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Abstract bedded storage element exports a fixed set of high-level

operations (such as caching operations). Service-specific

We consider the utility of two key properties code is executed only at edge-nodes. This code manu-

of network-embedded storage: programmability andiactures service-specific messages and sends them into

network-awareness. We describe two extensive applicahe network to manipulate the embedded storage elements
tions, whose performance and functionalities are signif-through the fixed interface. An example of this model

icantly enhanced through innovative combination of thejs the Internet Backplane Protocol (IBP) proposed in the
two properties. One is an incremental file-transfer system_qgjstical Networking” approach [8].

tailor-made for low-bandwidth conditions. The other is . . .
o ) oot : Although the fixed-interface model does benefit a cer-
a “customizable” distributed file system that can assum(? . . . L . .
. A . ain class of services, it has two main limitations. First, it
very different personalities in different topological and

. o does not have sufficient flexibility. Due to the extremely

workload environments. The applications show how both’. o " . o
: . . diverse needs of distributed services, it may be difficult to

properties are necessary to exploit the full potential of . )

i ._arrive at an interface that caters well to all present and fu-
network-embedded storage. We also discuss the require- : - . o
) ure services. Second, the restriction that service-specific
ments of a general infrastructure to support easy and ef-

fective access to network-embedded storage, and descril?é)de executes only at the edges of the network, and not at

a prototype implementation of such an infrastructure he embedded storage elements, imposes a severe limita-
P P P * tion, both on the functionalities provided by the services

and the optimization opportunities available to them. For
example, for application code executing at the edges, it is

. _ . ften difficult to gather information about changes in the
For wide-area distributed services, network-embedde o
NP o oad and network conditions around an embedded storage
storage offers optimization opportunities that are not

available when storage resides only at the edges of thelement, and then to respond to such changes in a timely

network. A prime example of this is content-distribution ashion.
networks, such as Akamai, which place storage servers These limitations point to the need for the following
at strategic locations inside the network and direct clientProperties. (1)Programmability: the services should be
requests to servers that are “close” to them, thus achiev@ble to execute service-specific code of some form at the
ing reduced access latency for the clients and better loa@mbedded storage elements. KBtwork-awarenesshe
balance at the servers. code executing at these elements should be able to use
Given the desirability of network-embedded storage’dynamic information about the resources at and around
a natural question to ask is this: What is a good «ac-them. We do not claim that any of these properties is novel
cess model” for network-embedded storage that allowdY itself. We, however, do believe that it is the combina-
services to realize its full potentia|? By access model, Wéion of the two thatis necessary to realize the full potential
mean mechanisms through which diverse services can ugd embedded storage.
the network-embedded storage resources to satisfy their To support this hypothesis, this paper presents qualita-
diverse needs. tive and quantitative evidence in the form of two applica-
One simple access model is what can be referred t@ions of network-embedded storage. One is an incremen-
as thefixed-interfacemodel. In this model, each em- tal file-transfer service tailor-made for low-bandwidth
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1 Introduction




that the combmauoq of programmabll|ty a_nd network_— . ABC DEF GHI IKL MNO
awareness is useful in a diverse set of environments, in- ' I I I I |
cluding both local and wide area networks. A general AB f GPHI / Q /
theme of our work is that in any system configuration or _— _ —
service, if a storage element is in a position to exploit its Y. ABDEFGPHIJKLQMNO
location advantage intelligently, it should be programmed

to do so.

Figure 1: A simple rsync example.

Next in this paper, we consider the question of real-2
world deployment of services that intend to use network-
embedded storage. To launch such a service today, a ser- We now describe a service intended to facilitate trans-
vice provider is typically required to reach agreementsfer of incrementally changing, large files. An example
with data centers to acquire the needed storage and phygsage scenario of this service is one where a producer pe-
ical space. This is often an inefficient, time-consumingriodically releases new versions of the Linux kernel file,
and costly process, which imposes a significant barrierand multiple consumers update their versions at different
to-entry for smaller service providers, and hinders shorttimes.
term experimentations. A different alternative is to invest  The basic idea is to use network-embedded storage el-
effort in a shared, general-purpose infrastructure specifements (or Stones) to optimize these file transfers. As data
ically targetted toward reducing the effort and overheadflows through a sequence of Stones during a file transfer,
associated with deploying and customizing services.  there is an obvious caching opportunity to benefit subse-

quent transfers. If, however, the Stones are capable of

We discuss the requirements of a general 'nfraStruc'executing complex service-specific code, more sophisti-

ture to support easy and effective access to programmable, ey optimizations become possible. Our service, which

network—empedded storgge in Section .4, and descr!bﬁ/e call “Prognos-based rsync” (or Prsync), programs the
a prototype implementation of such an infrastructure iNStones to use thesync protocol to propagate files
Section 5. We refer to such an infrastructure &#&@gnos

(PROGrammable Network Of Storage), and to each em2.1 Ther sync Protocol
bedded storage elementin it aS®ngSTOrage Network
Element).

