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Abstract. In this paper, we propose a simple but robust scheme to
detect denial of service attacks (including distributed denial of service
attacks) by monitoring the increase of new IP addresses. Unlike previ-
ous proposals for bandwidth attack detection schemes which are based
on monitoring the traffic volume, our scheme is very effective for highly
distributed denial of service attacks. Our scheme exploits an inherent
feature of DDoS attacks, which makes it hard for the attacker to counter
this detection scheme by changing their attack signature. Our scheme
uses a sequential nonparametric change point detection method to im-
prove the detection accuracy without requiring a detailed model of nor-
mal and attack traffic. Furthermore, we show that with the combination
of monitoring per flow speed, we can detect all types of DDoS attacks.
We demonstrate that we can achieve high detection accuracy on a range
of different network packet traces.

1 Introduction

A denial-of-service (DoS) attack is a malicious attempt by a single person or a
group of people to cripple an online service. The impact of these attacks can
vary from minor inconvenience to users of a website, to serious financial losses
for companies that rely on their on-line availability to do business. Sophisticated
tools to gain root access to other people’s machines are freely available on the
Internet. These tools are easy to use, even for unskilled users. Once a machine
is cracked, it is turned into a “zombie” under the control of one “master”. The
master is operated by the attacker. The attacker can instruct all its zombies
to send bogus data to one particular destination. Simultaneously, the resulting
traffic can clog links, and cause routers near the victim or the victim itself to fail
under the load. The type of DoS attack that causes problems by overloading the
victim with useless traffic is known as a bandwidth attack. This paper focuses on
curtailing bandwidth attacks.

A key problem to tackle when solving bandwidth attacks is attack detection.
However, there are two challenges for detecting bandwidth attacks. The first
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challenge is how to detect malicious traffic close to its source. This is particularly
difficult when the attack is highly distributed, since the attack traffic from each
source may be small compared to the normal background traffic. The second
challenge is to detect the bandwidth attack as soon as possible without raising a
false alarm, so that the victim has more time to take action against the attacker.

Previously proposed approaches rely on monitoring the volume of traffic that
is received by the victim [10][16][2]. A major drawback of these approaches is
that they do not provide a way to differentiate flash crowds from DDoS attacks.
Due to the inherently bursty nature of Internet traffic, a sudden increase of in
traffic may be mistaken as an attack. If we delay our response in order to ensure
that the traffic increase is not just a transient burst, then we risk allowing the
victim to be overwhelmed by a real attack. Moreover, some persistent increases
in traffic may not be attacks, but actually “flash crowd” events, where a large
number of legitimate users access the same website simultaneously. Clearly, there
is a need for a better approach to detecting bandwidth attacks.

A better approach is to monitor the number of new source IP addresses,
rather than the local traffic volume. Jung et al. [8] have observed that during
bandwidth attacks, most source IP addresses are new to the victim, whereas most
source IP addresses in a flash crowd appeared at the victim before. Previously,
this observation has been used as the basis for a mechanism to filter out attack
traffic at the victim [12]. In this paper, we propose to monitor the number of
new IP addresses in a given time period in order to detect bandwidth attacks.
We demonstrate that this is a more sensitive variable for detecting bandwidth
attacks than monitoring the total volume of incoming traffic. In addition, we
present a method for detecting changes in our monitoring variable, based on
the non-parametric Cumulative Sum (CUSUM) algorithm [3][15]. The CUSUM
algorithm reduces the false positive rate, and has been shown to optimal in terms
of detection accuracy and computing overhead for parametric model and have
good performance for non-parametric model [3].

Our main contribution in this paper is a novel approach to detecting band-
width attacks by monitoring the arrival rate of new source IP addresses. We show
that this approach is much more effective than earlier schemes, especially when
there are multiple attack sources and the attack traffic is highly distributed. We
adapt the detection scheme proposed by Wang et al. [15], which is based on an
advanced non-parametric change detection scheme, CUSUM, and demonstrate
that this approach detects a wide range of simulated attacks quickly and with
high accuracy.

