
On the Representability of Arbitrary Path Sets

as Shortest Paths: Theory, Algorithms and

Complexity

Gábor Rétvári, Róbert Szabó, József J. B́ıró

High Speed Networks Laboratory, QoSIT Laboratory
Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics?

H-1117, Magyar Tudósok körútja 2., Budapest, HUNGARY
{retvari,robert.szabo,biro}@tmit.bme.hu

Abstract. The question, whether an optional set of routes can be rep-
resented as shortest paths, and if yes, then how, has been a rather scarcely
investigated problem up until now. In turn, an algorithm that, given an
arbitrary set of traffic engineered paths, can efficiently compute OSPF
link weights as to map the given paths to shortest paths may be of huge
importance in today’s IP networks, which still rely on legacy shortest-
path-first routing protocols. This article establishes the fundamental the-
ory and algorithms of shortest path representability, and concludes that
in general it is much more difficult task to compute shortest path rep-
resentable paths than to actually calculate link weights for such paths.

Keywords: traffic engineering, routing, linear programming, OSPF

1 Introduction

Most of today’s Traffic Engineering (TE, [1]) proposals require the deployment
of expensive routing and traffic forwarding hardware and software. On the other
hand, ISPs have huge installation base of routers running legacy routing proto-
cols like OSPF (Open Shortest Path First, [2]) or IS-IS (Intermediate-System-to-
Intermediate-System). Both OSPF and IS-IS rely on shortest-path-first routing,
i.e., there is an administrative weight associated with network links, and, for a
given destination IP address prefix, the routing protocol uses the shortest ag-
gregate cost path to that destination. The network operator manipulates routing
by setting the administrative link weights appropriately. Usually, optional load
balancing by ECMP (Equal-Cost-MultiPath) is also available, where traffic is
split roughly evenly amongst multiple shortest paths, if such paths exist. De-
pending on the choice of the manufacturer, ECMP may implement per packet,
per destination or per source-destination pair load distribution using round-robin
or some hashing technique.

? This work was supported by the Ministry of Education, Hungary under the reference
No. IKTA-0092/2002.

Hence, it is an easy-to-deploy and overly cost-effective solution to implement
traffic engineering on top of OSPF while retaining existing routing equipment.
In such an architecture, a suitable Traffic Engineer (i) participates in OSPF
signaling to learn routing information, (ii) assigns paths for each session, (iii)
computes link weights as to assure that the link weights reflect the assignment
of paths (i.e., all paths, which are assigned for a particular session are shortest
paths for that session) and (iv) distributes the selected link weights back to
OSPF routers. However, this solution is almost certainly sub-optimal due to the
inherent limitation of ECMP, which restricts load balancing to equal splitting.

The foundations of OSPF traffic engineering are laid down by [3] and [4].
An unpublished work [5] of the same authors shows that it is NP hard to com-
pute link weights, as to assure that the resultant set of shortest paths fulfill
some useful traffic engineering criteria. Therefore, the authors propose a local
search heuristic achieving nearly optimal routing in some cases. However, the
applicability of the algorithms proposed is restricted to the long-term process of
network dimensioning. This is because of the running time of these algorithms,
which may amount to hours even in a middle sized network. In contrast, on-
line traffic engineering requires rapid algorithms to assure quick adaptation to
topology changes or management controls. The authors also missed to identify,
whether in path selection or in shortest path representation hides the real origin
of exponential complexity.

To the best of our knowledge, the outstanding paper of Wang et al. [6] has
been the only work dealing with shortest path representability up until now.
According to their definition, a set of paths is shortest path reproducible if there
exists a positive valued weight set based on which all the paths in the set are
shortest paths. They establish the sufficient and necessary condition of shortest
path representability and conclude that a set of paths is either loopy, and there-
fore is of negligible interest to traffic engineering, or it is shortest path reprodu-
cible. This precious work (and some derivatives, e.g., [7]) disproved the common
belief of many researchers that shortest-path-first routing is, by nature, useless
to traffic engineering.

