1

Multi-domain diagnosis of end-to-end service
failures in hierarchically routed networks

Matgorzata Steinder Adarshpal S. Sethi
IBM T. J. Watson Research Center Computer and Information Sciences
19 Skyline Dr, Hawthorne, NY 10532 University of Delaware, Newark, DE 19716
E-mail: steinder@us.ibm.com E-mail: sethi@cis.udel.edu
Abstract

Probabilistic inference was shown effective in non-deterministic diagnosis of end-to-end service fail-
ures. Since exact probabilistic diagnosis is known to be an NP-hard problem, approximate techniques were
investigated. They were shown efficient and accurate in isolating root causes of end-to-end disorder in
networks composed of tens of nodes but did not scale well to bigger networks. In addition, the require-
ment that a centralized manager posess a global knowledge of the system structure and state made the
techniques difficult to apply in real-life. This paper investigates an approach to improving the scalability
and feasibility of probabilistic diagnosis by exploiting the domain semantics of computer networks. The
proposed technique divides the computational effort and system knowledge among multiple, hierarchically
organized managers. Each manager performs fault localization in the domain it manages and requires only
the knowledge of its own domain. We show through simulation that the proposed approach increases the
effectiveness of probabilistic diagnosis and makes it feasible in networks of consideraBle size

I. INTRODUCTION

End-to-end connectivity in a given protocol layer is frequently provided through a sequence of interme-
diate nodes such as bridges in the data-link layer or routers in the network layer. Communication problems
between a pair of these nodes, e.g., a malfunctioning interface, intermittent connectivity, etc., may disorder
one or more end-to-end paths provided using the failing host-to-host link. These end-to-end problems prop-
agate to higher system layers causing various application-level events, e.g., aborted transactions, session
timeouts, abnormal delays, etc. Therefore, it is important that host-to-host problems, both availability- and
performance-related ones, be identified quickly and accurately. Unfortunately, oftentimes host-to-host fail-
ures cannot be detected directly by monitoring host-to-host connectivity. This is due to the fact that certain
failure conditions cannot be monitored on a host-to-host basis either because there is no appropriate monitor-
ing mechanism or because of the associated overhead. Moreover, an end-to-end service user frequently does
not have the administrative authority allowing her to monitor host-to-host connectivity. In these situations,
host-to-host problems have to be identified by correlating indications of end-to-end disorder.

This paper adopts a service-oriented view of the network [16], in which end-to-end or host-to-host con-
nectivity between two nodes in a given protocol layer is considered a service provided by this layer to
higher layers. End-to-end service between nadaadb is implemented using (i.e., depends on) a set of
host-to-host services between neighboring nodes on a patheftorin

Diagnosis of end-to-end network service failures [37], [41] is a sub-task of fault localization [17], [22],
[46] that isolates host-to-host services responsible for availability or performance problems experienced
by end-to-end services. In a complete, multi-layer fault localization solution, end-to-end service failures
diagnosed by this sub-task may be reported by higher-layer fault localization mechanisms, which identify
them as causes of disorders observed in higher layers. Similarly, host-to-host service failures identified by

M. Steinder completed this work while with the Dept. of Computer and Information Sciences, University of Delaware

!Prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U. S. Army
Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.
S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
thereon.



the process of end-to-end service failure diagnosis, may be further analyzed by lower-layer fault localization
techniques to perform a more detailed fault determination [35]. These higher- and lower-layer techniques
are not discussed in this paper.

In the previous work [41], [36], we investigated an application of probabilistic reasoning to end-to-end
service failure diagnosis. The proposed approaches rely on a probalfdigtipropagation modeglFPM),
which represents causal relationships between end-to-end and host-to-host service failures. The model has
a form of a bipartite causality graph with host-to-host and end-to-end service problems at the tails and at
the heads of the edges, respectively. Given the FPM, the fault localization problem is to find a set of host-
to-host failures (faults) that provide the most probable explanation (MPE) of observed end-to-end service
failures (symptoms). To solve this problem, in [41], an adaptation of Pearl’s belief updating [30] was used,
and in [36], a novel algorithm based on incremental hypothesis updating was proposed. The algorithms
were shown effective in the diagnosis of end-to-end service failures in networks composed of tens of nodes.
In addition, they proved to be resilient against lost and spurious symptoms, and to be insensitive to the
inaccuracies of the probabilistic FPM [39], [40].