The rest of the paper is organized as follows. Section 2 gives a detailed expla-
nation of our solution to this problem. Section 3 explains CUSUM algorithm and
the model we proposed for the bandwidth attack detection. Section 4 presents
the simulation results of our detection mechanism. Section 5 analyzes possible
attacks against our detection mechanism.
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2 Our Solution: Source IP Address Monitoring

We propose a scheme called Source IP address Monitoring (SIM) to detect the
Highly Distributed Denial of Service (HDDoS) attacks. This detection scheme
uses an intrinsic feature of HDDoS attacks, namely the huge number of new
IP addresses in the attack traffic to the victim. This novel approach has the
advantage that it can detect attacks close to their sources in the early stages of
the attack.

2.1 Overview of Source IP Address Monitoring

SIM contains two parts: off-line training, and detection and learning. The first
part is the off-line training, where a learning engine adds legitimate IP addresses
into an IP Address Database (IAD) and keeps the IAD updated by adding
new legitimate IP addresses and deleting expired IP addresses. This is done
off-line to make sure the traffic data used for training does not contain any
bandwidth attacks. A simple rule can be used to decide whether a new IP address
is legitimate or not. For example, a TCP connection with less than 3 packets is
considered to be an abnormal IP flow. How to build an efficient IAD is discussed
in detail in [12].

The second part is detection and learning. During this period, we collect sev-
eral statistics of incoming traffic for the current time interval ∆n. By comparing
the IP addresses during ∆n with the IAD, we can calculate how many new IP
addresses have appeared in this time slot. If the rate per IP address is larger
than a certain threshold, an alarm is set to indicate a bandwidth attack. This is
used to detect some unsophisticated attacks that use a small number of source
IP addresses. More importantly, by analyzing the number of new IP addresses,
we can detect whether a HDDoS attack is occurring. If an attack is detected, the
on-line-learning is suspended. Otherwise, on-line-learning proceeds in the same
matter as off-line training.

2.2 The choice of a detection feature

The key aspect of our detection scheme is that we choose a completely new
detection feature compared to earlier detection proposals. We collect the IP ad-
dresses during each time slot ∆n (n=1, 2, 3, ...), which determines the detection
resolution. We assume ∆1 = ∆2 = ... = ∆n, which means the time slots are of
equal length. The choice of ∆n is a compromise between making ∆n small so
that the detection engine can quickly detect an attack, and making ∆n large so
that the detection engine has less computation load because it checks the traffic
less often.

Let Tn represent the set of unique IP addresses and Dn represent the items of
IP Address Database (IAD) at the end of the time interval ∆n (n = 1, 2, 3, ...).
As we discussed before, |Tn − Tn ∩ Dn| ,which represents the number of new IP
addresses in ∆n, can be used to detect the DDoS attack. However, |Tn−Tn∩Dn|
varies according to the position of the network traffic monitoring point (NTMP)
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and different ∆n. We can normalize this value by defining Xn = |Tn−Tn∩Dn|
Tn

,
which will not be affected by the NTMP and ∆n. Consequently, we use Xn for
our detection mechanism.

2.3 Implementation of Our Source IP Address Monitoring (SIM)
Scheme

Fig. 1. DDoS attack detection and history-based IP source address filtering

Figure 1 provides an overview of our SIM scheme. The SIM scheme con-
sists of three parts: detection engine, decision engine, and filtering engine. The
detection engine analyzes the incoming traffic pattern to detect any abnormali-
ties. The decision engine summarizes the results from the detection engine and
decides whether an attack is occurring. The filtering engine filters the attack
traffic according to the identified attack traffic pattern. Note that there are two
detection engines. The first detection engine is used to detect non-distributed
attacks from a single source, while the second detection engine is used to detect
highly distributed denial of service attacks.