It is of extreme importance to understand that the definition of shortest path
representability and the implied linear programming solution can only guarantee
that the selected paths are reproduced as shortest paths. Though, it claims
nothing about other paths. Therefore, a path that was originally not designated
for data forwarding may be given small cost and so, be introduced into routing.
The traffic engineer does not have total control over routes and may experience
unwanted interference caused by the additional paths, which he or she did not
even consider to use. This may very well amortize the overall performance of
the network. In fact, we can show that depending on the actual topology of the
network and distribution of source-destination pairs the worst case performance
might degrade to an arbitrary small fraction of the optimal performance due to
unintended interference. This happens regardless of using ECMP or not.

Consider Figure 1. The network consists of N identical blocks with an altern-
ate path circumventing these blocks. All link capacities and weights equal to 1.

Fig. 1. Sample graph topology. All link capacities and weights equal to 1 and there are
N and 1 units of demand for A → B and C → D, respectively

There are two sessions (A, B) and (C, D) communicating over the network, will-
ing to use N and 1 units of bandwidth, respectively. In an optimal setting, the
traffic engineer may select the circumventing C → D path (route a in the figure)
of hop count 2N +2, and let (A, B) demands flow through the N blocks, one unit
of demand per block. The optimal throughput is therefore N + 1. An obvious
way to achieve this would be to set the weight of link (C, 1) to a high value. How-
ever, traditional shortest path representation methods can not guarantee this,
therefore, route b (also of length 2N +2) is often introduced unintentionally into
data forwarding1. In the worst case, all (C, D) communication may use route
b completely blocking (A, B). This causes the performance to degrade to some

1
N+1 fraction of the optimal value. If ECMP is not used, then, depending on the
actual implementation of the shortest-path-first routing engine, in around half
of the cases route a and in the other half route b would be selected, In average,
this causes half of (C, D) traffic to interfere with (A, B) traffic. Observe that the
very same situation rises with ECMP, too. Asymptotically, the total throughput
degrades to the half of the optimal performance in the average case.

Yet another important thing to know about the definition of shortest path
representability proposed in [6] is that it provides no means to avoid multi-path
routing. Deciding whether or not multi-path routing is a beneficial feature to
have is completely beyond the scope of this paper. On the one hand, multi-
path routing promises load balancing and may yield higher performance and
network utilization. On the other hand, multi-path routing introduces a huge
amount of uncertainty compared to single-path routing, ranging from the actual
implementation of the ECMP splitting algorithm to the fact that in the presence
of equal-cost paths, it is totally impossible to predict, which particular path a
certain connection will take. This is completely undesirable in some cases (e.g.,
it precludes call admission control to assess the route of a connection prior to
actually instantiating it in the network). By all means, it may be advantageous

1 Note that as of our favorite open source linear programming toolkit, GLPK, the
optimal solution of ILP-SPR almost always yields this “bad” configuration.

to set link weights as to avoid multiple paths of a source-destination pair to have
the same cost. To this end, [8] extends the local search heuristic proposed in [3],
however, the proposed method is neither exact nor rapid.

In this paper we introduce the notions of explicit and unique shortest path
representation to avoid the use of unintended paths. In Section 2 we give the
basic mathematical formulation and definitions. As far as we know, this is the
first time that strictly combinatorial algorithms to verify explicit shortest path
representability are defined. The algorithms and some theoretical background is
discussed in Section 3. Section 4 reveals the complexity of path assignment and
gives simple approximations to the NP hard problem. Section 5 briefly outlines
related simulation studies, and finally, Section 6 concludes our work.