Today’s networks are frequently composed of multiple domains, each with a different organization and
management policy. For example, the Internet is built of tens of thousands of autonomous systems (AS) [43].
An exterior gateway protocol between ASs, e.g., BGP [33], ensures that traffic routed from one AS to an-
other adheres to policies set-up by AS owners, which may concern privacy, security, or business objectives.
A network domain may be further divided into smaller sub-domains. In the Internet, the OSPF protocol [28]
divides an AS into areas, which are connected via a backbone. Networks that do not exhibit an explicit
domain-semantics in their structure may be also divided into domains for management purposes. For ex-
ample, a tree-shaped network topology may be divided into multiple sub-trees that are managed by separate
management entities. The algorithms proposed in [36], [41], [39], [40] are difficult to apply to such big
multi-domain topologies. They exhibit shortcomings typical of any centralized management scheme, which
include:

« Infeasibility — When subsystems are in different administrative domains, obtaining management infor-

mation, such as topology, routing, or internal state, may be impossible outside of a domain.

« Inefficiency — In large systems, the FPM’s size makes fault localization prohibitively time-consuming.

« Inflexibility — The same management strategy is applied to the entire system even though particular

subsystems may have different requirements.

« Single point of failure

« Vulnerability to security breaches resulting from maintaining management information of the entire

system in a central location

This paper introduces a multi-domain fault-localization technique, which increases the admissible net-
work size by an order of magnitude by taking advantage of the domain semantics of communication systems.
The proposed technique divides the computational effort and system knowledge involved in end-to-end
service-failure diagnosis among multiple hierarchically organized managers. Each manager is responsible
for fault localization within the network domain it governs, and reports to a higher-level manager that over-
sees and coordinates the fault-localization process of multiple domains. With this organization, the technique
is suitable for distributed diagnosis of end-to-end service failures in hierarchically routed networks.

Distributed fault localization has been recognized as an important objective of fault management sys-
tems [6], [21], [46], but few such distributed techniques have actually been proposed. A theoretical foun-
dation for the design of such systems has been laid by Bouloutas et al. [6] and Katzela et al. [20], who
investigate different schemes of non-centralized fault localization: decentralized and distributed schemes.
In a distributed approach, a system is divided into domains managed by separate managers that have to
cooperate to reach a solution. All managers have a partial knowledge of the system, both of its structure
and current state, and are organized according to various paradigms: either form a hierarchy (decentralized
scheme) or cooperate on a peer-to-peer basis (distributed scheme). The technique proposed in this paper
has properties of both these schemes. Similar to the decentralized scheme [20], we envision a hierarchy of
managers with a central manager making the final fault determination. Unlike the decentralized scheme,
however, higher-level managers not only arbitrate among solutions proposed by lower-level managers, but



also participate in the actual fault determination by proposing their own hypotheses composed of network
faults that cannot be identified by the lower-level managers.

The choice of the hierarchical paradigm is natural in fault management; even if multiple managers co-
operate as peers to reach a solution, a central trusted entity is needed to verify and present the solution
to a system administrator. In addition, the hierarchical paradigm is well suited to hierarchically organized
networks, such as the Internet.

While distributed fault management alleviates the problems associated with the centralized approach, it
is significantly more difficult to achieve due to the following reasons.

« Failure propagation among domains—Symptoms of a fault which occurred in one domain may be

observed in other domains. In fact, it is possible that a fault is not at all detected in the domain in which
it occurred.

« Alack of global information about the system structure and state—A symptom diagnosis is complicated
because not all its possible causes are visible in a domain in which the symptom was observed. A
symptom diagnosis is also hampered by the lack of information about symptoms observed or faults
identified in other domains; in the absence of sufficient internal observations, a domain manager may
be unable to diagnose a problem, which could be possible should the information from other domains
be available to the manager.

« The necessity to coordinate the operation of multiple managers—In a distributed solution, in addition
to analyzing observed symptoms, a manager has to cooperate with other managers to reach the final
solution. It is therefore necessary to define a protocol for communication among managers.