There are two steps in the detection engines. First, the detection engine sorts
the incoming IP flows according to source IP addresses, and identifies whether
there is an IP flow with an unusually large number of packets. If there is, we
activate the filtering engine to block this abnormal IP flow. This step is very
effective for defending against some naive DoS attacks launched from a single
or small number of sources. The second step is the core technology of our SIM
scheme, which is shown in the shadow part of Figure 1. This step is designed
to defend against sophisticated DDoS attacks and is described in detail in the



Title Suppressed Due to Excessive Length 5

following sections. As we can see from Figure 1, the detection engine monitors
the traffic through a passive (read-only) interface which is pre-configured with
a non-routable IP address. This implementation feature can make the detection
engine immune to the attacks since it is invisible to the attacker. When no attack
is detected in the detection engine, a control signal is sent to the edge router 1

to stop the filtering engine.

3 Abrupt Change Detection

In order to detect a DDoS attack, we need to be able to detect changes in
our detection feature over time. However, our detection feature is a random
variable due to to the stochastic nature of Internet traffic. Consequently, before
describing the proposed flooding detection mechanism, we discuss the details of
the theoretical background of our detection algorithm.

3.1 Change Detection Modelling

Internet traffic can be viewed as a complex stochastic model and any traffic
abnormalities, for example, a HDDoS attack, can lead the abrupt change of the
model. Our goal is to detect the change in the number of new IP addresses. There
are two approaches to detect this change. One is fixed-size batch detection, which
monitors the change of mean value every fixed time period. Another is sequential

change-point detection, which monitors the variables successively. The latter is
designed to detect a change in the model as soon as possible after its occurrence,
which meets the key design requirement for our detection engine. Thus, we can
model our task as a sequential change point detection problem. Consider the
illustrative example in Figure 3. For the random sequence {Xn}, there is a step
change of the mean value at m from α to α + h. We require an algorithm to
detect changes of at least step size h and estimate m in a sequential manner so
that the detection delay and false positive rate are both minimized. The random
sequence {Xn} can be formalized as follows:

Xn = α + ξnI(n < m) + (h + ηn)I(n ≥ m), (1)

where ξ = {ξn}
∞
n=1, η = {ηn}

∞
n=1 are random sequences such that E(ξn) =

E(ηn) ≡ 0, h 6= 0. I(H) is the indicator function, it equals “1” when the condition
H is satisfied and “0” otherwise.

3.2 The CUSUM Algorithm

The CUSUM (Cumulative Sum) algorithm is a commonly used algorithm in sta-
tistical process control, which can detect the change of mean value of a statistical

1 We use the term edge router to refer to the router that provides access to the Internet
for the victim’s subnetwork that we are defending.
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process. CUSUM relies on the fact that if a change occurs, the probability dis-
tribution of the random sequence will also change. Generally, CUSUM requires
a parametric model for the random sequence so that the probability density
function can be applied to monitor the sequence. Unfortunately, the Internet
is a very dynamic and complicated entity, and the theoretical construction of
Internet traffic models is a complex open problem, which is beyond the scope of
this paper. Thus, a key challenge is how to model {Xn}. Since non-parametric
methods are not model-specific, they are more suitable for analyzing the Inter-
net. In our experiment, we applied the non-parametric CUSUM (Cumulative
Sum) method [3] in our detection algorithm. This general approach is based on
the model presented in Wang et al. [15] for attack detection using CUSUM. The
main idea behind the non-parametric CUSUM algorithm is that we accumulate
values of Xn that are significantly higher than the mean level under normal op-
eration. One of the advantages of this algorithm is that it monitors the input
random variables in a sequential manner so that real-time detection is achieved.