2 Mathematical Formulation

Let G(V, E) be a directed graph, formed by the set of nodes N (|N | = n) and
the set of edges E (|E| = m). Let K denote the set of source-destination pairs
(sk, dk), which are referred to as sessions for short. Let Psk→dk be the set of all
paths that connect a particular source-destination pair (sk, dk). Our task then
is to explicitly represent a given subset Pk ⊆ Psk→dk as shortest paths. A path
P ∈ Pk of length LP is defined by its consecutive edges: P := {(vi, vi+1) ∈ E :
i = 1 . . . LP − 1, v1 = sk, vLP

= dk}. We assume that there is a positive valued
weight wij ∈ Z+ associated with each edge (i, j), and we let the aggregate cost
of a path P be W (P) =

∑

(i,j)∈P wij . Furthermore, let pk denote the number of

paths for session k (i.e., pk = |Pk|), let P be the set of all designated paths (i.e.,
P =

⋃

k∈K Pk) and let the aggregate cost of a path P over link weights wij be
W (P) =

∑

(i,j)∈P wij .
Now we introduce the notion of path-graphs, which will be heavily used

throughout this paper. Let nk
ij be the number of paths of session k traversing

link (i, j) and nij =
∑

k∈K nk
ij be the number of all paths using that link. Then,

the path-graph GP induced by a path set P is a special network, which includes
all edges of all paths of P and the capacity of the edges equals to the number of
paths in P using that link. We also let the demand tk for session k be tk = pk.
Formally, a path-graph GP is a network on G(V, E), such that the capacity of
a link (i, j) is given by uij = nij and all zero capacity links and zero degree
nodes are removed from the network. Observe that a path set unambiguously
determines the corresponding path-graph, though, the reverse is not necessarily
true. This is because a path-graph may contain additional paths, which are
formed by the concatenation of some sub-paths of the original path set P . This
parallels with the property of shortest paths that if a → b and b → c are shortest
paths, then a → b → c is also a shortest path. Note that in this case, we consider
these additional paths to belong to P , too. In other words, a set of paths is said
to include a particular path if it includes all edges of that path.

According to [6], a path set P is shortest path reproducible, if there exists
a positive weight setting W = {wij} : wij > 0, such that all paths in P are
shortest paths over W :

Definition 1 (SPR). A path set P is shortest path representable, if there exists
a positive weight setting W, such that for all P ′ ∈ Pk it holds that

∀P ∈ Psk→dk \ Pk : W (P ′) ≤ W (P) (1)

for every session k ∈ K.

In this context, verification of shortest path representability of a particular
path set P and the actual link weights implementing P can be given by solving
the following integer linear program (ILP-SPR) over the path-graph:

max
∑

k∈K pkπk
dk

−
∑

(i,j)∈E nijwij (2)

s.t. πk
j − πk

i ≤ wij ∀(i, j) ∈ E, ∀k ∈ K (3)

wij ≥ 1 ∀(i, j) ∈ E (4)

Observe that this definition tells nothing about paths outside of Pk. Such
paths are either shortest paths or not. In other words, the representation is
not explicit. As shown in the previous section, this may lead to undesirable
interference amortizing the overall performance of the network. To eliminate
this shortcoming we introduce the notion of explicit shortest path representation
in the following way:

Definition 2 (eSPR). A path set P is explicitly shortest path representable, if
there exists a positive weight setting W, such that for all P ′ ∈ Pk it holds that

∀P ∈ Psk→dk \ Pk : W (P ′) < W (P) (5)

for every session k ∈ K (note the strict inequality!).

What makes the difference is that eSPR explicitly prohibits a path outside of
the desired path set Pk to become shortest path. Observe that any eSPR path
set also fulfills Definition 1.

In certain situations, it is important to avoid having multiple different parallel
routes for any sessions. Therefore, it is a plausible idea to define some sorts of
uniqueness of routing by definitely precluding the existence of multiple equal-cost
shortest paths between any source-destination pairs:

Definition 3 (uSPR). A path set P is uniquely reproducible as shortest paths,
if there exists a positive weight setting W, such that for every session k ∈ K
there is exactly one path P ′

k, for which it holds that

∀P ∈ Psk→dk \ {P ′
k} : W (P ′

k) < W (P) . (6)

Wang et al. propose a linear program to verify and perform shortest path
representation [6], though, they do not seem to recognize that the resultant rep-
resentation will be neither explicit nor easily implementable in network devices.
In the sequel, we focus on the more difficult problem of eSPR instead of SPR and
introduce some simple sufficient conditions to both explicit and unique shortest
path representation.