Incremental File Transfer

The rsync protocol [31] (rsync.samba.org) is a tool for
updating an old version of a file with a remotely-located
The resource platform for a Prognos can be eithef?®W version. The protocol set_aks to reduce netwo_rk usage
commercially owned, or collaboratively supported as inbPy not transferring those portlons_of the new version that
the PlanetLab project [24] (www.planet-lab.org). As long &€ al_read_y present in the_old version. A checksum-search
as the Stones have access to network information, th@lgorithm is used to identify such portions when the two
making of the Stones and the links among them can b¥ersions are not located on the same machine.
quite flexible. One possibility is to construct a Prognos ~ AS @ simple example, suppose that nodesand Y/
on top of an overlay network [5]. The overlay links used have two versions of a file with contents shown in the top
should approximate the underlying physical topology, and?"d bottom rows of Figure 1, and wants to get”s ver-
the Stones can simply be general-purpose computers. THON: X first partitions its version into fixed size blocks
other potentially more efficient possibility is to co-locate a @1d sends the checksums of those block$’toIn the
Stone with a router and the links among the Stones woul@*@mple shownX' sends five checksums16. Using the
largely be physical. An extreme form of this co-location is CN€cksumsY’ is able to identify portions that are common

to couple a router and a Stone in the same physical pacietween the two versions” then sends toX a descrip-
aging. tion of its version referencing the blocks At wherever

possible. The middle row of letters shows the description
We refer to the systems-support module of a Prognog” sends taX. X is then able to reconstru&t’s version

as SOS (Stone Operating System). SOS is responsibfgom this description. If the two versions share several
for managing the physical resources at the participatindlocks, then there is significant saving in the number of
Stones, and for allowing services to inject service-specifidytes transferred.
code into the Stones in a secure fashion. A PlanetLab:
like platform, for example, can be turned into a Prognosz'2 Prsync
by loading the participating machines (also referred to as We examine four aspects of Prsync relating to the pro-
Stones) with the SOS module. We believe that such grammability and network-awareness of the Stones. First,
collaboratively-supported Prognos can serve as an effeave show how programmability of Stones enables rapid
tive research tool to enable innovators to quickly deploy,deployment of Prsync-like services, even when one does
experiment with, and tear-down new services. not have full cooperation of edge machines. Second, we



describe how Stones can themselves use pair-wise rsyraility and the network-awareness properties of Stones be-
exchanges to improve end-to-end performance. Third, weome indispensable. When an upstream nadstarts
describe how Prsync adapts to its environment by exploitto send fresh data to a downstream nddg the two

ing the network-awareness of Stones. Fourth, we describrodes begin with the checksum-based rsync algorithm.
how network information can be combined with service- Node X monitors two quantities dynamically: (1) the ra-
specific state in a service-specific manner to achieve gootio (r) between the number of bytes that have been actu-
performance. ally transferred and the size of the content that has been
synchronized, and (2) the physical bandwidth achieved
(B). If r exceeds a threshold, which in turn is a pre-
determined function o3 (implemented as an empirical
Consider a scenario where a producer and a consuméable lookup), then the communicating nodes would aban-
want to engage in a file update, but they lack the abilitydon the checksum-based rsync, and revert to simply trans-
to participate in rsync exchanges. Assume that the Stonasitting the literal bytes of the fresh file. Note that such
have been programmed to cache files, execute checksuradaptive optimizations need to be performed on a hop-
search algorithms, and patrticipate in the Prsync protocolby-hop basis within the network—they are difficult, if not
The system can still be used to transfer files efficiently.impossible, to replicate at the edge. An additional opti-
The file is first copied from the producer to a nearby Stonemization to further reduce rsync overhead is to compute
using a legacy protocol. The file is then efficiently prop- the per-block checksums off-line, and store them along
agated using Prsync to a Stone that is located close to thgith the file in the Stone’s persistent store.

consumer. As the last step, the file is copied from this

Stone to the consumer using a legacy protocol. This is

an example of an end-to-end legacy protocol that benefitg.2.4  Selecting Propagation Paths

from programmable network-embedded storage.

2.2.1 Interaction with Legacy Protocols

In scenarios where there exists path diversity and pairs
of Stones are connected by multiple paths (as in over-
lay networks), Prsync can select propagation paths for
In the above scenario, the Prsync protocol is executetiop-by-hop synchronization based on application-specific
between two Stones that are potentially separated by metrics. We have experimented with two specific meth-
weak wide-area connection. The performance could b@ds of doing this. In theree-basednethod, an overlay
further improved if we were to enlist intermediate Stonestree spanning all the Stones is constructed. The tree is
to decompose a long-distance rsync into a sequence @onstructed using a minimum-spanning tree algorithm on
short-distance hop-by-hop rsyncs. Here, the performanca graph where the nodes are Stones and the edges are
improvement can come from a combination of two fac-weighted with the inverse of pair-wise bandwidth. The
tors. First, intermediate Stones may already have a vertree construction uses heuristics for constraining the node
sion that is very close to the fresh version being propa-degree and diameter of the resulting tree. The resulting
gated. In such cases, fewer bytes will have to be transtree thus contains high bandwidth paths between all pairs
ferred along some portions of the path. Second, after af Stones, and only these paths are used for hop-by-hop
sequence of hop-by-hop rsync exchanges, all the intersync exchanges. Thaesh-basedhethod maintains an
mediate Stones also end up receiving the fresh versiomverlay graph in which each Stone is adjacent to a certain
and therefore, they can satisfy future requests without reaumber of other Stones to which it has high-bandwidth
quiring end-to-end interactions. The hop-by-hop proto-links. When selecting a path between a pair of Stones,
col demonstrates that simple caching in particular, or amall paths in this overlay graph are considered. Note that
hardwired storage interface in general, on intermediatéhe time taken for a pair-wise rsync exchange is deter-
Stones is not sufficient—instead, the programmability ofmined by the link bandwidth and the difference between
Stones is needed to allow them to participate in a sophisthe file versions at the two Stones. Prsync can monitor
ticated protocol. pair-wise bandwidths, and also maintain estimates of the
differences between the file versions at different stones.
By using these estimateshastpath (i.e., one for which
the expected time for hop-by-hop propagation of data is
The rsync program employs a computationally expensiveninimized) can be selected in the mesh. This is an in-
checksum and compression algorithm. Its use may in facstance where information about the network characteris-
be counterproductive in cases of abundant link bandwidthtics is combined with service-specific state in a service-
drastic file content changes, or high CPU load on particspecific manner to improve performance. It would be
ipating nodes. In order for Prsync to adapt to these endifficult to achieve such optimizations without both pro-
vironmental factors in a timely fashion, the programma-grammability and network-awareness of Stones.