Let us begin by defining our notation before we give a formal definition of
our algorithm. As we mentioned in Sec 2.2, Xn represents the fraction of new
IP addresses in the measurement interval ∆n. The top graph in Figure 3 shows
an illustrative example of {Xn}. In normal operation, this fraction will be close
to 0, i.e. E(Xn) = α � , since there is only a small proportion of IP addresses
that are new to the network under normal conditions [8] [12]. However, one
of the assumptions for the nonparametric CUSUM algorithm [3] is that mean
value of the random sequence is negative during normal conditions, and becomes
positive when a change occurs. Thus, without loss of any statistical feature, {Xn}
is transformed into another random sequence {Zn} with negative mean a, i.e.
Zn = Xn − β, where a = α − β (See the middle graph of Figure 3). Parameter
β is a constant value for a given network condition, and it helps to produce a
random sequence {Zn} with a negative mean so that all the negative values of
{Zn} will not accumulate according to time. When an attack happens, Zn will
suddenly become large and positive, i.e. h + a > 0, where h can be viewed as a
lower bound of the increase in Zn during an attack. Hence, Zn with a positive
value (h + a > 0) is accumulated to indicate whether an attack happens or not
(See the bottom graph of Figure 3). One thing worth noting is that h is defined
as the minimum increase of the mean value during an attack and it is not the
threshold for the bandwidth attack detection. The attack detection threshold
N is used for the yn, accumulated positive values of Zn, which is illustrated in
Figure 3. Our change detection is based on the observation of h � β. Now our
detection problem is to find the abrupt change in the random sequence {Zn}
which is described as follows:

Zn = a + ξnI(n < m) + (h + ηn)I(n ≥ m), (2)

where a < 0, −a < h < 1, and other conditions are the same as Eq. 1.
The formal definition of the non-parametric CUSUM algorithm is illustrated

as follows:
yn = Sn − min

1≤k≤n

Sk, (3)



Title Suppressed Due to Excessive Length 7

t
Fig. 2. The trace-driven simulation experi-
ment

m
0

n

m

0

n 

m
0

n
τ

N
 

X
n
 

Z
n
 

y
n
 

N 

α 

α+h 

a=α−β 

a+h 

Fig. 3. The CUSUM algorithm

where Sk =
∑

k

i=1
Zi, with S0 = 0 at the beginning, and yn is our test statistic.

In order to reduce the overhead for online implementation, we use the recur-
sive version of non-parametric CUSUM algorithm [1][3][2][15] which is shown as
follows:

yn = (yn−1 + Zn)+,

y0 = 0, (4)

where x+ is equal to x if x > 0 and 0 otherwise. A large yn is a strong indication
of an attack.

As we see in the bottom graph of Figure 3, yn represents the cumulative
positive values of Zn. We consider the change to have occurred at time τN if
yτN

≥ N . The decision function can be described as follows:

dN (yn) =

{

0 if yn ≤ N ;
1 if yn > N .

N is the threshold for attack detection and dN (yn) represents the decision
at time n: ‘1’ if the test statistic yn is larger than N , which indicates an attack,
and ‘0’ otherwise, which indicates the normal operation (no statistical feature
change for the random sequence {Zn}).

4 Performance Evaluation

The CUSUM algorithm detects changes based on the cumulative effect of the
changes made in the random sequence instead of using a single threshold to check
every variable. Therefore, with the deployment of the CUSUM algorithm, the
performance of our detection scheme will not be affected by whether the attack
rate is bursty or constant. To evaluate the efficacy of our detection scheme SIM,
we conducted the following simulation experiments. As shown in Figure 2, we
created different types of DDoS attack traffic and merged them with the normal
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traffic. SIM was then applied to detect the attacks from the merged traffic. The
normal traffic traces used in our study are collected at different times from two
different sources. The first set was gathered at the University of Auckland [7]
with an OC3 (155.52 Mbps) Internet access link [6]. The second data trace was
taken on a 9 MBit/sec Internet Connection in Bell Labs [13].