Our goal in this paper is to find a solution to end-to-end service failure diagnosis in a multi-domain
network while addressing the problems of failure propagation among domains and the lack of global knowl-
edge. While recognizing the fact that various probabilistic reasoning mechanisms can be used by managers,
we aim at presenting a generic technique of decomposing the problem of end-to-end service failure diag-
nosis into multiple smaller subproblems that complies with the domain semantics of the communication
systems and may be specialized for a variety of such reasoning mechanisms. We also aim at showing two
specializations of the generic technique tailored toward the iterative belief updating [41] and incremental
hypothesis updating [36] as probabilistic reasoning mechanisms. Our solution does not define a commu-
nication protocol used in the distributed approach and therefore does not constitute a complete distributed
technique. While we present what information has to be exchanged among managers, we do not investigate
types and structures of the exchanged PDUs, nor do we decide on a communication mechanism that should
be used by the managers or define specific actions taken by a manager when it receives a particular PDU.

The paper is structured as follows. In Section Il, the centralized probabilistic algorithms, which were
introduced in [36], [41] are presented. In Section I, an outline of a multi-domain fault localization tech-
nique for hierarchically routed networks is proposed. A distributed fault propagation model is proposed in
Section 1V, and a multi-domain fault localization algorithm is presented in Section V. In Section VI a multi-
domain algorithm based on event-driven belief updating [41] is introduced. In Section VIl a multi-domain
algorithm derived from incremental hypothesis updating [36] is proposed. Section VIl presents results of
the simulation study conducted to verify the effectiveness of the proposed multi-domain techniques.

II. PROBABILISTIC DIAGNOSIS OF ENDTO-END SERVICE FAILURES

When connectivity between nodasandb in a given network layer is achieved through a sequence of
intermediate nodes, we say that the service of end-to-end communication betweea drubibsprovided
by this layer to higher layers is implemented in terms of multiple services of host-to-host communication
between subsequent hops on the path from raotienodeb. A failure of a host-to-host service, such as
excessive delay, high packet loss rate, erroneous packet transmission, or total loss of connectivity, propagates
to an end-to-end service implemented using the failing host-to-host service. How a specific failure of a host-
to-host service affects a dependent end-to-end service is decided by the communication protocol used in the
given layer. For example, when the protocol implements an error detection mechanism, erroneous output
produced by a host-to-host service results in data loss in a dependent end-to-end service. When the protocol



does not implement an error detection mechanism, erroneous output produced by a host-to-host service does
not affect data loss rate of a dependent end-to-end service. Instead, erroneous output will be observed.

The problem of end-to-end service failure diagnosis is to identify the set of host-to-host service failures
that are the most probable causes of the observed end-to-end disorder based on the information on causal re-
lationships between host-to-host and end-to-end service failures provided in the form of a fault propagation
model (FPM). The FPM for end-to-end service failure diagnosis is a bipartite causality graph in which par-
entless nodes (calldohk nodes) represent host-to-host service failures (faults) and childless nodes (called
path nodes) represent end-to-end service failures (symptoms). Mulimdeor path nodes may exist for
every host-to-host or end-to-end service that correspond to different types of failures. Since causal relation-
ships between host-to-host and end-to-end service failures are difficult to determine due to their dynamic and
unpredictable nature, the FPM is a probabilistic one, in which éakmode is labeled with the probability
of the corresponding fault’s independent occurrence, and causal edges bltkernles angathnodes
are weighted with the probability of the causal implication between corresponding faults and symptoms
(Figures 1(a) and 1(b)).
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Fig. 1. The construction of an FPM for an example network. The FPM models only one failure type per path or link. It assumes
that all routes are bidirectional and that end-to-end routes for ﬂa€h§, 154,25 5,and3 S 5arel <35 2,1« 5 < 4,
2« 4 < 5,and3 < 4 < 5, respectively.

In this paper, we denote hy and F the set of all possible end-to-end service failures (symptoms) and
the set of all possible host-to-host service failures (faults), respectively. The set of all observed symptoms is
denoted bySp. In the process of fault localization, each observed symptom is mapped into the correspond-
ing pathnode of the FPM. End-to-end service diagnosis correlates all observed symptoms to isolate one or
more responsible faults, i.dink failures.

In our previous work, two approaches to solving this problem have been proposed. The first technique
utilizes Pearl’s belief updating [30] for polytrees as an approximation scheme in belief networks with undi-
rected loops and adapts it to calculating the most probable explanation (MPE) of observed symptoms [41],
[39]. The second approach obtains the MPE by incrementally updating a set of alternative explanation hy-
pothesis. Hence, the technique is calledremental hypothesis updatiri@6], [40]. In this section, we
present a summary of these two techniques.

