
Precomputation of Constrained Widest Paths in
Communication Networks

Stavroula Siachalou, Leonidas Georgiadis

Aristotle Univ. of Thessaloniki, Faculty of Engineering, School of Electrical and
Computer Engineering, Telecommunications Dept. Thessaloniki, 54124, GREECE.

E-mails:ssiachal@auth.gr, leonid@auth.gr

Abstract. We consider the problem of precomputing constrained widest
paths in a communication network. Precomputing and storing of all rele-
vant paths minimizes the computational overhead required to determine
an optimal path when a new connection request arrives. We present three
algorithms that precompute paths with maximal bandwidth (widest
paths), which in addition satisfy given end-to-end delay constraints. We
analyze and compare the algorithms both in worst case and through
simulations using a wide variety of networks.

Keywords: Precomputation, QoS Routing, Widest Paths, Bottleneck Paths, Graph
Theory.

1 Introduction

In today’s communication networks, transmission of multimedia traffic with
varying performance requirements (bandwidth, end-to-end delay, packet loss,
etc.), collectively known as Quality of Service (QoS) requirements, introduces
many challenges. In such an environment, where a large number of new requests
with widely varying QoS requirements arrive per unit of time, it is important to
develop algorithms for the identification of paths that satisfy the QoS require-
ments (i.e. feasible paths) of a given connection request, with minimal compu-
tational overhead. Minimization of the computational overhead per request can
be achieved by computing a priori (precomputing) and storing all relevant paths
in a data base.
While a large number of studies addressed the Constrained Path Routing

Problem (see [2], [4], [10], [12], [17] and the references therein) there are relatively
few works dealing with the specific issues related to precomputing paths with
QoS constraints [6], [8], [14]. In [8], the problem of precomputing optimal paths
under hop-count constraints is investigated. They propose an algorithm that
has superior performance than Bellman Ford’s algorithm in terms of worst case
bounds. In [14], by considering the hierarchical structure which is typical in large
scale networks, an algorithm which offers substantial improvements in terms of
computational complexity is presented. These studies concentrated on the hop-
count path constraint.

In [9] Guerin, Orda and Williams presented the link available bandwidth
metric as one of the information on which path selection may be based. They
mentioned that the leftover minimum bandwidth on the path links after con-
nection acceptance must be as large as possible in order to accept as many
requests as possible. In this paper we focus on the problem of precomputing
paths with maximal bandwidth (path bandwidth is the minimal of the path link
bandwidths), which in addition must satisfy given end-to-end delay requirements
which become known upon the arrival of a new request. We present three al-
gorithms that provide all relevant paths. The first algorithm is an application
in the specific context of the algorithm developed in [17] for the Constrained
Path Routing Problem. The second is based on an implementation of the ba-
sic algorithmic steps in [17], where we introduce new data structures that take
advantage of useful properties of the problem at hand. The third algorithm is
based on an approach whereby iteratively relevant paths are determined and
links that are not needed for further computation are eliminated. We analyze
and compare the algorithms both in worst case and through simulations. The
analysis considers both computation times and memory requirements and shows
the trade-offs involved in the implementation of each of the algorithms.
The rest of the paper is organized as follows. The problem is formulated

in Section 2. We present the three algorithms in Section 3 and in Section 4 we
examine the algorithms in terms of worst case running time and memory require-
ments. Section 5 presents numerical experiments that evaluate the performance
of the proposed algorithms. Conclusions of the work are presented in Section 6.
Due to space limitation proofs are omitted. We refer the interested reader to the
site [20] for a version containing proofs.