We use the first-mile SIM to monitor the traffic coming into the target net-
work, and last-mile SIM to monitor the traffic going out from the target network.
Hence, the outgoing traffic data traces of the University of Auckland can be used
evaluate the performance of the first-mile SIM while the incoming traffic data
traces can be used evaluate the performance of the last-mile SIM. For the sim-
plicity of the experiment design, we assume the attack traffic rate to be constant.
The attack period is set to be 5 minutes, which is a commonly observed attack
period in the Internet [11]. The attack traffic rate for all the simulated DDoS
attacks is set to be 1 Mbps. Since the network we are defending has the con-
nection capacity of 155.2 Mbps and the average peak connection speed of about
6 Mbps, we define 1 Mbps as the minimum traffic rate to disrupt the network
services. We set this conservative attack traffic rate, and aim to test the detection

sensitivity of the SIM. Attack traffic with higher traffic volume should be easier
to detect, and hence is not covered by our performance evaluation.
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(a)10 new IP addresses (b)4 new IP addresses (c)2 new IP addresses

Fig. 4. The DDoS attack detection sensitivity in the first-mile router using the Auck-
IV-out trace

4.1 DDoS Detection Using Detection Engine Two

In an attempt to avoid detection by our scheme, attackers may try to constrain
the number of spoofed IP addresses that they use. Let W represent the number
IP addresses in the attack traffic which are new to the network. We tested
different values of W in our simulation, and the detection performance for the
first and last-mile routers are shown in Figure 4 and Figure 5 respectively. We
repeated the attack detection under a variety of different network conditions,
and listed both the average detection accuracy and detection time in Table 1.

As we can see from the simulation results, our detection algorithm is very
robust in both the first-mile and last-mile routers. For the last-mile router, we
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Fig. 5. The DDoS attack detection sensitivity for the last-mile router using the Auck-
IV-in trace

can detect the DDoS attack with W = 18 within 81.1 seconds with 100% ac-
curacy, and detect the DDoS attack with W = 15 within 127.3 seconds with
90% accuracy. Given the attack traffic length is no more than 5 minutes, only
the attack traffic with W < 18 has the possibility of sometimes avoiding our
detection. However, by forcing the attacker to use a small number of new IP
addresses, we can detect the attack by observing the abrupt change of the num-
ber of packets per IP source address using the first detection engine which is
described in Sec. 2.3.

For the first-mile router, we can achieve 99% detection accuracy even when
there are only 2 new IP address in the attack traffic. The reason lies in the
fact that the background traffic for the first-mile router is very clear. Generally,
there will be very few IP addresses that are new to the network since all the
valid IP packets originated from within the same network. Since the IP addresses
in the IP Address Database (IAD) will expire and be removed after a certain
time period, the IP addresses within the subnetworks which have not been used
recently will be new to IAD. This is very similar to ingress filtering [5]. However,
ingress filtering cannot detect the attack when the spoofed IP addresses are
within the subnetworks. In contrast, our first-mile router detection algorithm
can detect the spoofed IP addresses within the subnetworks if they are new to
the IAD.

It is worth noting that we choose our detection interval ∆n = 10s in our
experiment, which is a conservative choice for a real implementation. If we de-
crease the detection interval by using more computing resources, we can reduce
the detection time accordingly.

4.2 False Positives and Implementation Overhead

We define a false positive as an attack that is reported by the SIM during normal
network operation. We use the following method to evaluate the false positive
rate of the SIM. We use the data traces collected at the University of Auckland
and Bell labs as the normal traffic input to the SIM. If any attack is detected,
then a false positive is generated. We randomly choose 20 one-hour-worth normal
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Table 1. Detection Performance of the first-mile router and the last-mile router

The first-mile router The last-mile router

W Detection Accuracy Detection Time W Detection Accuracy Detection Time

2 99% 69.7s 15 90% 127.3s
4 100% 20.1s 18 100% 81.1s
6 100% 18.9s 40 100% 18.9s
8 100% 10s 60 100% 10s
10 100% 10s 200 100% 10s

traffic snapshots as inputs to the SIM. Each experiment runs independently and
no false positive is found.