3 Explicit and Unique Shortest Path Representation

In order to provide further insight into the relation of SPR and eSPR, first, we
borrow some basic results of network flow theory and linear programming [9]
[10]. Paths in a path set P define shortest paths if and only if there exist node
potentials πn : n ∈ V and positive link weights wij : (i, j) ∈ E, such that:

∀P ∈ P , ∀(i, j) ∈ P : πj − πi = wij (7)

∀P /∈ P , ∃(i, j) ∈ P : πj − πi < wij (8)

The cost of an s → d shortest path is given as W (P) =
∑

(i,j)∈P wij = πd − πs.
An intriguing question to investigate is to assess, under which conditions a

shortest path representable path set is also explicitly shortest path representable.
As it turns out, the two concepts of shortest path representability are identical
under some surprisingly mild assumptions. This is formulated in the following
important result:

Theorem 1. Let P be a path set, such that for all k ∈ K there exists an sk → dk

path in the path-graph GP of P. Then, P is shortest path representable if and
only if it is explicitly shortest path representable.

Proof. eSPR ⇒ SPR is obvious in light of the fact that an explicit shortest path
representation immediately conforms to the SPR definition.

SPR ⇒ eSPR: we give a constructive proof by presenting an algorithm, which
turns a SPR into an eSPR in polynomial time. Given a path set P let the path-
graph induced by P be GP(VP , EP). From Definition 1 we have that over a
proper SPR weight set W and node potentials πn, all sk → dk paths in GP are
shortest paths. What we need to assure is that no paths outside of GP are also
shortest paths. Consider the following simple modification of W : For some edge
(i, j) /∈ EP let wij = WMAX , where WMAX is defined as:

WMAX = max
k∈K

(πdk
− πsk

) + 1 (9)

Now, we make the following observations:

– Let n ∈ VP be a node in the path-graph. By assumption, we have that for any
session k ∈ K there exists at least one sk → n path, which lies completely
inside GP . Since this path is a shortest path and its length is not affected by
the weight of any (i, j) /∈ EP , the node potentials πn : n ∈ VP are invariant
with respect to the above modification of the link weights. The same applies
to the value of WMAX , itself.

– Furthermore, (9) is constructed as to assure that WMAX , and as such, any
path containing at least one edge of weight WMAX is longer than the longest
one of all sk → dk shortest paths.

Then, one can set the weight of all the links outside of EP to WMAX to obtain an
explicit shortest path representation. This can be done in O(m) time. To prove

the correctness of this algorithm, let P1 be any optional sk → dk path for some
session k ∈ K, such that P1 /∈ P . Hence, P1 traverses some edge (i, j) /∈ EP

(otherwise, it would lie completely in GP and therefore, by definition, it would
belong to P). So wij = WMAX . Furthermore, let P2 be a sk → dk path inside
GP , i.e., ∀(u, v) ∈ P2 : (u, v) ∈ EP . Note that, by assumption, one can always
find such P2 path. Additionally, the algorithm leaves the node potentials, and as
such, the length of any path in GP intact. Thus, for the length of paths P1 and
P2 we have that W (P2) < WMAX ≤ W (P1). Since the strict inequality holds
for any P1 outside of GP and any P2 inside GP we conclude that the modified
weight set implements explicit shortest path representation (cf. (7)-(8)). This
completes the second part of the proof. ut

The significance of the above theorem is two-fold, First, as shall be shown by
the simulation results in Section 5, explicit shortest path representation generally
improves the performance of OSPF traffic engineering as it avoids unnecessary
and adverse interference caused by unintentional paths. Moreover, proving SPR
is usually simpler than proving eSPR. Hence, Theorem 1 assures that the result-
ant weight set can be transformed in polynomial time into one, which implements
explicit shortest path representation. Henceforward, we restrict our discussions
to path sets, which satisfy the assumption of Theorem 1, i.e., which contain at
least one path for each session.

The linear program ILP-SPR does not provide easy way to determine, whether
or not a particular set of paths is shortest path representable. It requires the
rapid solution of a potentially large scale linear program, which may very well
fall beyond the capabilities of today’s network devices. Therefore, in the sequel,
we show some easy-to-check conditions to test for eSPR and uSPR, respectively.