2 Model and Problem Formulation

In this section we formulate the problem related to the precomputation of con-
strained widest paths and define some notation that will be used in the rest of
the paper.
A network is represented by a directed graph G = (V,E), where V is the

set of nodes and E is the set of edges (links). Let N = |V | and M = |E|. A
link l with origin node u and destination node v is denoted by (u, v). A path is
a sequence of nodes p = (u1, u2, ..., uk), such that ui 6= uj for all 1 ≤ i, j ≤ k,
i 6= j, and k− 1 is the number of hops of p. By p we also denote the set of links
on the path, i.e., all links of the form (ui, ui+1), i = 1, ..., k − 1. By Vin (u) and
Vout (u) we denote respectively the set of incoming and outgoing neighbors to
node u, that is

Vin (u) = {v ∈ V : (v, u) ∈ E} , Vout (u) = {v ∈ V : (u, v) ∈ E} .
With each link l = (u, v), u, v ∈ V there is an associated width wl ≥ 0 and

a delay δl ≥ 0. We define the width and the delay of the path p respectively,

W (p) = min
l∈p

{wl} , D (p) =
X
l∈p

δl.

The set of all paths with origin node s, destination node u and delay less than
or equal to d is denoted by Pu(d). The set of all paths from s to u is denoted by
Pu.
In a computer network environment, wl may be interpreted as the free band-

width on link l and δl as the link delay. Assume that a connection request has
bandwidth requirements b and end-to-end delay requirement d. Upon the arrival
of a new connection request with origin node s and destination node u, a path
must be selected that joins the source to the destination, such that the connec-
tion bandwidth is smaller than the free bandwidth on each link on the path, and
the end-to-end delay of connection packets is smaller than the path delay. It is
often desirable to route the connection through the path with the largest width
in Pu(d); this ensures that the bandwidth requirements of the connection will be
satisfied, if at all possible, and the delay guarantees will be provided. Moreover,
the leftover minimum bandwidth on the path links after connection acceptance
will be as large as possible. We call such a path "constrained widest path".
According to the previous discussion, upon the arrival of a new connection

request with end-to-end delay requirement d, we must select a path p∗ ∈ Pu(d)
that solves the following problem.
Problem I: Given a source node s, a destination node u and a delay requirement
d, find a path p∗u ∈ Pu(d) that satisfies

W (p∗u) ≥W (p) for all p ∈ Pu(d).

Note that when δl = 1 for all l ∈ E, Problem I reduces to the problem
addressed in [8], i.e., the problem of finding a widest path with hop count at most
d. Let us assume that the source node s is fixed. In principle, in order to be able
to select the appropriate path for any delay requirement one must precompute
for each destination u and each delay d, an appropriate optimal path p∗u(d). At
first this may seem rather formidable, both in terms of running time and in
terms of space requirements. However, the situation is greatly simplified by the
observation that one needs to precompute the paths p∗u(d) for only a subset of the
delays. Indeed, letW ∗u (d) be the value of the solution to Problem I (if no solution
exists set W ∗u (d) = −∞). It can be easily seen using similar arguments as in [17]
thatW ∗u (d) is a piecewise constant, left continuous, non-decreasing function with
a finite number of discontinuities. Hence, to determine the function W ∗u (d), we
only need to know the values of W ∗u (d) at these discontinuities (we also need
the paths that cause these discontinuities - see Section 3.1). A discontinuity of
W ∗u (d) will also be referred to as a discontinuity of node u.
In fact, from the route designer’s perspective, the pairs (dk,W ∗u (dk)), where

dk is a discontinuity point of W ∗u (d) are the most interesting ones, even if one
takes into account routing requirements different than those considered in Prob-
lem I. Specifically, under our interpretation of path width and delay, among pairs
(D(pi),W (pi)), pi ∈ Pu, i = 1, 2, there is a natural "preference relation". That
is, we would like to obtain paths that have as small delay as possible and as
large width as possible. We are thus lead to the following natural definition of
dominance

Definition I (Dominance Relation):We say that pair (D(p1),W (p1))
dominates pair (D(p2),W (p2)) (or that path p1 dominates path p2) if
either {W (p1) > W (p2) and D(p1) ≤ D(p2)}, or {W (p1) ≥ W (p2) and
D(p1) < D(p2)}.

Hence, the pairs of interest under our setup are those for which no other
dominating pair can be found for the same origin-destination nodes. This set
of paths is generally known as the non-dominated or the Pareto-optimal set [3],
[12]. From a precomputation perspective, it is desirable to determine for each
destination u, the non-dominated set of pairs (and the associated paths). It can
be shown that this set is exactly the set of discontinuities of W ∗u (d), u ∈ V .
In the next section we present three algorithms for precomputing the discon-

tinuities of the functions W ∗u (d), u ∈ V .

