
Collaborative Trust-based Secure Routing in Multihop Ad
Hoc Networks

Niki Pissinou1, Tirthankar Ghosh1, Kia Makki1

1 Florida International University, Miami, Florida
{pissinou, tirthankar.ghosh, makkik}@fiu.edu

Abstract. In this paper we have proposed a secure routing protocol based on AODV for
multihop ad hoc networks. Our protocol is unique in the sense that it is capable of finding a
secure end-to-end route free of any malicious entity, thus resisting an internal attack within the
network either in the form of compromised or disloyal nodes. We propose to find a secure and
efficient route to a destination based on collaborative effort of all the nodes.

1 Introduction

Most of the research on ad hoc networks, so far, has been done in the area of routing
protocols, though, in recent years, security issues have also been addressed. As the ad
hoc nodes are characterized by minimum trust for each other, finding a secure end-to-
end route is truly challenging. Most of the work on routing security focus on the
efficient use of digital signatures or shared secret keys to authenticate and confide the
data and routing headers. However, they always tend to find the shortest path between
source and destination irrespective of the presence of malicious nodes in between.
 In this paper we propose a secure routing algorithm to find a secure end-to-end
route based on collaborative effort of all the nodes in an ad hoc network, which can
withstand the attack of any malicious entity, like a compromised or a disloyal node.
Our protocol is robust against any internal attack within the network tending to inject
malicious routing information and disrupting the network operation.

2 Related Work

Not much work has been done to find an end-to-end secured route in ad hoc networks.
Some work has been done to design some secured routing protocols in a public key
infrastructure. [8,7,4]. The protocol proposed in [8] works under the assumption of a
trusted certificate server, which itself violates the basic paradigm of MANET. The
security of the protocol proposed in [7] is based on the assumption of the existence of
an efficient key management system that enables the nodes to obtain public key
information of other nodes. The authors, however, did not consider the threat from
compromised node.
 Some symmetric key solutions are also proposed to secure ad hoc networks
[5,6,9]. In [5] the authors have proposed a protocol whose security depends upon the
assumption of an efficient distribution of shared secrets between the nodes. This itself
is a burning research problem. A similar approach is proposed in [6]. The security here
is based on the efficient use of one-way hash function and works under the assumption
that some secure means of distributing the elements of the hash chain is already there.

 A token based approach is proposed in [9] where the use of threshold
cryptography is suggested to distribute the tokens securely among the nodes. Another
protocol, proposed in [12], aims at isolating the misbehaving nodes, thus making
noncooperation unattractive. The monitoring mechanism is implemented by a
neighborhood watch concept where the no-forwarding behavior of the nodes are
monitored and reported.
 In [4], the authors have proposed a protocol for securely discovering the network
topology in a public key infrastructure. The protocol is responsible for securing the
discovery and distribution of link state information. Another protocol to achieve a
similar goal is proposed in [3], which works under the assumption of an already
established shared secret between the source and destination.
 All the above solutions tend to find the shortest path from source to destination
irrespective of some malicious nodes in between. In [1], the authors have proposed a
secured routing protocol based upon the trust level of the nodes. Although their
approach is unique, the protocol fails under the attack of a compromised or a disloyal
node.

3 Our Protocol

3.1 Goals and Assumptions
Our design is based on the following assumptions which we think are justified. First,
there is a prior distribution of trust level1 of all the nodes. Second, all the nodes
communicate via a shared wireless channel and all communication channels are bi-
directional. Third, all the nodes operate in a promiscuous mode. Fourth, we do not
consider here physical layer or MAC layer security. Instead, we concentrate on the
network layer. Our proposed routing protocol is actually a secure extension of AODV.
Last but not least, we assume that all the nodes are identical in their physical
characteristics, i.e., if node A is within the transmission range of B, then B is also
within the transmission range of A.
3.2 Protocol Description
Essentially all routing protocols in the ad hoc community tend to find the shortest path
to the destination irrespective of the presence of any malicious node in that path. We
can argue that, as internal threat2 in the network in the form of a compromised3 or
disloyal4 node is of significant concern, a path free of malicious node is more
important than the shortest path. The protocol that we propose here is an extension of
the Ad hoc On Demand Distance Vector (AODV) routing protocol. The protocol
works as follows:

1 defined in line with the organizational hierarchy of the specific application of the network
deployment which is not discussed in this paper. This metric can be dynamically changed
depending upon the history of the past behavior of the nodes. We are currently working on that.
2 defined as an active attack by a compromised or a disloyal node which actively takes
part in the ongoing communication.
3 defined as a node which has been physically taken over by an intruder thus giving access to
all its stored secrets and system codes.
4 defined as a node which has ended its loyalty to the network and has decided to disrupt the
network operation by non-cooperation of some means.