2.2.2 Hop-by-Hop Interaction

2.2.3 Adapting to Changing Environments



Vg = Vy >V, Vo = Vy The second experiment demonstrates the usefulness of
CO——GD)——GD s GCo—Go)—) exploiting intermediate Stones. The results are summa-

rized in the second row of Table 1. In this experiment,

initially, Cy has versionlyy, Cg hasV,, andSs hasV;

PROGNOS (as aresult of satisfying a previous request, for example).
@Vo -V The link conditions are the same as in the previous exper-
iment. NowCYyy desires to upgrade its file tg; and it
Figure 2: The topology of the Prsync testbed. has three options. The first two options are similar to the

previous experiment: end-to-end copy frarg to Cyy,

Requester| Versions e-to-e e-to-e| h-by-h . .
a Y or using an end-to-end rsync in the Prognos core ffgm

copy (s) | rsync (s) | rsync (s)

Cr Vo =V, 973 21.0 — to S7. Because the content difference betwégrandV;
Cw Vo — Va 97.8 215 9.6 is small, the performance of these two options is similar
to that seen in the first experiment. Option three, how-
Table 1: Prsync performance. ever, leverages th¥; copy stored atS;, as Prsync per-

forms hop-by-hop rsync within the Prognos core. Only a
23 Prsync Experimental Results small amount of Qata is _exchanged across the weak link

S1 — S, thereby improving performance.
We describe Prsync experiments from two platforms.

One platform uses a set of machines in our laboratory that The third experiment demonstrates the importance of
can be operated in a controlled environment. The other P P

consists of a set of PlanetLab machines distributed acros%dapF'ng.to enwronme_ntal condl_tlon_s. The perform_ance
the wide-area of pair-wise exchange is shown in Figure 3 under differ-
Figure 2 s.hows the topology of the network con- ent link bandwidth conditions. In this experiment, we at-

structed in our laboratory. Each node has Dual Intelt(?mptto upgrade the kernel file from version 2.0.20 to ver-

Pentu I processor, 168 PC133 ECC SDRAN an 51 0 1% SO1SUIes e ot abels 1 e
60GB Maxtor 96147U8 disk. Nod€3s, C'p, andCy are . : . g ) .

) . N ) o . __two neighboring Stones. “Rsync” refers to the vanilla
considered “edge” machines. The remaining machines

rsync algorithm. “Copy” refers to transferring the literal
make up a Prognos cor&’p serves as the producer of bvtes. “Rsvnc-precomn” improves vanilla rsvnc by pre-
the dataCp andCy are requesters. YIes. yne-p P P y y P

In the following experiments, we synchronize Linux computing and storing per-block checksums. “Hybrid

kernelt ar files. When we refer to file versiongp, adds the adaptive algorithm to “Rsync-precomp.” As ex-

V1, andVa below, they correspond to “linux.2.0.20.tar" pected, rsync performs_well_whenthe_ available bandwidth
- " . N . is scarce or when the file difference is small compared to
linux.2.0.28.tar", and “linux.2.0.29.tar" respectively. o . LR

N S the file size, and its performance can degrade significantly
Each of these files is about 25 MB in size. We show re- . . !
otherwise. Pre-computing checksums improves rsync by

sults of four experiments, each of which demonstrates one
A . Aearly a constant amount, but does not address the severe
of the aspects detailed in Section 2.2.

: : . degradation that rsync can experience. The adaptive algo-
The first experiment demonstrates the ability of Prog- . 9 Y P P N
rithm, though not always perfect, performs the best over-
nos to overcome a legacy protocol. The results are su

m-

marized in the first row of Table 1. Initially,'» has ver- all.
sionVy, C hasVy, and no other machine has any version
of the file. There is a weak link of 2.5 Mbps betwegn The fourth experiment is run on an overlay network
and.Ss; all remaining links are dedicated (separate) 100comprising of 34 PlanetLab nodes. Initially, every node
Mbps. Now,Cp desires to upgradeits file I andithas has a copy of version 2.0.21 of the Linux kernel. The
several options. It could use an existing legacy protocofile is then updated at the source and some random sub-
to copyV; end-to-end fronCp to Cp; there is no store-  set of the nodes synchronize their version with the newly
and-forward delay at any intermediate hop. Or it couldpublished version. This process is repeated for versions
leverage the Prognos core so tiatis first copied from  2.0.22 through 2.0.29. Figure 4 shows the performance
Cp to Sy, then it is rsync’ed fron; to Ss, and finally, it~ of three alternatives: end-to-end rsync, hop-by-hop rsync
is copied fromS; to Cp.! Despite the store-and-forward over fixed paths defined by a tree topology, and hop-
delay of Prsync, it is almostbbetter than the legacy pro- by-hop rsync over paths that are dynamically computed
tocol due to the bandwidth saving on the weak link. over a mesh topology. The tree-based hop-by-hop method

INote that in this and all subsequent Prsync experiments, iglat- shows improvements of more thaa’ over th-e-end-to-
ways first written entirely to the disks at intermediate m(sucr; as ?nd rsyn_c. Th.e meSh._based r.n.EIhOd’ combining network
and Ss) before it is forwarded onto the next hop. Of course, thisds n  Information with service-specific state, shows a further
necessary and a pipelined version could have worked better. 30% improvement over the tree-based method.
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Prognosfs is a “meta file system” in the sense that its
the current version available at the source. participating Stones can be customized to allow the re-
24 Prsync Summary sulting ;ystem to exhibit different personalities in differ-

' ent environments. Prognosfs software has two parts: (1)

Prsync demonstrates the utility of executing com-a fixed framework that is common, and (2) a collection

plex service-specific code (e.g., rsyrat)the embedded of injectable components that run on participating Stones
storage elements. In addition, it shows how network-and may be tailored for different workloads, and network
awareness can allow services to adapt their behavior dytopologies and characteristics. (In the near future, we
namically and flexibly. The results illustrate the perfor- envision injectable Prognosfs parts to be compiled from
mance benefits of programmable network-embedded stohigh-level specifications of the workload and the physical
age elements that can perform complex tasks, such asnvironment.)
participating in hop-by-hop rsync protocols and execut-
ing application-specific routing algorithms. Such benefits3.1  Architecture and Component Details
are difficult to obtain without both programmability and
network-awareness of embedded storage.