3 Algorithm Description

The problem of determining the function discontinuities when link widths and
delays are both additive costs (i.e., the cost of a path is the sum of its link costs)
has been addressed in [17]. In the current setup, the main difference is that the
path width is the minimum of its link widths (rather than the sum). However,
the general algorithms in [17] can be adapted to the problem under consideration
with minor modifications, as outlined in Section 3.1. In Sections 3.2 and 3.3 we
present two additional algorithms that take into account the particular form of
the problem under consideration. The first is an implementation of the algorithm
in [17] that uses efficient data structures. The second uses a "natural" approach
that eliminates successively unneeded graph edges and uses a dynamic version
of Dijkstra’s algorithm to determine all function discontinuities. Our intent is
to compare these algorithms in terms of worst case, average running times and
space requirements.

3.1 Algorithm I (ALG I)

The algorithms proposed in [17] are based on the following facts, which carry over
to the situation at hand. In the discussion that follows we assume for convenience
that W ∗u (d) is defined for any real d, W ∗u (d) = −∞, d < 0, and W ∗s (d) = ∞ ,
d ≥ 0. Hence by convention the source node s has a discontinuity at zero.

— For any u ∈ V − {s}, if W ∗u (d) is discontinuous at d, then there is a
v ∈ Vin(u) such that W ∗v (d) is discontinuous at d − δvu and W ∗u (d) =
min {W ∗v (d− δvu), wvu}. We call the pair (d,W ∗u (d)) the successor disconti-
nuity of (d−δvu,W ∗v (d−δvu)). Also, (d−δvu,W ∗v (d−δvu)) is called the pre-
decessor discontinuity of (d,W ∗u (d)). If it is known that the pair (d,W

∗
v (d)) is

a discontinuity point, then its “possible” successor discontinuities are pairs
of the form

(d+ δvu,min {W ∗v (d), wvu}), u ∈ Vout(v).

— If W ∗u (d) is discontinuous at d then there is a path p∗(d) ∈ Pu(d) such that

W (p∗(d)) =W ∗u (d), D(p
∗(d)) = d.

— Suppose that we impose a lexicographic order relation between discontinuity
pairs (ḋi,Wi), i = 1, 2, as follows:

(d1,W1) ≺ (d2,W2) iff either d1 < d2 or (d1 = d2 and W1 > W2).

Suppose also that among all the discontinuities of the functionsW ∗u (d), u ∈ V
we know the set of the k smallest ones (with respect to the lexicographic
order). Call this set bD . Let bD(u) be the discontinuities in bD that belong to
node function W ∗u (d). Hence bD = ∪u∈E bD(u). The set of possible successor
discontinuities of those in bD is denoted by bP . Let (d,W) be a smallest
element of bP and let u be the node to which this possible discontinuity
belongs. Then (d,W) is a real discontinuity for node u if and only if

W > max
n
Wm : (dm,Wm) ∈ bD(u)o .

Based on these facts, we can construct an algorithm for determining all the
node discontinuities as described below. In the following we will need to know
the node u to which a real or possible discontinuity (d,W) belongs. For clar-
ity we denote this discontinuity by (d,W, u). For initialization purposes we setbD(u) = {(−∞,−∞, u)} , u ∈ V and bD(s) = {(0,∞, s)} .The generic algorithm
is presented below.
Generic Algorithm I

Input: Graph G with link widths wuv and delays δuv. Output: The queuesbD(u), ∀u�V .
1. /* Begin Initialization
2. bD(u) = {(−∞,−∞, u)} ; u ∈ V, bP = ∅;
3. bD(s) = {(0,∞, s)} ; (d,W, u) = (0,∞, s);
4. /*End Initialization*/
5. Create all possible successor discontinuities of (d,W, u)

(i.e., the set {(d+ δuv,min {W,wuv} , v), v ∈ Vout(u)} and add them to bP);
6. If bP is empty, then stop;
7. Among the elements bP (possible successor discontinuities), find and extract
(i.e., delete from bP) the minimum one in the lexicographic order. Denote
this element (d,W, u);