A. Fault localization through iterative belief updating

The FPM for end-to-end service failure diagnosis can be interpreted as a belief network [30], in which
every node represents a binary valued random variable. Symptom observation is represented by assigning
1 to the corresponding belief network node and constitutes a patidénce In this context, the fault
localization problem is to find the most probable assignmefhibkfnodes given the observed evidence.

Iterative belief updating proposed by Pearl [30] for singly-connected belief networks utilizes a message
passing schema in which the belief network nodes excharaged m messages that encode various condi-
tional probabilities [30]. Belief network nod¥ receives messagesand from its children and parents,
respectively. Based on these messages it calculates new messagiasthat it sends to its parents and chil-
dren, respectively. Moreover, nodé calculates functiothel : {0,1} — [0, 1], wherebel(z) (z € {0,1})
represents the probability that = x given the observed evidence. The belief updating algorithm in poly-
trees starts from an evidence node and propagates the changed belief along the graph edges by domputing
andm messages. In the application to belief networks with undirected loops, several such propagations are
performed to enforce the algorithm’s convergence.



In the application of iterative belief updating to fault localization (Algorithm 1), one traversal of the entire
belief network is performed for every observed symptom. The traversal starts from the belief network node
that represents the observed symptom. The network nodes are visited in a breadth-first order while ensuring
that no node is visited more than once. The event-driven analysis of all observed symptoms produces,
for every fault, the probability of its occurrence given the observed evidence. Based on this information
we approximately calculate the MPE using the following procedure. First, we choose a fault represented
by a random variable with the highest posterior probability of being equal to 1, where the assignment of
1 indicates the fault's presence. Then we place the chosen fault in the MPE hypothesis, assign 1 to the
corresponding random variable, and perform one iteration of belief updating starting from this variable’s
node. This step is repeated until the following conditions hold: (1) the posterior distribution contains faults
whose probability is greater than 0.5, and (2) unexplained symptoms rem@in in

The computational complexity of the algorithm is bound®4So |?|F|) [41]. In particular, in the ap-
plication to the problem of end-to-end service failure diagnosis, it is bour@(lay ), wheren denotes the
number of intermediate network nodes such as routers or bridges.

Algorithm 1: MPE through iterative belief updating

FUNCTION inferencés;):
let o be the breadth-first order starting from nodg
FOR EACHNodex such thatr is not an unobserved path node, along orderingo
computel andm messages for all parents and childrerugfrespectively
DONE
END
Initialization :
setallAsto 1
Symptom analysis phase
FOR EACHObserved symptom DO inferencés;) DONE
computebel () for every noder, x € {0,1}
Fault selection phase
WHILE 3 link nodef; for whichbel(1) > 0.5 and.Sp # 0 DO
take f; with the greatesbel(1) and setitto 1
inferencéf;)
remove alls; such thatp(s;| f;) > 0 from Sp
computebel for every nodef;
END

B. Fault localization through incremental hypothesis updating

Incremental hypothesis updatifi§6] (IHU) creates a set of most likely hypotheses and makes all of them
available to a system administrator on a continuous basis. Each hypothesis is a subskeabéxplains
all symptoms inSp. We say that hypothesis; C F explains symptons; € Sp if it contains at least one
fault that explaing;. After the:*® symptom analysis, the hypotheses are ranked using belief rhgtiibe
algorithm proceeds in an event-driven and incremental fashion. The execution triggered‘bgymeptom,

s;, Creates a set of hypothesés, each explaining symptons throughs;. SetH; is created by updating
H;—1 with an explanation of symptony. We defineH, as a se{ f; € F} such thatf;, may cause;, i.e.,
the FPM contains a directed edge frgipto s;. Using the notation from [22},, is the domain of symptom
S;-

After thes*® symptom is processed, belief metbjarepresents the probability that (1) all faults belonging
to h; have occurred, and (2); explains every observed symptom € Sp; = {s1,...,s;}. Formally,
b;(h;) is defined as follows:

bith) = ( TT »tf)) TI (1= TT G —ptsilfo) ®

frL€h; SZGSO,i fr€h;
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To incorporate an explanation of symptaginto the set of fault hypotheses, in tifé iteration of the
algorithm, we analyze eacty € H;_;. If h; is able to explain symptory, we puth; into ;. Otherwise,
h; has to be extended by adding to it a fault frdfy,. To avoid a very fast growth in the size ®f;, the
following heuristic is used. Fauly € H,, may be added tb; € H;_; only if b;(h; U {f}) is bigger than
wu( fi), the maximumb; of a hypothesis irt{;_; that containsf; and explains;;. While updating the set of
hypothesisp;(h;) is approximated iteratively based oy (h;) using the following equations:

1) If h; € H;—1 andh; explainss;

bihy) = bia(hy) (1 =TT (1 = p(sil ) 2)
fiehjNHs,

2) Otherwise, iff; explainss;

bi(h;U{fi}) = bi—1(hy) p(f1) p(sil f1) 3
The upper bound on the worst case computational complexity of the resultant algoritirSig k| F|) [36],
wherek is the maximum size of the set of hypotheses amslO(|F|) (we usek = 2|F|). When|H;| = &,
a new hypothesis may be added?® only after a hypothesis with the smalldst) is removed. In the
application to end-to-end service failure diagnosis innanode network, the worst case computational
complexity of Algorithm 2 isO(n?).

Algorithm 2: Incremental hypothesis updating

FUNCTION inferencés;)
LETH; =0
FOR EACH f; € F LET u(F;) = 0 DONE
FOR EACHh; € H;_1 DO
FOR EACH f; € hj such thatf; € Hg, DO u(f;) = max(u(Fj), b;i(hj)) DONE
addh; to H;
DONE
FOR EACHh; € H;—1 — H; DO
FOR EACH f; € F N Hg, such thatu(f;) < b;(h; U{f;}) DO
addh;U{fi} toH;
DONE
DONE
END
Initialization:
let Hp = {0} andby(0) =1
Symptom analysis phase
FOR EACHObserved symptor) DO inferencés;) DONE
Fault selection phase
chooséh; € H,s,| such thats,|(h;) is maximum

C. Comparison of techniques

In our previous work [36], [41], Algorithms 1 and 2 were evaluated through simulation in their application
to the problem of end-to-end service failure diagnosis. They both proved almost optimally accurate when
applied to a well instrumented network [36], [41]. However, Algorithm 2 proved much more efficient
allowing the isolation of up to 4 simultaneous faults in a 100-node network in less than 10 seconds. Using a
10-second fault-localization time as an admissibility criterion, the admissible network size for Algorithm 1,
in a similar scenario, is 35. In addition, while both algorithms analyze symptoms in an event-driven manner,
Algorithm 2 is also incremental at any time offering a complete solution to the symptoms observed thus far.
Algorithm 1 requires an additional computation to form an MPE and therefore it can propose a solution,
without increasing the complexity bound, only at the end of the fault localization process. Moreover, while
Algorithm 1 proposes a single solution, Algorithm 2 makes many solutions available by which it facilitates



an easy hypothesis replacement in case the most probable explanation turns out to be incorrect. On the
other hand, Algorithm 1 applies to FPMs of arbitrary shape (and therefore may be applied to almost all fault
localization problems), while Algorithm 2 is suitable for bipartite FPMs only.

Both algorithms can be easily enhanced to be resilient against lost and spurious symptoms. Such ex-
tensions were proposed in [39] and [40] for Algorithms 1 and 2, respectively. In addition, they were both
shown resilient to the inaccuracies of the probabilistic FPM. In Table |, we summarize and compare the most
important features of Algorithms 1 and 2.

TABLE |
SUMMARY OF THE MOST IMPORTANT FEATURES OFALGORITHMS 1 AND 2

Algorithm 1 Algorithm 2
Computational complexity in end-to-end

service failure diagnosis O(n?) O(n?)
Admissible network size 35 100
Fault propagation model arbitrary bipartite only
Isolates multiple simultaneous faults YES YES
Resilient to observation noise YES YES
Does not require exact probabilistic model YES YES
Event-driven YES YES
Incremental NO YES
Multiple alternative solutions NO YES

I11. M ULTI-DOMAIN APPROACH TO END-TO-END SERVICE FAILURE DIAGNOSIS

In this section, we introduce a multi-domain approach to probabilistic diagnosis of end-to-end service
failures in hierarchically organized networks. (The technique presented in this paper is a continuation of the
initial study on multi-domain diagnosis presented in [38] and is free from accuracy and performance prob-
lems thereof.) The approach takes advantage of the domain semantics of real-life communication systems.
The management domains considered by the technique correspond to administrative or routing network do-
mains. We adopt the hierarchical organization of the management system, in which network denaaens
managed by separate managers,DM D; has sub-domains, the managers of these sub-domains report to
DM;. Thus, the management hierarchy established by domain managers (DMs) is isomorphic to the domain
relationship graph.