Figure 4: Average cost of upgrading an old copy of the Linux&kto

Unlike several existing wide-area storage systems that
support only immutable objects and loose coherence se-
3 A Customizable Distributed File System mantics [13, 14], Prognosfs is a read/write file system

with strong coherence semantics: when file system up-

Today, we build cluster-based distributed file sys-date operations are involved, users on different client ma-
tems [6, 19, 30] that are very different from wide-areachines see their file system operations strictly serialized.
storage systems [14, 18, 27]. Life would be simpler if Of course, we are not advocating that this is the only
we only had to build two stereotypical file systems: onecoherence semantics that one should implement—it just
for LAN and one for WAN. The reality, however, is more happens to be one of the desirable semantics that makes
complicated than just two mythical “representative” ex- collaboration easy.
tremes: we face an increasingly diverse continuum, often Figure 5 shows the Prognosfs parts in greater detail.
with users and servers distributed across a complex inteffhe fixed part is similar to that of the Petal/Frangipani
connection of subnets. systems [19, 30]. For each file system call, a Prognosfs



client kernel module translates it into a sequence of a lock
acquisition, block reads/writes, and a lock release. This
sequence is forwarded to a Prognosfs client user module
via the Linux NBD pseudo disk driver. The read and
write locks provide serialization at the granularity of a
user-defined “volume” and they are managed by the Dis-
tributed Lock Manager. If a client fails without holding a
write lock, no recovery action is required. If a client fails
while holding the write lock of a volume, a recovering _ . _

client inherits the write lock and rurfssck on thg failed ggtfgea?;d?ehri,fop\pgk;g: izfﬂigggkngvsvfifcaef;t;f?1'0%22 ﬁosé?snkeérﬁj is
volume. These components of Prognosfs are fixed. not programmableR; is a Netgear Fast Ethernet Switch FS108; is

The customizable part of Prognosfs lies within thean Intel Express 510T Switch. All links are 100 Mbps.
Distributed Virtual Disk (DVD). Externally, the interface

:jq tl?e DVE IS \Iéerty lmlugch 'Illlr(le (ej?(;fstlng d|§tr|tk;]utteq \tllrtualll thatSs may demand it later, anfl, may cache the datain
isks such as Petal [19]. The difference is that, interna Ythe hope that its own clients may demand it again. Once

while all Petal servers are identical, the DVD consists Ong, does read the cached datasatand caches it itselfS,

a number of peer Stones, each of which can run a Sperhay choose to discard it

ciali_zed piec_e of co_de to perfqrm funct_ion_s such as S€ In each of these examples, the function executed by a
Ie_ctlv_e caching, active forwarding, rephcatlon,_a_nd dis- Stone is intimately associated with its often unique posi-
tribution of data to other Stones. These decisions caty . 1o network. Furthermore although we have de-

g?orr?:?oeatc)iasaend dOgtgﬁgvggk;gir:dﬁ]gfg}rzz?%%rlihﬁr}g'tt'on_Scribed the above Stone functions in the context of Prog-
. o : pactly . yp nosfs, the concepts are more generally applicable to other
ically either unavailable or difficult to determine accu-

tel d ivelv at the ed Prognos applications.
ralely and responsively atthe edge. While the Prsync application (Section 2) relies on a

Figure 6 shows several example topologies. In Fignown producer to ensure that a requester receives an up-
ure 6(a), clients on each of the two subnets can reagy-date copy of the desired data, the presence of multiple
data served by Stones on either subnet. If, for exampleeaders and writers and the presence of multiple copies
the clients of the right subnet repeatedly read data fromn prognosfs demand a data location service from the un-
Stones on the left, they might increase the load on thejerlying Prognos infrastructure. Given an object ID, the
left subnet. As the “bridge Stone5, detects this access |ocation service is responsible for locatiageplica for a
pattern, due to its awareness of the topoldgjycan take  read request, and for locatiradl obsolete replicas to in-
several possible actions to reduce the load:Jpould  validate (or update) for a write request. This service is
cache data from the left subnet in its own persistent storepriefly described in Section 5.5.

(2) If Sy itself becomes a bottleneck; could forward a We have implemented an initial prototype Prognosfs,
copy of the data to a Stone in the right subnet and thisyjong with a few of its incarnations that are customized to
Stone would absorb future reads. (3) As reply data flowsyork for some different topologies. Existing applications

from the left subnet to a clientin the right subngf.could  on multiple Linux client machines are able to transpar-
distribute the data across multiple Stones in the right subgntly read/write-share Prognosfs volumes.