Our trace-driven experiments were run on a Linux machine with dual 900MHz
Xeon and 512 MB RAM. We can achieve an average throughput of 10 Gbps.
Therefore, the SIM will not be a bottleneck for network implementation. It is
worth noting that we use a two-weeks of data traces to build the IAD due to
the short of publicly available data traces. In practice, if we can build the IAD
using traces of a longer period, we can expect better detection and reaction
performances.

5 Discussion

5.1 Possible Attacks against the SIM

If the attackers know that the SIM is based on previous network connections,
they could mislead the server to be included in the IP address database. For
example, they can first use a certain group of IP addresses to do some recon-
naissance before the real attack. The attackers can control the reconnaissance
traffic to be sufficiently low so as not to trigger the IP packet filtering process.
If the server considers the reconnaissance traffic to be part of the normal traf-
fic, it will add the attacker’s reconnaissance IP addresses into the IP address
database. Therefore, the attacker can use the IP addresses which they used
before to launch the DDoS attack. Since these IP addresses appear in the IP
address database, the attack traffic can pass the filter easily, which constitutes
a successful denial-of-service attack.

We can prevent this by increasing the period over which IP addresses must
appear in order to be considered frequent. Moreover, we can randomize the
learning time for the IAD and keep it secret to the attacker. Furthermore, we can
ensure that we only include an IP address in our database if it has successfully
completed a TCP connection. This prevents the attacker from using spoofed IP
addresses for which no host exists. The attacker can only launch their attack
using the real IP address of their computer, which makes it much easier to
identify and block the source of the attack. We may also be able to use techniques
from our previous work on scan detection [9] in order to identify IP addresses
with unusual patterns of accesses. Moreover, we can combine additional rules for
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defining frequent IP addresses in order to improve the accuracy of the SIM. For
example, the type of service accessed by the user and the length of each session
may be useful measures for identifying frequent IP addresses.

5.2 Other Related Issues

With the deployment of Network Address Translation (NAT), Dynamic Host
Configuration Protocol (DHCP) and proxy services, multiple users can share the
same source IP address. Moreover, the source IP address can still represent some
level of identity, for example, a group of users with geographically proximity.
Since the IP addresses in our experimental data traces have been sanitized using
one-to-one hash mapping, the network information in the IP address is lost. In
practice, we can use network addresses, for example, a class C network address,
to represent the user’s identity. Moreover, the increasing implementation of IP.v6
[4] will strengthen the correlation between source IP address and user identity.

As high profile websites, such as Yahoo and CNN, will have visitors from all
around the world, maintaining the IAD is a very challenging task. Fortunately,
the deployment of Content Distribution Network (CDN) [14] has limited the
users to their local CDN server. Hence, the users for each CDN server will keep
consistent and we can build an IAD for each local CDN server separately.

6 Conclusion and Future Work

In this paper we proposed a scheme to detect distributed denial of service at-
tacks by monitoring the increase of new IP addresses. We have also presented
a sequential change point detection algorithm that can identify when an attack
has occurred. We demonstrated the efficiency and robustness of this scheme by
using trace-driven simulations. The experimental results in the Auckland traces
show that we can detect DDoS attacks with 100% accuracy using as few as 18
new IP addresses in the last-mile router and DDoS attacks using as few as 2
new IP address in the first-mile router. Our online detection algorithm is fast
and has a very low computing overhead. Our first-mile SIM has the advantage
over ingress filtering [5] that it can detect attack traffic with spoofed source IP
addresses within the subnetworks. Further, with the combination of two detec-
tion engines, all the DDoS attacks can be detected. Our future work will include
combining other network traffic statistics to detect bandwidth attacks and using
distributed detection to detect DDoS attacks.
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