 When a node wants to find a route to another node, it initiates a route discovery.
The RREQ packet header contains a trust_level field, in addition to the other fields in
AODV RREQ. When an intermediate node receives the RREQ packet, it rebroadcasts
it after modifying the trust_level field to include the trust level of the node that sends it
the RREQ. Every node checks back the rebroadcasted RREQ packet from its next
node to see whether it has provided the proper information. If not, it immediately
broadcasts a warning message questioning the sanctity of that node. Our protocol does
not encourage any intermediate node to send a route reply. The final route selection is
based upon the trust_level metric. Hop_count plays a role in deciding the final route
only when more than one packet has same trust_level. The RREP packet has the next
hop information. This is in line with the solution given in [11] to counter the black
hole problem. When the source node gets back the first RREP, it waits for a specified
amount of time before using that route. If within that time another RREP comes, the
source node queries the next hops of the two RREPs. The next hop of the malicious
RREP will obviously not have the same route to the destination. Thus, malicious route
injection into the network can be prevented.
 The pseudocode below shows the action of a node after it receives a route
request packet.

// when a node receives a Route Request packet
 Receice_RREQ() {
 // check whether it is the destination of the route
 // request
 if destination {
 compute_highest_trust_level()
 // in case more than one RREQ has same trust_level
 // decides on the basis of lowest hop_count
 sends_RREP_to_source() }
 else (not destination) {
 if duplicate packet {
 cross_checks_trust_level()
 if found ok
 drops the packet
 else
 broadcasts roure_warning message() }
 else (not duplicate) {
 modifies trust_level
 increments hop_count
 rebroadcasts RREQ }}}

 The pseudocode below shows the detailed action of the source node after it
receives the first route reply.

 // when the source node gets back the first Route Reply
 Receive_RREP() {
 waits for a specified period
 if receives another RREP {
 queries next_hop() }

 else {
 sends data() }}

 The function cross_checks_trust_level can be implemented in two ways. When
an intermediate node receives a duplicate route request packet, it checks back the
hop_count field to find out from which node it is receiving the packet. The following
algorithm implements the function.

 if (current ->hop_count = = hop_count – 1) {
 cross_checks_trust_level() }
 else {
 // the node is trying to put malicious information
 // finds out which node is malicious
 broadcasts roure_warning message() }

 The above algorithm works under our assumption that all the nodes are identical
in their radio range. If they are not, a node can receive a duplicate route request from
any other node which it cannot reach directly and wrongly assume that the later is
trying to act malicious. This will generate false warning messages in the network.
 The second possible implementation takes care of this. An intermediate node, on
receiving a duplicate route request packet, extracts the address stored in the lastaddr
field (the lastaddr field contains the address of the node from which the next node
receives a route request packet) and checks from the neighbor table whether it is from
any of its neighbor. The algorithm works as follows:

 if (lastaddr = = neighbortable->addr) {
 cross_checks_trust_level() }
 else {
 drops the packet() }

 The above implementation can actually increase the computational overhead in
each node. The complexity can however be reduced by efficient searching of the
neighbor table.

4 Simulation and Results

We have used Glomosim for our simulation. Glomosim is a scalable simulation
software used for mobile ad hoc networks. We defined a region of 2 Km by 2 Km with
random node placement. The nodes move with uniform speed chosen between 0 to 10
meters/sec. The pause between each successive movement is 30 seconds.
 The results that we got confirm the efficiency of our protocol. We have
benchmarked our protocol, which we call Trust-embedded AODV (T-AODV) with the
original AODV protocol. The small percentage increase in overhead (Fig.1) can be
traded off with the incorporation of security into the protocol. This increase is due to
retransmission of some route request packets because of delayed receipt of route reply
by the source nodes (as we do not encourage intermediate nodes to send route reply in
our protocol). Actually, this overhead can be brought down by increasing the

NET_TRAVERSAL time. We can also see from Fig.1 that the percentage variation in
overhead decreases with increasing number of nodes. This is because, in AODV, as
more and more nodes join the network, the probability of sending route replies by
intermediate nodes increases, which is not the case in T-AODV as no intermediate
node can send route replies.