net.
In Figure 6(b), the Stones in the middle laysg form 3.2 Prognosfs Experimental Results

a “switching fabric’—they accept requests from clients  \ve describe results obtained on two platforms. The
and perform functions such as load-balancing and stripfirst is a network topology built inside our laboratory. Fig-
ing as they forward requests to the next tier Stones. Thee 7 gives its schematic diagram. Two switchBs and
role played by anS; is analogous to that played by a g.) are connected via a bridge Storfg)and each switch
pproxy, an NFS interposition agent [4]. Such interposi-js connected to a number of more Stones and clients. The
tion agents are just an example of the kind of function-signes and the clients have same characteristics as those
alities that Prognosfs can enable. (Unlikgjaroxy, the  gescribed in Section 2.3. The second platform consists of
switching fabric is fully programmable, can have its own 3 \ide-area configuration. Schematically, it looks similar
storage, and is not limited to the NFS protocol.) to Figure 7, except that the Stones and the clients are dis-
In Figure 6(c), we replace a number of wide-areatributed between two different sites. Stofie and client
routers with their Stone counterparts. To see the role’; are located in Arizona and all other nodes are located
played by network-awareness, consider an example whelie Princeton. Communication between the two sites uses
Sy, on its clients’ behalf, reads data storecbat As data  a weak wide-area Internet link.
flows back on the path; — Sy — S2 — Sy, Sp does not A singlerun of our experiment has 8 phases. In Phase

need to cache the daté; may cache the data in the hope
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Figure 6: Example topologies connecting client machinek tieir Stones.

1, clientC; creates data that is stored at its nearest Stona single link toS;. In the other two cases/;’s requests
S1. In the remaining phases, different sets of clients readhre satisfied bys; while C5y has its requests satisfied by
the data created in Phase 1. A singdtof experiments Stone(s) connected to the other switch(sandC; both
consists of 3 runs. In each of these runs, the bridge Stonachieve near wire speed.

Sy is programmed differently. We refer to the three cases In phase 7> andC3 read the data simultaneously.
as “Forward”, “Cache” and “Distribute”. In the “For- In the “Forward” and “Cache” cases, the two clients are
ward” case,S, simply forwards the data to the target forced to share the link t§,. In the case of “Distribute”,
client. For example, whet'; requests data that resides the two clients share the striped bandwidth to all the
only on Sy, Sy simply forwardsCs’s request toS; and  Stones connected to the right switch.

S1's reply back toCs. In the “Cache” caseS;, is also In phase 8, all three client§;, C3, and C5 read
programmed to cache in its local persistent store any datthe data simultaneously. In the case of “Forward”, all
that it forwards from one switch to the other. In the “Dis- three clients contend fao$;'s bandwidth. In the case of
tribute” case,S, also forwards an additional copy of the “Cache”, C;, monopolizes the bandwidth fros, while
data to one of the Stones connected to the target switch i@, and C; share the bandwidth frorf,. In the case of

a round-robin fashion. Therefore, when forwarding data“Distribute”, all Stones are utilized and the clients achieve
to a client connected t&,, it forwards an additional copy the greatest aggregate bandwidth.

to one of S, S2, S3 and S;. Note that in the “Cache” The bottom half of Table 2 presents results for the
and “Distribute” cases, the Prognos location service is inwide-area configuration. The “Cache” and “Distribute”
voked to keep track of the additional copies. strategies, in addition to distributing the load among mul-
tiple Stones, also contribute toward masking the disadvan-
32.1 Exercisingthe DVD Interface tages of the weak wide-area link between the two collab-

orating sites. Data traverses the weak-link only once in

We first discuss the results from the platform built inside Phase 3, and subsequent phases are able to finish with lo-
our laboratory, presented in the top half of Table 2. Incal communication only. We use a PlanetLab machine in
phase 1, 100 MB of data is created ®y using the DVD  Arizona asS;, which apparently has a slower disk. This
interface. The data is stored on its nearest St8neln  explains the relatively poor write performance in Phase
phase 2 reads the data back. The behavior of thesel. The performance during the remaining phases is as ex-
phases are identical for the three runs. The bandwidth gpected.
these phases are limited by the link speed (and software
overhead). In phase & reads the data. For the “For-
ward” case, the bandwidth experienced®yis similar to
that experienced bg;. In the “Cache” and “Distribute” We now present results for experiments where clients use
cases, however, the extra activitygtdegrades the band- the Prognosfs file-system interface to write and read data.
width experienced by¢. We were unable to run the file-system level benchmarks

In phase 4(5 reads the data again. In the “Forward” on the wide-area configuration because we lacked root ac-
case, the request is still satisfied Byand the bandwidth cess on the Arizona client machine. Therefore, we only
observed by, remains the same. In the “Cache” case, present results for the platform built inside our laboratory.
C, is able to read the cached copy$t In the “Dis-  Table 3 reports an experiment where a 100 MB file is cre-
tribute” case(C; reads data fronsy, So, S3, andSyina  ated in Phase 1 and read in the remaining phases. The
striped fashion. In all these casés,’s bandwidth is again results show trends similar to those in the top half of Ta-
limited by the link speed. In phase &3 reads the data. ble 2, except that the client bandwidth is degraded due to
Its bandwidth is similar to that experienced Y. the overheads of going through the in-kernel NBD pseudo

In phase 6 andC, read the data simultaneously. disk driver.
In the “Forward” case, the two clients are forced to share Table 4 presents results for a more general file-system

3.2.2 Exercising the File-system Interface



Phase no. 1 2 3 4 5 6 7 8

C1 Write Cy Co Cso Cs C1, Cy C, Cs C1,Cs,Cs

(MB/s) | (MB/s) | (MB/s) | (MB/s) | (MBI/s) (MB/s) | (MBIs) (MBI/s)
Forward 10.4 11.1 11.0 11.0 11.0 5.1,5.1| 5.6,5.7 5.1,3.5,35
Laboratory | Cache 10.4 11.1 10.6 11.0 11.0( 11.1,11.1| 5.6,5.6| 11.1,5.6,5.6
Distribute 10.4 11.1 6.2 10.9 11.0| 11.1,10.9| 7.5,7.2 11.1,6.3,6.3
Forward 2.0 10.4 2.1 2.1 2.0 10.1,1.3| 1.1,1.1 9.6,0.9,0.9
Wide-Area | Cache 2.0 10.4 1.8 11.0 11.0| 10.7,11.0| 5.6,5.6| 10.7,5.6,5.6
Distribute 2.0 10.4 2.1 10.9 11.0 9.6,10.9| 9.6,9.6| 10.1, 10.1,9.8