Lemma 1 (Sufficient condition for uSPR). A path set P is uniquely rep-
resentable as shortest paths if the path graph GP induced by P is a directed
forest.

Proof. Given that GP is connected with respect to source-destination pairs
(sk, dk) and it forms a directed forest, by definition, there is only one path
between any two nodes. Hence, arbitrary positive setting of the link weights will
conform to (8) as long as the weight setting WMAX defined in (9) is respected
for the links, which do not reside in GP . This can be done in O(m) time. ut

Lemma 2 (Sufficient condition for eSPR 1.). A path set P is explicitly
representable as shortest paths if the path graph GP induced by P is acyclic
(i.e., it does not contain any directed circles).

Proof. We construct a simple shortest path representation of P , which then,
according to Theorem 1 can be easily converted to an explicit shortest path
representation. From graph theory, we know that every acyclic graph G(V, E)
possesses one or more topological ordering. A topological ordering is a labeling
order(n) of the nodes n ∈ V , such that every edge joins a lower-labeled node to a
higher-labeled node, i.e., ∀(i, j) ∈ E : order(i) < order(j). It is fairly easy to see

that any topological ordering of the path graph GP induced by P defines suitable
node potentials, and hence, link weights in the form: wij = order(j) − order(i).
A weight set wij , defined in this way is, by definition, integer and positive valued.
Thus, proper eSPR link weights can be computed in O(m) time in this case. ut

Note that verifying any of the above conditions takes O(m) steps. This is
the lower bound on the complexity of any link weight setting algorithm, since
at least O(m) steps are necessary to walk through all the links in the network.
Also note that a set of paths may very well be shortest path representable even
if its path graph contains directed circles. Therefore, the above condition is
obviously not a necessary one. In order to catch a larger class of path graphs
than acyclic graphs, we present yet another sufficient condition of eSPR, which
is of considerably broader scope:

Lemma 3 (Sufficient condition for eSPR 2.). Consider the single com-
modity flow problem (the so called mass-flow problem) derived from the original
K-commodity flow problem in the following way. For every node n ∈ V , let
the imbalance of n be e(n) =

∑

k∈K:n=sk
pk −

∑

k∈K:n=dk
pk. Find a minimum

cost mass-flow instance that satisfies e(n). This can be done in polynomial time
by some combinatorial algorithm, e.g., by minimum mean-cycle cancellation in
O(n2m3 log n) time [9]. Then, a path set P is explicitly representable as shortest
paths if for the aggregate cost Cmass of the optimal mass-flow:

Cmass =
∑

P∈P

LP , (10)

where LP is the length of path P .

Proof. Consider the the dual linear program instance I of ILP-SPR over GP . It
is fairly easy to show that I is a minimum cost multi-commodity flow problem.
From [6] we know that a path set P is shortest path representable if and only if
the aggregate length

∑

P∈P
LP of P equals to the optimal objective function of

I . Solve I and let the optimal objective value be CI . It is straightforward that
Cmass ≤ CI . Hence, if (10) holds, then CI =

∑

P∈P
LP and P is optimal. ut

In general, given a set of paths, one can either conclude that the path set
is loopy or otherwise provide an explicit shortest path representation in strictly
polynomial time. This implies that this is not the shortest path representation
problem, but rather the determination of optimal paths, which hides the expo-
nential complexity of OSPF traffic engineering. In fact, the next section confirms
just this claim.

4 Complexity of Optimal Path Assignment

Now, we move on to investigate the complexity of optimal path selection and to
show that in general, it is a hard task to compute eSPR path sets with respect to
some reasonable traffic engineering optimization criteria. The reader is advised
to the following discussion.

Fig. 2. Sample configuration with K sessions and demands 0 < tk < 1

Theorem 2. Given a demand set tk : k ∈ K it is NP hard to compute a uniquely
shortest path representable path set, such that all tk demands are satisfied. In
fact, it is also NP hard to even decide, whether or not the demand set can be
satisfied along an uSPR path set.