8. If W ≤ max
n
wm : (dm,Wm, u) ∈ bD(u)o , then go to step 6. Else,

9. bD(u)← bD(u) ∪ {(d,W, u)} ;
10. go to step 5;

In [17] two implementations of the generic algorithm were proposed, which
differ mainly in the manner in which the set bP is organized. In the current work
we pick the implementation that was shown to be more efficient both in worst
case and average case analysis. For our purposes, it is important to note that
the sets bD(u) are implemented as FIFO queues, and that the elements (d,W, u)
in these queues are generated and stored in increasing order of both d and W
as the algorithm proceeds. Furthermore, in our implementation of Algorithm I,
we introduce an additional optimization that is based on the following obser-
vation in [8]: whenever a real discontinuity (d,W, u) is found and the possible
discontinuities caused by (d,W, u) are created, then links (v, u), v ∈ Vin(u) with
wvu ≤W can be removed from further consideration. This is so, since these links
cannot contribute to the creation of new discontinuities for node u. Indeed, any
newfound discontinuity (d1,W1, v) at node v, will create a possible discontinuity
(d1 + δvu, min(W1, wvu), u). But min(W1, wvu) ≤ W and hence this possible
discontinuity cannot be a real one for node u.
As usual, in order to be able to find by the end of the algorithm not only

the discontinuities, but paths that correspond to these discontinuities, one must
keep track of predecessor discontinuities as well. That is, in the implementa-
tion we keep track of (d,w, u, predecessor_disc), where for the source node
s, predecessor_disc = null, and for any other node u, predecessor_disc is a
pointer to the predecessor discontinuity of (d,w, u). To simplify the notation, in
the description of all algorithms we do not explicitly denote predecessor_disc,
unless it is needed for the discussion.

3.2 Algorithm II (ALG II)

The Generic Algorithm in Section 3.1 works also when lexicographic order is
defined as

(d1,W1) 2 (d2,W2) if either W1 > W2 or (W1 =W2 and d1 < d2).

In this case, the elements (d,W, u) in the FIFO queues bD(u) are generated and
stored in decreasing order of both d and W as the algorithm proceeds.
Algorithm II uses the lexicographic order 2, and is based on an extension of

ideas presented in [7] to speedup computations. The basic observations are the
following.

— Suppose that link widths take K ≤ M different values g1 < g2 < ... < gK .
Let r(wl) be the ranking order of wl, i.e. if for link l it holds wl = gi,
set r(wl) = i. If one uses r(wl) instead of the link’s actual width in the
calculations, the resulting discontinuities occur at the same delays and for
the same paths as if the actual widths were used.

— Path widths always take one of the values in the set {wvu, (v, u) ∈ E} i.e.,
they take at most K different values. Hence the same holds for the values of
W ∗u (d) and the widths of all possible discontinuities.

We use these observations to speed up the computations of Generic Algorithm
I as follows. First, we use r(wl) in place of the link widths. Next we organize the
set of possible discontinuities bP as follows. We create an array A[u, k], 1 ≤ u ≤ N,
1 ≤ k ≤ K, where A[u, k], if nonnull, denotes a possible discontinuity of the form
(d, k, u). We also create K heaps H[k], 1 ≤ k ≤ K . Heap H[k] contains the
nonnull elements of A[u, k], 1 ≤ u ≤ N and uses as key the delay d of a possible
discontinuity. Reference [5] contains various descriptions of heap structures. For
our purposes we need to know that the following operations can be performed
on the elements of a heap structure.

— create_heap(H): creates an empty heap H.
— insert(e,H): inserts element e to H.
— get_min(e,H): removes and returns an element e in H with the smallest
key.

— decrease_key(enew, e,H): replaces in H element e with enew, where element
enew has smaller key than e.

With these data structures, we implement steps 5 and 7 of Generic Algorithm
I as follows. For an element e = (d,W, u) we denote e.delay = d, e.width =W .