Table 2: Client bandwidth when exercising the DVD interface

Phase no. 1 2 3 4 5 6 7 8
C1 Write Ch Cy Cy Cs C1,Cy Cs, Cs C1,Cs, Cs

(MB/s) | (MB/s) | (MB/s) | (MB/s) | (MB/s) | (MB/s) | (MB/s) (MB/s)
Forward 7.6 7.6 8.4 8.4 84| 4.6,46| 54,54 3.7,3.1,3.1
Cache 7.7 7.7 7.0 8.6 8.7 | 8.4,86| 55,55 84,55,5.5
Distribute 7.3 7.3 5.6 8.4 84| 8.4,84| 64,65 84,6.5,6.5

Table 3: Client bandwidth when exercising the file systerrfate.

level benchmark called “MMAB”. It is a modified version storage is often important. In some cases, it may be pos-
of the “Modified Andrew Benchmark” [23]. (We modi- sible to execute the functions mentioned above by issuing
fied the benchmark because the 1990 benchmark does ncdbmmands from the edges of the network, but this often
generate much I/O activity by today’s standards.) MMAB incurs overheads and lacks the ability to quickly adapt to
performs five steps—the first three are write steps and théhe workload.

last two are read-only steps. The first step creates a di-

rectory tree of 3,000 directories, in which every non-leaf . .

directory has ten subdirectories. The second step createAS Prognos Discussion

one large file of size 50 MB. The third step creates three

smalll files of size 4 KB in each of the directories. Step AS mentioned in Section 1, a Prognos can be built
four computes disk usage of the directory tree by invoking®n top of an overlay network, or even a set of wide-
du. The final step reads the files by performingmon  area routers. The Prognos approach, however, is equally
each file. We present the results from running MMAB on @pplicable to both LAN and WAN environments. Pre-
our testbed in Table 4. In phase 1, the first three MMABVious cluster-based systems, such as several cluster file
steps are performed off;. (The performance of these Systems [6, 19, 30], assume an environment in which all
steps is shown by the three figures delimited by the twdodes are at the same distance from each other. But, as
colons in each entry for phase 1 in Table 4.) Each of theS00n as the system scales beyond a single subnet, as is the
remaining phases performs steps four and five. (The peicase in the Prognosfs example, a Prognos may become
formance of these two steps is shown by the two figureg!Seful. Also, in the wide-area case, a Prognos does not
delimited by the one colon in each entry from phase 2 toecessarily need to involve a large number of hosts across
8 in Table 4.) Again, the “Cache” and “Distribute” strate- the Internet: a small number of sites connected to a small
gies pay the cost of replication in phase 3 for potentialnumber of strategically located Stones may benefit from

benefits in later phases. a Prognos as well. This is the case for the Prsync exam-
ple where a small number of Stones enlisted at strategic
3.3 Prognosfs Summary locations can allow novel services to be deployed without

Prognosfs is an example that illustrates some of thedge node cooperation.
extremely diverse customizations made possible by pro- In addition to the applications described above, we are
grammable embedded storage. The example strategiespntinuing to research many other Prognos-based appli-
such as “Cache” and “Distribute”, and others mentionedcations, including a network-embedded web crawler and
in the context of Figure 6, serve to show that a fixed inter-a search engine. In this section, we generalize from these
face for embedded storage may not always be sufficientapplication studies and discuss some properties of the un-
Different strategies suit different system configurations,derlying Prognos. One objective of this section is show
and even in a given configuration, the benefits of a giverhow most concerns related to resource management, secu-
strategy are highly workload-dependent. Therefore, theity and reliability can be met by putting together several
ability to dynamically adapt the behavior of embeddedexisting techniques.



Phase no. 1 2 3 4 5 6 7 8

C1 Write Ch Co Cso Cs C1, Cs Cy, Cs C1, Co,C3

()| (9 )] ] (9 (s) (s) (s)
Forward 12:11:33| 5:31 | 8:34 | 7:34 | 8:33 | 9:35, 14:39| 11:37,11:36| 16:45, 26:51, 25:50Q
Cache 11:8:32| 5:27 8:34 | 3:20 | 3:20 5:27, 3:20 4:26, 4:26 5:28, 4:26, 4:26

Distribute | 11:13:33| 5:30 | 33:73 | 3:21 | 3:21| 5:31,3:21 4:25, 4:25 5:30, 4:25, 4:25

Table 4: Results from the MMAB file-system level benchmark.

4.1 Resource Management and Security more restrictive than that of a general operating system.

. We therefore conjecture that it is likely easier to engineer
The three key players in resource management arej secure SOS.

the Stone Operating System (SOS), the service running  second, we envision a Prognos to be administered in a

on a Prognos, and the user of the service. In generaore access-controlled manner than the current free-for-

The SOS must protect different services from each othegjients of a Prognos, are distinct from the more general

on a Stone; the distributed participants implementing thg,,pjic who are theservice consumersAbusive behav-
same service on multiple Stones must be able to authefors might be more tractable when identities of the storage
ticate each other; and the service mustimplement its oWRonsumers are tracked. Such an access control system,
application-specific protection to protect its users frompowever, need not impact the generality or flexibility of a
each other. We discuss each of these issues in turn. Prognos.