Proof. The transformation is from 2 bin packing. Consider the sample configur-
ation depicted in Figure 2. There are K sessions with demands 0 < tk < 1 and
two link disjoint paths of capacity 1 from each source to each destination, one
through link a and another through link b. Individual demands must be routed
without any sorts of splitting to form a directed forest of a uSPR. Therefore, all
sk → dk traffic tk is either packed into link a or link b, alternatively. Thus, any
uSPR path set in this setting also solves 2 bin packing. It is also NP hard to
even decide, whether a particular demand set can be packed into the two bins
or not. ut

Note that it is also NP hard to determine the maximum number of sessions
that can be satisfied, which would be the objective if one was to maximize the
throughput of the network. The network dimensioning case is also NP hard (how
many links to deploy in order to assure proper uSPR routing), since it maps
to the minimum bin packing problem. Also note that the proof of Theorem 2
remains to be valid, if we let individual demands to be split between the two
paths evenly, i.e., let half of the demand flow through link a and the other half
through link b. Observe that such a path set is acyclic, and as such, it conforms
to the condition of explicit shortest path representability given in Lemma 2.

Corollary 1. In general, determining a path set that is explicitly shortest path
representable and optimizes OSPF ECMP routing is NP hard.

Despite of the intractable complexity of eSPR path selection, there are cer-
tain relaxations of the full-fledged problem, which are both easy to solve and
may prove to be of substantial interest in some realistic scenario. The NP com-
plete nature of OSPF-ECMP routing is closely coupled with the requirement
that either flows are unsplittable (uSPR) or can only be split evenly (eSPR).
Relaxing this requirement of unsplittable flows immediately yields polynomial
approximate algorithms for eSPR path selection, such as the optimal routing or
the minimum cost maximum throughput linear programs [9], [10].

uSPR path selection is a more difficult problem, because one must avoid any
branching of the optimal paths in this case. Therefore, some more relaxation is
necessary. First, it is plausible to let ∀k ∈ K : tk = 1, since most of today’s
networking architectures do not provide means for a user to specify his or her
demand size. In addition, the scope of the routing information retrievable from
OSPF link state information is currently limited to the actual topology of the
network. This gives rise to a unit-demand-unit-capacity relaxation of the original
problem. In this setting, the integer linear program below (if solvable) provides
a path set P that can be uniquely represented as shortest paths:

max
∑

k∈K tk − α
∑

k∈K

∑

(i,j)∈E Xk
ij (11)

∑

j:(i,j)∈E Xk
ij −

∑

j:(j,i)∈E Xk
ji =











tk if i = sk

−tk if i = dk

0 otherwise

∀k ∈ K, ∀i ∈ V (12)

∑

k∈K

∑

j:(i,j)∈E Xk
ij ≤ 1 ∀i ∈ V (13)

Xk
ij ∈ [0, 1], tk ∈ [0, 1] ∀k ∈ K, ∀(i, j) ∈ E(14)

The objective function (11) maximizes the overall throughput of the network,
while minimizing the aggregate flow to avoid loops (α is a suitably small con-
stant). (12) requires flow conservation. It is assured that the resultant path set
(which comes in the form ∃k : Xk

ij > 0 ⇒ (i, j) ∈ P) is uSPR, since (13) lets
only one unit of flow to emanate from any node. Thus, the path graph consists of
isolated paths for some sessions, which together form a directed forest. Finally,
(14) keeps per-session traffic tk and the link flow Xk

ij integer.

5 Simulation Studies

In this section, we briefly outline some results of our simulation studies that
demonstrate the benefits of rendering the representation explicit. We used the
BRITE tool [11] with the router-level Waxman-model (α = 0.15, β = 0.2, m = 3)
to generate a sequence of increasing sized realistic random graphs. We tried
to keep the load constant throughout the sequence by setting the number of
sessions, request intensity, average demand size and average holding time as to
assure that the generated traffic keeps track with the growing capacity of the
consecutively increasing networks. We used a call level OSPF-ECMP simulator
to compare the performance of distance-vector routing (minimum hop-count
routing, MINHOP), shortest path representation of the optimal paths generated
by the maximum throughput relaxation (SPR) and the explicit representation
(using Theorem 1) of the very same paths (eSPR). The results presented below
are averaged over 30 graph sequences.