— Step 5: Create all possible successor discontinuities of (d,W, u) and add
them to bP .
/* let k0 = r(W), hence we have available the discontinuity (d, k0, u) */
1. For v ∈ Vout(u) do
(a) enew = (d+ δuv,min {k0, r(wuv)} , v); k = enew.width;
(b) If A[v, k] is null {A[v, k] = enew; insert(enew,H[k])}. Else {
(c) If enew.delay < e.delay then{

i. e = A[v, k];A[v, k] = enew;
ii. decrease_key(enew, e,H[k])}};

2. end do
In step 1b, if A[v, k] is null, there is no possible discontinuity for node v with
width k. Hence a new possible discontinuity for node v with width k is created
and placed both in A[v, k] and H[k]. In step 1c, when enew.delay < e.delay
we know that the old possible discontinuity for node v cannot be a real
discontinuity since enew dominates e and therefore in step 1(c)i we replace
the e with enew both in A[v, k] and H[k]. These last two steps avoid inserting
unnecessary elements in the heap H[k], thus decreasing the time that the
get_min operation takes in step 7 of Generic Algorithm I. The trade-off is
extra memory space requirements due to array A[v, k]. We discuss this issue
further in Sections 4 and 5.

— Step 7: Among the elements bP , find and extract the minimum one in the
lexicographic order. Denote this element (d,W, u).
/* let k0 = r(W), hence we have available the discontinuities (d, k0, u) */
The heaps H[k] are scanned starting from the largest index and moving to
the smallest. The index of the heap currently scanned is stored in the variable
L which is initialized to K.

1. Find the largest k0 ≤ L such that the heap H[k0] is nonempty;
2. get_min(e,H[k0]); (d, k0, u) = e;
3. Set A[u, k0] to null;
4. L = k0;

The scanning process (largest to smallest) works since whenever a possible
discontinuity (d, k, u) is removed from bP , any possible discontinuities that al-
ready exist or might be added later to bP are larger (with respect to 2) than
(d, k, u) and thus will have width at most k. Notice that this would not be
true if the order ≺ were used. The real discontinuities bD(u), u ∈ V are again
implemented as FIFO queues.

3.3 Algorithm III (ALG III)

The third algorithm we consider is based on the idea of identifying discontinu-
ities, eliminating links that are not needed to identify new discontinuities and
repeating the process all over again. Specifically, the algorithm performs itera-
tions of the basic steps shown below. Again bD(u), u ∈ V are implemented as
FIFO queues.
Algorithm III
Input: Graph G with link widths wuv and delays δuv. Output: The queuesbD(u), ∀u�V .

1. Find the widest-shortest paths from s to all nodes in G. That is, for any
node u ∈ V , among the shortest-delay paths find one, say pu, that has the
largest width.

2. Let W ∗ be the minimum among the widths of the paths pu, u ∈ V − {s}.
For any u ∈ V , if W (pu) = W ∗, add (D(pu),W (pu)) at the end of queuebD(u).

3. Remove from G all links with width at most W ∗.
4. If s has no outgoing links, stop. Else go to step 1.

This algorithm produces all discontinuities in bD as the next theorem shows.

Theorem 1. Algorithm III produces all discontinuities in bD.
Proof. Proof can be found in [20].

The widest-shortest path problem can be solved by a modification of Dijk-
stra’s algorithm [15]. In fact, after the removal of the links of G in step 3, paths
whose width is larger than W ∗ will still remain the widest-shortest paths when
the algorithm returns to step 1. Hence the computations in the latter step can be
reduced by taking advantage of this observation. Algorithms that address this
issue have been presented in [13] and we pick for our implementation the one
that was shown to be the most efficient.

4 Worst Case Analysis

In this section we examine the three algorithms proposed in Section 3 in terms
of worst case running time and memory requirements, the analysis of the algo-
rithms is presented in [20]. In all three algorithms we assume a Fibonacci heap
implementation [5]. In such implementation of a heap H, all operations except
get_min(e,H) take O(1) time. Operation get_min(e,H) takes O(logL) time,
where L is the number of elements in the heap.
The worst case running times of the algorithms are,O(MN logN+M2 logN)

for the first algorithm and O(MN logN +M2) for ALG II and III. All three
algorithms have the same worst case memory requirements equal to O(NM).
ALG II and ALG III have the same worst case running time, which is slightly
better than the worst case running time of ALG I. Hence based on these metrics,
all three algorithms have similar performance. However, worst case analysis alone
is not a sufficient indicator of algorithm performance. The simulation results in
Section 5 reveal the performance difference of the algorithms in several networks
of interest.