One simple way of insulating the multiple services,  Third, the Prognos approach does not necessarily im-
which run on a Stone simultaneously, from each other is tgly time-sharing the Stones among multiple services. It
employ one process per service per allocated Stone. Sug§ possible to have a restricted resource allocation policy
a daemon is present as long as the service is up. Codfat allocates dedicated Stones to services, thus avoiding

specific to each service is executed within its own septhe complexities, overheads and pitfalls associated with
arate address space. Alternatives that are more efficiemime-sharing.

than the process model also exist. These include software- Fourth, there are more restrictive deployment models
based fault isolation [32] and safe language-based extemf a Prognos that may further reduce its security risks.
sions [9]. A Stone persistent storage partition is allocateddne example is a small-scale deployment that is man-
exclusively to the service at service launch time. All Otheraged by a single administrative domain where accesses to
resources on a node must be accounted for as well. Rehe network resources can be more strictly controlled and
source accounting abstractions that are more precise thafonitored. Another possibility is the use of a separate
the process model, such as “resource containers” [7], magedicated Prognos backbone network that is not available
be needed. Existing network-wide resource arbitratiorfor public consumption. This backbone in effect becomes
mechanisms [11, 12, 29, 36] can be used to account fog “backplane” connecting a set of “core” Stones. The gen-
resources on a Prognos-wide scale. eral public, or the service users, connect to the core via a
All the participants that collaborate in a Prognos to im- distinct public network using a distinct service consumer
plement a particular service, such as Stones allocated tmterface. Of course, the service implementors are still re-
this service and the processes on edge machines belongponsible for “correctly” implementing their services and
ing to the service provider, must be able to authenticateolicing their service users; but at least the service users
each other. Existing cryptographic techniques for authenare prevented from committing mischief directly on the
tication, secure booting, and secure links can be used fdsackplane. This is in spirit similar to how several clus-
this purpose [34, 17]. ter file systems can turn themselves into scalable legacy
The codes that implement different services carfile servers [6, 19, 30]: a set of core cluster machines are
choose their own means of authenticating their usersconnected by a secure private network that shoulders the
Application-specific access control and resource managéhntra-cluster protocol traffic while legacy clients connect
ment is entirely left to individual services. to the core using a legacy protocol (such as NFS) on a
In practical terms, we understand that many may poindifferent public network.
at the absence of a single truly secure operating sys- -
tem today and be skeptic%l abou)i the prospgct of sgerv)i/czel'2 Reliability of Embedded-Storage
providers vesting enough trust in a Prognos infrastruc- One question that the implementor of a Prognos must
ture. We believe that there are at least four reasons to bface is: What reliability guarantee does the system pro-
more optimistic. First, while programmable, the amountvide for the embedded persistent data (and whether the
of functionality supported by an SOS is likely to be far Stones must be backed up by tapes)? There are several



possible answers to the question. 5.2 Coaodelnjection

The first possible answer is not unlike the one pro- Service- i de is iniected into the P t
posed in a recent position paper [8]: it proposes that ervice-specilic code IS Injected Into the Frognos a
network-embedded storage may provide a “best effort>€rvice launch time. Updating code requires re-starting

service whose reliability can only be characterized sta-the service. The Prognos supports an interface to allow

tistically and it is the responsibility of the edge S‘tor{j‘geserwces to inject code in native binary format. The code

consumers to cope with the potential loss of embeddegagmentsﬂ:njected |rt1)to tcilflferent ito?esSTlght betd('jf.ff? rentt
persistent data in a way that is in spirit similar to how ecause they may be tailor-made for Stones at ditteren

packet losses in a network are dealt with today. The aul_ocatlons in the network.

thors pose the question of whether such limited-duratio
storage is useful. We believe that the answer is yes an
the Prsync application is an example: the loss of any ver- Each service is allocated a separate storage partition
sion of data stored on a Stone is not catastrophic and then each participating Stone at service launch time. At
edge producer is the last resort of any data. each Stone, storage is available in three alternative forms,
The second possible answer is that it is the responand a service is free to choose one or even switch among
sibility of the application-specific code injected into the them. The alternatives are: (1) A raw disk partition in-
Stones to provide redundancy (if any) inside a Prognos irterface that is essentially the Linuxdev/ r aw/ inter-
a way that is under the exclusive control of the individualface. (2) A logical disk interface that is similar to sev-
applications. The injected code would determine, for ex-eral existing ones [15]. A user of this interface can read
ample, what redundancy scheme to use and which Stonesd write blocks that are keyed by their 64-bit logical ad-
to store the redundancy information on. The applicationdresses. This interface is useful for those who desire a
may choose to treat different types of data differently andblock-level interface but do not care to explicitly man-
different Stones differently. age their own storage layout. Our implementation is log-
The third possible answer moves the responsibility ofstructured. Prognosfs uses this interface. (3) A subset of
ensuring a certain degree of reliability into a “middle- the Linux local file system interface. Prsync uses this in-
ware” layer above Prognos. One example of such a sygerface.
tem is an incarnation of the Prognosfs file system that, for
example, always maintains replicas on at least two Stoneg4 Connectivity
or at two sites. By sacrificing some flexibility available at

the Prognos layer, an application that runs on top of th‘%her physical or virtual. The current SOS implementa-

file system layer may enjoy greater ease of programmingt.. L )
; ion enforces no resource arbitration mechanisms such as
In general, we believe that a Prognos should allow

) o proportional bandwidth sharing [36], which we plan to
the storage consumers to pay the price of reliability Onlyadd The SOS also needs to be able to provide local con-
when they need it, and in a way of their own choosing. :

nectivity information in the form of, for example, the set
of neighboring Stones, and estimates of pair-wise band-
width, latency and loss-rate.