The multi-domain fault localization algorithm relies on the cooperation among DMs. Symptoms are
typically observed by DMs at the lowest-level of the management hierarchy, as they are usually reported by
either source or destination node of a failed end-to-end path. A DM begins the diagnosis of an end-to-end
path failure only if all of nodes of the path are located in its domain. Otherwise, the corresponding symptom
is delegated to the higher-level manager. While analyzing the failure of an end-to-end path that was reported
to it by a DM, the higher-level manager coordinates the actions of DMs that manage domains traversed by
the failed path. In particular, the higher-level manager delegates some tasks involved in the diagnosis of the
path failure to DMs of domains traversed by the failed path.

Although the technique proposed in this paper may be applied in networks with multiple levels of the
hierarchy, for simplicity, we focus on a two-level architecture. Consequently, w&/usedD; to denote
the entire network and its sub-domain, respectively. At the root of the management hierarchy we position a
network manager NM which oversees and coordinates the operation of domain managers DM

We introduce the following notation.

nE — A directed link from node; to noden;, wheren, andn; are node identifiers
that are unique network-wide, e.g., IP addresses
Ny R Npr, A directed, possibly multi-hop path from nodg, to noden,,, consisting of

[ T N



S:inE — 0y A symptom indicating a failure of pathy, — n;

fing—mny A fault associated with linke, — ny

i — 7 The set of all paths that begin in domd and end in domaif®;, i.e.,i — j =
{n, = ny | np € Dyandn; € D;}, wherei and;j are unique domain identifiers,
e.g., IP subnet masks.

5115 A symptom associated with the set of paths j. We say that symptom: i —
j occurred when at least ose n;, — n; occurred such that;, € D; andn; €
D;.

d(ng) A]function mapping a node identifier into an identifier of a domain to which the
node belongs. In IP networks, functidfy) is implemented using an IP address
mask.

For an end-to-end path,, — n,, consisting of linksn,, — n,,, ..., n,,_, — n,, We define the
following concepts.

Definition 1: Pathn,, = n,,, traversesD; iff 3n, |n,, € D;. Pathn,, = n,, is anintra-domain path
in D; if Vny.|n,, € D;. Pathny, % n,,, that traverse®; but is not an intra-domain path iR; is an
inter-domain pattwith respect tdD;.

\J

o

Fig. 2. Definition of a path segment, and ingress and egress gateways.

Definition 2: Let path,, > n,,, be an inter-domain path with respectp. Let D; andD; be domains
such thaty,, € D; andn,,, € D;. Noden,, suchthatl < k <m,n,, € D;, andn,, , ¢ D;is aningress
gatewayfrom D; to D; in D; and is denoted bVi’j. Similarly, noden,,, such thatl < n < m,n,, € Dj,
andn,, ., ¢ D, is anegress gatewaffom D; to D; in D; and is denoted bEﬁJ. (Figure 2). When routes
are bidirectional, for any, j, and!, Iévj = Eé = G’ andll = Eﬁvj = Gél

Definition 3: Let patm,,, = n,, suchthat,, € D andnp e D; be an inter-domain path with respect
to D;. Pathl’ A El is called anintra-D; segmenbf pathn,,, Bl np,, (Figure 2).

We make the foIIowmg simplifying assumptions, which are usually valid in the case of hierarchically
routed networks.

1) Management domains are either disjoint or all-inclusive, i.e., forngndD;, eitherD; N D; =

or eitherD; = D;.

2) No path enters the same domain more than once, i.e., for anyzplatﬁ» np,, consisting of links
Npy = Moy -y Nppey — Ny i d(np,) # d(ny,, ) then for all j, such thatm > j > i+ 1,
d(ny,;) # d(ny,).