Figure 3 depicts the average number of ECMP routes as the function of the
network size. MINHOP may only accidently create ECMP paths, while the solu-
tion of the maximum throughput relaxation intentionally, though, being just a
relaxation of the NP hard path selection problem, sub-optimally forms ECMP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

4 6 8 10 12 14 16 20 24 28 32

#(
E

C
M

P
 ro

ut
es

)

Network size, #(node)

MINHOP
SPR

eSPR

Fig. 3. Average number of ECMP routes
as the function of network size

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

4 6 8 10 12 14 16 20 24 28 32

C
al

l B
lo

ck
in

g
R

at
io

Nework size, #(node)

MINHOP
SPR

eSPR

Fig. 4. Average call blocking ratio as the
function of the network size

paths. However, compared to eSPR, which exclusively implements these paths,
almost every second path formed by SPR is unintended. The average call block-
ing ratio depicted in Figure 4 insists that this nature of SPR is indeed leading to
interference owing to the additional paths. The difference amounts to some 5-8%
in average, which, in individual cases may be highly significant gain implied by
eSPR. The figure also underlines the superiority of OSPF traffic engineering in
comparison to traditional MINHOP routing.

6 Conclusions

This paper focuses on shortest path representation, a question of crucial im-
portance in the majority of today’s IP networks, which still rely on legacy
shortest-path-first routing protocols. Our most important contribution to the
groundbreaking work of [6] in this field comes from the recognition that it is
not enough to blindly map the desired paths to shortest paths. We provided
strong theoretical and practical evidence that if one can not exclude unintended
paths from becoming shortest paths, he or she risks substantial amortization
of the network revenue. We showed that, under reasonable assumptions, every
non-explicit shortest path representation can be turned into an explicit one in
polynomial time. As the explicit representation is a stronger and more useful
one, we propose to use it instead of the non-explicit case. To ease this, we gave
some novel sufficient conditions to test for SPR, which are, in contrast with prior
work, strictly combinatorial. We also introduced uniqueness and proposed an ex-
act method to compute uSPR link weights. Finally, we dealt with the problem
of the selection of traffic engineered paths subject to eSPR or uSPR, and con-
cluded that this problem is NP hard. As our major contribution, we concluded
that actual shortest path representation is an easily tractable problem, and in-
stead, optimal eSPR/uSPR path selection hides the real origin of exponential
complexity. Therefore, we plan to take further efforts in this field.

References

1. D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview and prin-
ciples of Internet traffic engineering.” RFC 3272, May 2002.

2. J. Moy, “OSPF Version 2.” RFC 2328, April 1998.
3. B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP

routing protocols,” IEEE Communications Magazine, vol. 40, pp. 118–124, Oct
2002.

4. B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing world,”
IEEE Journal of Selected Areas in Communications, vol. 20, pp. 756–767, May
2002.

5. B. Fortz and M. Thorup, “Increasing internet capa-
city using local search,” 2000. unpublished manuscript,
http://www.research.att.com/˜mthorup/PAPERS/or ospf.ps.

6. Z. Wang, Y. Wang, and L. Zhang, “Internet traffic engineering without full-mesh
overlaying,” in Proceedings of INFOCOM 2001, April 2001.

7. A. Sridharan, C. Diot, and R. Guérin, “Achieving near-optimal traffic engineering
solutions for current OSPF/IS-IS networks,” in Proceedings of INFOCOM 2003,
March 2003.

8. M. Thorup, “Avoiding ties in shortest path first routing,” 2001. unpublished ma-
nuscript, http://www.research.att.com/˜mthorup/PAPERS/ties ospf.ps.

9. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,

and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1993.
10. M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network

Flows. John Wiley & Sons, January 1990.
11. A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Universal topology gen-

eration from a user’s perspective,” Tech. Rep. 2001-003, 1 2001.