5 Simulation Results

We run the following set of experiments. We generate:
Power Law Networks: This is one of the methods that attempt to generate

network topologies that are "Internet like". We choose a number of N nodes and
a number of M links (M = αN,α > 1). The links are used to connect nodes
randomly with each other in such a manner that the node degrees follow a power
law [18].
Real Internet Networks: These networks were taken from [19] and are

based on network topologies observed on the dates 20/09/1998, 01/01/2000 and
01/02/2000.
For each experiment the delay of a link is picked randomly with uniform

distribution among the integers [1, 100]. For the generation of the link widths we
use the following method.
Widths are generated in such a manner that they are correlated to their

delays. Thus, for each link l a parameter βl is generated randomly among the
integers [1, 10]. The width of link l will then be wl = βl(101− dl).
We also run experiments using link widths uncorrelated to their delays, thus

wl is picked randomly with uniform distribution among the integers [1, 100]. For
a given algorithm and for fixed number of nodes and edges we notice that the
running time is much smaller when the width values are uncorrelated to delays
and therefore are not presented here. This is due to the fact that when widths
are correlated to delays, the number of discontinuities is increased.
We generate Power Law Networks with 400, 800 and 1200 nodes and with

ratios α = M/N equal to 4, 8, 16. For each N and α we generate 10 different
networks and for each network we generate the link widths according to the
method previously described (correlated to delays).

Fig. 1. Running Time for Power Law Networks with width correlated to delays

Fig. 2.Memory Requirements for Power Law Networks with width correlated to delays.

The experiments were run on a Pentium PC IV, 1.7GHz, 256MB RAM.
In Figure 1 we present the average running times (in seconds) of the three
algorithms for Power Law Networks. We make the following observations.

— Algorithm II has the best running time performance, and Algorithm III the
worst.

— Compared to Algorithm II, the running times of Algorithm I and Algorithm
III are found to be up to 1.5 times and 6 times larger, respectively.

— Algorithm II performs better than Algorithm I and III for all experiments
and especially for large networks.

The additional optimization (removal of unneeded links) in Algorithm I im-
proves its running time but not by much.
The Real Internet Networks have N = 2107, 4120, 6474 nodes and M =

9360, 16568, 27792 links respectively. In these networks we also performed 10
experiments, where in each experiment we picked randomly a source node. Figure
3(a) shows the average running time of the three algorithms. We notice again

Fig. 3. (a)Running Time and (b)Memory Requirements for Real Internet Networks
with width correlated to delays.

that Algorithm II has the best running time performance and Algorithm III the
worst. The running time of Algorithm III has been found to be 20 times larger
than that of Algorithm II in some experiments. The performance of Algorithm
I is worse, but comparable to that of Algorithm II.
Next we look at the memory requirements of the algorithms. The memory

space needed to store the network topology is common to all algorithms. The
additional memory requirements of the three algorithms at any time during their
execution, are determined mainly by the total number of elements in the queuesbD(u), u�V as well as: a) the heap size bP of possible discontinuities for Algorithm
I, b) the heaps H[k], k ∈ K and the array A[u, k], 1 ≤ u ≤ N, 1 ≤ k ≤ K
for Algorithm II and c) the heap size to run the dynamic version of Dijkstra’s
algorithm for Algorithm III. For each experiment we determined the maximum
of memory space needed to store the previously mentioned quantities. This space
depends on the particular network topology for Algorithm I and III, while for
Algorithm II it is already of order O(KN) due to the array A[u, k]. As a result,
the memory requirements of Algorithm II are significantly larger than those of
the other two algorithms. This is indicated in Figure 2-3(b) where we present the
memory requirements of the three algorithms for Power Law and Real Internet
Networks. Algorithm III has the smallest memory, followed by Algorithm I whose
memory requirements are comparable to those of Algorithm III. Due to the need
of array A[u, k], Algorithm II has significantly larger memory requirements.
Summarizing our observations, Algorithm II has the best running time, how-

ever its memory requirements are significantly worse than those of the other two
algorithms. At the other end, Algorithm III has the best memory space require-
ments, however its running time is significantly worse than that of the other two.
Algorithm I represents a compromise between running time and space require-
ments, as its performance with respect to these measures, while not the best, is
comparable to the best.