3) All end-to-end paths that begin in domé&n, end in domairD;, and traverse domaif; enterD;
through the same node, i.e.sif, — n,,, andnq1 % n,, are two paths that traverse links, —

Npgs - oy Mpp_y — Np, ANANg, — Ng,, .. — ny, , respectively, such that,, ,n,, € D;,

‘Zn 1
NpmsNg, € Dj, and both paths traverse doma‘m, then forn,, andn,, such that,, ,,n, _, ¢ D,

andn,,, ng, € Dy, ny, = ng, = I} . In addition,n,, = n,,, andng, = ny, leaveD; through the
i .y —El
same node, i.e., for,, andn,, such thatu,,, n,, € Dy andny,,,nq,,, ¢ Di,np, = ng, = E; ;.

The solution proposed in this paper assumes that every DM has the minimum knowledge necessary for



fault diagnosis, i.e., it is able to obtain topology and routing information only in the domain it directly
manages. Thus, DMs aware of linkng — n; if and only if bothn; andn; belong toD;, whereas NM

is aware of linkn, — ny if and only if n, — n, is a link betweerD; andD;, and nodesy;, andn; are
egress and ingress gatewaysfmandD;, respectively. Consequently, NM is able to transform any path
ny, — ny,, that traverses domairig,,, ..., D, into a sequence of intra-domain path segments and links

* A 11 lo lo * lo l—1 M M * .
=B By = e, 2 B B = s Yy — nyp,, (Figure 3). Moreover, DM

is able to obtain a complete route for each end-to-end path> n; such thatd(ny) = d(n;) = 4, but

it cannot obtain the topology and routing information for any parts of the network located outsiele of
Consequently, DMis unable to determine either a complete route or a path-segment sequence for any path
that is inter-domain with respect ;.

py

Dy, Dy

np— 1,

Fig. 3. Transformation of an end-to-end path into a sequence of inter-domain links and intra-domain path segments.

This property of the proposed solution affects the way a FPM for multi-domain fault diagnosis and a fault
localization algorithm are designed, which are introduced in Sections IV and V, respectively.

IV. DISTRIBUTED FAULT PROPAGATION MODEL

Recall from Section Il that a fault propagation model (FPM) for end-to-end service-failure diagnosis is
a bipartite directed graph with host-to-host and end-to-end service failures at the tails and at the heads of
the graph edges, respectively. In the multi-domain solution, the fault propagation model (FPM) of the entire
network is distributed among DMs. Each manager maintains a part of the distributed FPM that represents the
manager’s knowledge of the system structure. An FPM built by; BM bipartite causality graph with end-
to-end and host-to-host service failures at the heads and at the tails of the edges, respectively, similar to the
model described in Section Il. However, in the multi-domain approach, the FPM gfiizMdes failures of
only these end-to-end paths and host-to-host links that are entirely locagdSimilarly, the FPM of NM
includes failures of links that join different domains/®t. Failures of links that are completely contained in
domains of\ but which may affect end-to-end paths that span multiple domains are not explicitly included
in the FPM of NM but are represented in it by proxy fault nodes, cgletbdes. Similarly, failures located
outsideD; that may result in an observation of a symptom corresponding to an end-to-end path located in
D; are represented in the FPM of DMy proxy fault nodes, calle®-nodes. Thus, the FPM built by DM
has the same structure as in the centralized approach, but its scope is smaller and the interpretation of some
of the nodes is different. Similar to the centralized approach, multiple failure modes can be included in the
distributed FPM. In this case, an FPM of each pddnsists of multiple, possibly overlapping copies of such
bipartite causality graph. However, to clarify the presentation of the technique, the description provided in
this paper assumes that only one failure type is associated with every end-to-end path and host-to-host link.

A. Fault propagation model of the NM

Let us consider path,, > n,,, that traverses domaif®,, . .., D;, . Recall that NM transforms this path

into a sequence of intra-domain path segments and fipks™ Ej' , , E}! | 12, S ER, ...

5 np,,, (Figure 3). In its FPM, NM has to represent the fact that a failure of end-to-end