 Fig. 1. Routing overhead Fig. 2. Algorithm Running times

 The comparison of the algorithm running times in Fig.2 also shows that our
protocol is efficient which runs more efficiently with increased number of nodes. A
probable explanation of this is, in AODV, as we increase the number of nodes in the
network, more nodes tend to find a route from its cache. In our protocol, as we do not
encourage intermediate nodes to send route replies, the running times becomes lower
than AODV as more nodes join the network. The time can go up by a small percentage
if we increase the NET_TRAVERSAL time to lower the routing overhead.
 As no intermediate node is encouraged to come up with route replies, we
obviously have lesser number of routes selected in our protocol that that in AODV
(Fig.3). However, this should not give any misconception that some of the routes are
not properly selected. In fact, our protocol has lesser number of route errors reported
than that in AODV (Fig.4). Lesser number of routes selected, in effect, renders lower
processing overhead for the source nodes, as they do not have to process all the route
replies from the intermediate nodes.

 Fig. 3. Numbers of Routes selected Fig. 4. Route Errors sent

5 Conclusion

Currently we are working on two extensions of the protocol. We are developing a
dynamic trust model instead of a predistributed static one. We are also working to
make the protocol robust enough to withstand the attack from multiple malicious
nodes colluding to disrupt the network, which is not currently incorporated.

References

 1. Yi, S., Naldurg, P., Kravets, R.: Security-Aware Ad hoc Routing for Wireless Networks.
 Report No. UIUCDCS-R- 2001-2241, UILU-ENG-2001-1748, August 2001.
 2. Perkins, C., Royer, E.: Ad hoc On-Demand Distance Vector Routing. In Proc.IEEE
 Workshop on Mobile Computing Systems and Applications, 1999.
 3. Papadimitratos, P., Haas, Z. J.: Secure Routing for Mobile Ad hoc Networks. In Proc. SCS
 Communication Networks and Distributed Systems Modeling and Simulation Conference
 (CNDS 2002), San Antonio, TX, January 27-31, 2002.
 4. Papadimitratos, P., Haas, Z. J.: Secure Link State Routing for Mobile Ad hoc Networks. In
 Proc. IEEE Workshop on Security and Assurance in Adhoc Networks, in conjunction with
 the 2003 International Symposium on Applications and the Internet, Orlando, FL, January
 28, 2003.
 5. Hu, Yih-Chun, Perrig. A., Johnson, D. B.: Ariadne: A Secure On-Demand Routing Protocol
 for Ad hoc Networks. MobiCom ’02, September 23-26, 2002, Atlanta, Georgia, USA.
 6. Hu, Yih-Chun, Perrig. A., Johnson, D. B.: SEAD: Secure Efficient Distance Vector Routing
 for Mobile Wireless Ad hoc Networks. In Fourth IEEE Workshop on Mobile Computing
 Systems and Applications (WMCSA ’02), June 2002, pages 3-13, June 2002.
 7. Zapata, M. G., Asokan, N.: Securing Ad hoc Routing Protocols. WiSe ‘02, September 28,
 2002, Atlanta, Georgia, USA.
 8. Sanzgiri, K., et al,: A Secure Routing Protocol for Ad hoc Networks. In Proc of the 10th
 IEEE International Conference on Network Protocols (ICNP’02).
 9. Yang, H., Meng, X., Lu, S.: Self-Organized Network Layer Security in Mobile Ad hoc
 Networks. WiSe ’02, September 28, 2002, Atlanta, Georgia, USA.
10. Zhou, L., Haas, Z. J.: Securing Ad hoc Networks. IEEE Network, November/December
 1999.
11. Deng, H., Li, W., Agrawal, D. P.: Routing Security in Wireless Ad Hoc Networks. IEEE
 Communications Magazine, October 2002.
12. Buchegger, S., Le Boudec, Jean-Yves.: Performance Analysis of the CONFIDANT
 Protocol (Cooperation Of Nodes: Fairness In Dynamic Ad-hoc Networks), MOBIHOC ’02,
 June 9-11, 2002, Switzerland.

	1 Introduction
	2 Related Work
	3 Our Protocol

	4 Simulation and Results
	Fig. 3. Numbers of Routes selected Fig. 4. Route Errors sent
	5 Conclusion
	References