6 Conclusions

We presented three algorithms for precomputing constrained widest paths in
a communication network. We analyzed the algorithms in terms of worst case

running time and memory requirements. We also presented simulation results
indicating the performance of the algorithms in networks of interest. The worst
case analysis showed that all three algorithms have similar performance, with
Algorithm I being slightly worse in case of worst case running time. However,
the simulations revealed significant performance differences and indicated the
conditions under which each algorithm is appropriate to be used.

References

1. Claude Berge, Graphs, North-Holland Mathematical Library, 1991.
2. D. Blokh, G. Gutin, "An Approximation Algorithm for Combinatorial Optimiza-
tion Problems with Two Parameters", IMADA preprint PP-1995-14, May 1995.

3. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Wiley, 2001.
4. S. Chen, K. Nahrstedt, "On Finding Multi-Constrained Paths", in Proc. of IEEE
International Conference on Communications (ICC’98), pp. 874-879, Atlanta, GA,
June 1998.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, Mc Graw
Hill, 1990.

6. Yong Cui, Ke Xu, Jianping Wu, "Precomputation for Multi-Constrained QoS Rout-
ing in High Speed Networks", IEEE INFOCOM 2003.

7. L. Georgiadis, "Bottleneck Multicast Trees in Linear Time", to be published in
IEEE Communications Letters.

8. R. Guerin, A. Orda, "Computing Shortest Paths for Any Number of Hops",
IEEE/ACM Transactions on Networking, vol. 10, no. 5, October 2002.

9. R. Guerin, A. Orda and Williams D., "QoS Routing Mechanisms and OSPF Ex-
tensions", 2nd IEEE Global Internet Mini-Conference, Phoenix, AZ, November
1997.

10. T. Korkmaz, M. Krunz and S. Tragoudas, "An Efficient Algorithm for Finding a
Path Subject to Two Additive Constraints", Computer Communications Journal,
vol. 25, no. 3, pp. 225-238, Feb. 2002.

11. K. Mehlhorn, S. Naher, Leda:A Platform for Combinatorial and Geometric
Computing, Cambridge University Press, 2000.

12. P. Van Mieghem, H. De Neve and F.A. Kuipers, "Hop-by-hop Quality of Service
Routing", Computer Networks, vol. 37/3-4, pp. 407-423, November 2001.

13. P. Narvaez, Kai-Yeung Siu, and Hong-Yi Tzeng, "New Dynamic Algorithms for
Shortest Path Tree Computation ", IEEE/ACM Transactions on Networking, vol.
8, no. 6, December 2000.

14. A. Orda and A. Sprintson, "QoS Routing: The Precomputation Perspective", IEEE
INFOCOM 2000, vol. 1, pp. 128-136, 2000.

15. J. L. Sobrino, "Algebra and Algorithms for QoS Path Computation and Hop-by-
Hop Routing in the Internet", IEEE INFOCOM 2001, Anchorage, Alaska, April
22-26, 2001.

16. A. Orda and A. Sprintson, "A Scalable Approach to the Partition of QoS Require-
ments in Unicast and Multicast", IEEE INFOCOM 2002.

17. S. Siachalou, L. Georgiadis, "Efficient QoS Routing", Computer Networks Jour-
nal,vol.43/3, pp351-367, October 2003.

18. The Power Law Simulator, http://www.cs.bu.edu/brite.
19. The Real Networks, http://moat.nlanr.net/Routing/raw-data.
20. http://genesis.ee.auth.gr/georgiadis/english/public/networking04full.pdf

