

)=(0.72, 2.8/N2, 0.9, 1.2, 4.9/N2),…, point 6:(α1,α2,α1c1
,α1c2

,α2c1
)=(0.72, 4.4/N2, 

0.9, 1.2, 7.7/N2). We present in Tables 2, 3, both analytical and simulation CBP re-
sults obtained from the generalized f-CDTM and the CDTM, for all points (P): 1,…,6. 

According to Fig. 2 higher MRAE appear when N2=12. As the number of N2 in-
creases the values of the MRAE tend to be reduced, while they approach those of the 
CDTM. A similar behavior is observed in the case of the CBP results; the CBP are in-
creased, approaching the CBP results in the CDTM case, when N2 increases. 

 Table 1. Service-classes characteristics 
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Fig. 2. MRAE of the generalized f-CDTM and the CDTM 

 

Nk Model used α1 (erl) α2 (erl) α1c1
 (erl) α1c2

 (erl) Α2c1
 (erl) 

N1=∞, N2=12 Gener.f-CDTM 0.72  0.2  (=2.4 / N2) 0.9  1.2  0.35 (=4.2/N2) 
N1=∞, N2= 60 Gener. f-CDTM 0.72  0.04  (=2.4 / N2) 0.9  1.2  0.07 (=4.2/N2) 
N1=∞,N2=600 Gener. f-CDTM 0.72  0.004 (=2.4 / N2) 0.9  1.2  0.007 (=4.2/N2) 

N1=N2=∞ CDTM 0.72 2.4 0.9 1.2 4.2  



Table 2. Analytical results for the generalized f-CDTM and the CDTM 

 N1=∞,N2=12  
(gener. f-CDTM) 

N1=∞, N2=60 
(gener. f-CDTM) 

N1=∞, N2=600  
(gener. f-CDTM) 

N1=N2=∞ 
(CDTM) 

P B1c2 (%) B2c1
 (%) B1c2 (%) B2c1

 (%) B1c2 (%) B2c1
 (%) B1c2 (%) B2c1

 (%) 
1 2.31 1.31 3.92 2.18 4.43 2.45 4.49 2.48 
2 3.18 1.79 5.76 3.16 6.60 3.60 6.70 3.65 
3 4.20 2.35 8.03 4.36 9.26 5.01 9.39 5.10 
4 5.37 2.99 10.69 5.76 12.36 6.65 12.55 6.74 
5 6.69 3.70 13.69 7.33 15.83 8.49 16.06 8.62 
6 8.14 4.47 16.94 9.06 19.56 10.51 19.84 10.65 

Table 3. Simulation results for the generalized f-CDTM and the CDTM 

 N1=∞,N2=12  
(gener. f-CDTM) 

N1=∞, N2=60 
(gener. f-CDTM) 

N1=∞, N2=600  
(gener. f-CDTM) 

N1=N2=∞ 
(CDTM) 

P B1c2 (%) B2c1
 (%) B1c2 (%) B2c1

 (%) B1c2 (%) B2c1
 (%) B1c2 (%) B2c1

 (%) 
1 1.98±0.09 0.97±0.05 3.10±0.27 1.86±0.04 3.66±0.18 2.20±0.11 3.81±0.34 2.25±0.18 
2 2.66±0.15 1.38±0.05 4.34±0.11 2.79±0.09 5.22±0.17 3.32±0.08 5.29±0.38 3.55±0.27 
3 3.44±0.26 1.82±0.07 6.17±0.22 3.95±0.08 7.38±0.25 4.60±0.17 7.46±0.57 4.87±0.15 
4 4.35±0.17 2.29±0.07 8.34±0.37 5.32±0.19 9.66±0.40 6.34±0.09 9.80±0.55 6.45±0.23 
5 5.32±0.17 2.85±0.04 10.22±0.18 6.94±0.22 12.11±0.31 8.23±0.15 11.87±0.29 8.61±0.67 
6 6.49±0.23 3.48±0.10 12.66±0.29 8.38±0.23 14.86±0.40 10.57±0.16 15.44±0.45 10.63±0.56 

4   Conclusion 

We’ve proved the f-CDTM and shown its performance together with the generalized 
f-CDTM, by comparing their (numerical) CBP results with simulation results. 
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