.3 Persistent Storage

The communication links between Stones can be ei-

5 Prognos Prototype

In this section, we describe a simple prototype Prog-5 5 L ocation Service

nos on which the described applications run.
Our prototype includes an efficient, network-aware

51 TheSOS object location service to track copies of objects in a set

Our prototype implementation uses the “processof participating Stones. We refer to it as Canto (Coherent
model” to run multiple services concurrently—on each And Network-aware Tracking of Objects). Canto is heav-
Stone, code for a service is run in a separate daemon prdly used by Prognosfs. It is designed as a network-aware
cess. The service daemons request resources from tlgeneralization of the manager-based approach commonly
SOS, which is implemented as a simple Linux user-levelused in cluster-based systems [6, 19, 30]. In these sys-
process. One of the chief aims of building this proto-tems, each object has a designated manager to track all
type is to have a vehicle with which we can experimentthe copies of the object. This approach works well when
with several Prognos-based applications and demonstragdl nodes are at equal distance from each other, as in a
the utility of the Prognos approach. To this end, we havecluster-based system. When the network grows larger, or
not started with a potentially more efficient kernel-basedwhen the topology becomes more complex, the simplistic
or language-based implementation, nor have we providethanager-based approach becomes inefficient.
any of the security mechanisms discussed in the previous Canto maintains a topology-sensitive tree of nodes.
section. We also anticipate the SOS interface to evolve ifObject location requests are always routed along the edges
an ongoing application-driven process. of this tree. As copies of an object are created, state is

10



added to the tree to keep track of the copies. Canto reeaching, and prefetching of storage objects, and quality-
quires per node routing state that can be proportional taf-service responsibilities of 1/0 operations. “Logistical
the product of the number of objects and the number oNetworking”, a system proposed in a recent SIGCOMM
neighboring nodes. For this reason, Canto stores mogiosition paper [8], argues for an IP-like embedded stor-
of this routing state on disks and uses a memory buffeage infrastructure that allows arbitrary packets to manip-
for caching and write-behind. In effect, Canto trades diskulate the embedded storage using a fixed low-level inter-
storage of routing state for reduced usage of wide-areéace. In our experience, applications such as Prsync and
networks and better performance. Prognosfs can fully benefit from the embedded storage
Canto allows services (like Prognosfs) to make theironly when application-specific intelligence, which could
own arbitrary object placement decisions. This is of-be more sophisticated than conventional caching of ob-
ten difficult to achieve in location services based on dis4ects, is co-located with embedded storage.
tributed hash tables (DHTSs) [28, 26], where hashing algo- Active technologies have been successfully applied
rithms dictate the placement of objects, thereby allowingto applications such as web caching [10] and media
a DHT-based system to scale to extremely large numberanscoding [3]. We hope to generalize these approaches
of nodes. Prognos has more modest scalability requirefor a wider array of applications that can benefit from
ments: a small number of Stones enlisted at strategic locaietwork-embedded programmable storage. Active tech-
tions is sufficient to deploy novel services such as Prsynaologies have also been successfully realized in the con-
Canto works well for such modest-sized systems. text of “Active Disks” [1, 25]. One important difference
Another important property of Canto is that itself-  between Active Disks and Prognos is that the intelligence
synchronizing it preserves the integrity and consistency in the former is at the “ends” of the network while in the
of its data structures during concurrent read and write oplatter case, it is embedded “inside” the network.
erations without resorting to any external locking mech-  The applications, Prsync and Prognosfs, represent ex-
anism or fixed serialization points. Due to lack of spacetensions to previous work that is either limited to client-

we refer the reader to [35] for further details. server settings or lacks customizability. LBFS [20] is a
. client/server file system that employs a checksum-based
5.6 Lock Service algorithm to reduce network bandwidth consumption in a

Another generic service that is likely to be useful for way that is analogous to rsync. By using the Prognos in-
more than one Prognos-based applications is a distributeiiastructure, Prsync extends this approach to fully exploit
lock manager (DLM). For example, Prognosfs uses thenultiple peer Stones and their network-awareness. Prog-
DLM to synchronize its access to distributed storage. Theosfs is similar to Petal/Frangipani [19, 30] in its break
DLM provides multiple-reader/single-writer locks to its down of the file system into three components: clients,
clients. Locks are sticky so a client retains the lock untila distributed lock manager, and a distributed virtual disk
some other client requests a conflicting one. Interestingly{DVD), but it improves upon existing cluster file systems
the mechanism for caching and invalidating lock state orthat possess little network awareness [6, 19, 30]. The most
distributed nodes is a special case of caching and invalinovel part of Prognosfs lies within its DVD—the DVD
dating generic objects inside the Prognos. Since cachingonsists of a number of peer Stones, each of which can be
and invalidation are handled by Canto, the DLM simply customized for a specific environment.

becomes an application of Canto. _
7 Conclusion

6 Related Work We describe two applications that gain signifi-

Many active network prototypes have been built [2'cant performance and functionality benefits by using a

16, 22, 33]. Prognos shares their goal of allowing neWclever combination of the programmability and network-

services to be loaded into the infrastructure on demand®Vareness of network-embedded storage. These applica-

Most active networking efforts to date, however, havellons qualitatively and quantitatively show that such com-

consciously avoided tackling persistent storage inside thg'n;t'on IS necers]sary to elpr0|t _t(;ne full power of embecg—
network. This decision typically limits the injected intel- I'ef ﬁtorar\]get.) T ?,y arfe asrc]) evi s_ncg to supportl_ou_r de-
ligence to those related to low-level forwarding decisions.''® that the benetits of such combination are not limite

By embracing embedded storage, Prognos makes it p0§9 content-distribution networks, but extend to many con-
sible for services to inject high-level intelligence that is ventional applications too. The applications run on our

qualitatively different and more sophisticated. prototype Prognos system that currently works on LAN
In a DARPA proposal [21], Nagle proposes “Ac- clusters and wide-area PlanetLab-like overlay networks.

tive Storage Nets,” which are active networks applied of
to network-attached storage. In this proposal, activeR erences
routers may implement storage functions such as striping,[1] AcHARYA, A., UYSAL, M., AND SALTZ, J. Active Disks: Pro-
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