l2

- Ilhlk’
k-1 I Ik

B = e
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pathn,, 5 np,, May be caused by failures of one or more of these links and path segments. This can be
achieved by creating a symptom node representingmthi np,, and fault nodes representing failures of
its corresponding links and intra-domain path segments. However, we can observe that, with the exception
of ny, = Eﬁilk andlﬁ’;lk = ny,,, all paths that begin i, and end inD;, are transformed into the same
sequence of intra-domain path segments and links. (This follows from the hierarchical routing assumption.)
Therefore, we can simplify the FPM by creating a single symptom node labeldd = [, (Figure 4)
that represents all paths that begirf¥y and end inD;, . For any such path,, = np,, We say that node
s : 11 = I represents symptom: n,, — n,, . in the FPM of NM. Symptons : I; — I} occurs when a
failure of at least one path that beginsyy and ends irD;, , €.9.,n,, — n,,,, OCCUrS.
The failure ofn,, — n,,, may be caused by a failure of one or more inter-domain links or intra-domain
segments of,,, i np,,- 1herefore, in the FPM of NM, two types of fault nodes have to exist: (1) ordinary
fault nodes, like ones in the centralized case, which represent failures of inter-domain links; these faults are
directly isolated by NM, (2) proxy fault nodes, which represent failures that cannot be isolated by NM alone
because they are located in domains that are not directly managed by NM. For every domain, one or more
such proxy nodes are created as follows.
« For every ingress gateway nodeliy, I"J., we create nod@ : I;Z % x that represents the set of intf3-
paths that begin in nodg,. We write thatP : I} ; = « = {I} ; = n,|n, € D;}.

« For every egress gateway nodeTn, E; ;, we create nod@ : x 5 E; , that represents the set of
intra-D; paths that end in nodg ;. We write thatP : x« = E; i = {n, = E! ;|n, € D;}.

« Moreover, for each pair of gateway nodgg andE; ,, we create nod@ : I}, — Ej , that represents

the intraD; path segmenif , = Ej . i.e,P: 1}, = E , ={lj, = E;}.

In the FPM of NM, symptom node : /; = I is connected to nodeB : « = E!', , f : B!, —
P, P, SER L f BN = 1, P Ik, Sk (Figure 4). Overall, the FPM of NM

contains multiple such symptom nodes for all pairs of domain¥ ifThese symptom nodes are connected
to overlapping sets of fault arfd-nodes. Thus, the FPM of NM is a connected bipartite graph.

Fig. 4. Construction of FPM for NM includin@-nodes representing domains.

Example 1:

Consider the network in Figure 5. We will describe the FPM built by the NM.

Figure 6 presents the FPM build by NM while assuming that only one fault exists in the system per every
end-to-end or host-to-host service, and that all routes are bidirectional. The FPM contains three symptom
nodes that represent paths between dom@inand D,, D, and D3, andD, andDs. Let us consider
paths between domairi®, andD;. Since there is no direct route between these two domains, connectivity
between them is provided via domdin, in particular via gateways 3.1 and 3.5. Thus, an end-to-end path
1.n; < 2.ny between these two domains is decomposed into the following sequence of inter-domain links
and intra-domain pathst.n; < 1.1, 1.1 < 3.1, 3.1 & 3.5, 3.5 «< 2.5, and2.5 < 2.ny. Thus, in the
FPM of NM, nodes : 1 <+ 2 is connected to link nodeg: 1.1 « 3.1 andf : 3.5 «— 2.5, and toP-nodes
P:x S 1.1,P:315 3.5 andP @ 2.5 S .
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Fig. 5. Example three-domain network topology.

Fig. 6. Fault propagation model created by NM in Figure 5. The model assumes that all routes and path failures are bidirectional,
and it allows only one failure type per path or link.

The final step in the creation of the FPM for NM is assigning prior failure probabilitié3-tmdes and
conditional probabilities to causal edges betwgenodes and symptom nodes. Conditional probabilities
betweenP-nodes and symptom nodes do not have any intuitive interpretation. The approach chosen in
this paper assigns all conditional probabilities betw&enodes and symptom nodes to 1. The strength
with which faults located in sub-domains influence failures of paths that span multiple domains is modeled
using prior failure probabilities assigned®nodes.P-nodes do not have real-life correspondents, either,
since they are synthetic elements. As a result, their prior failure probabilities cannot be either assigned by an
expert or learned through system observation, as itis the case with ordinary fault nodes. In gdditaes
represent failures located in other domains and their prior failure probabilities change during the process of
fault localization. Thus, prior failure probabilities associated WmodesP : I} ; = %, P : x = Ei ,, and

P :1i, = Ei, inthe FPM of NM must be calculated by the multi-domain technique based on the state
of the fault localization process iR;. Since this state is not accessible to NM, the probabilities have to be
calculated by DM. The process in which it is done is discussed in Section V.

B. Fault propagation model of a DM

As it was stated at the beginning of this section, the FPM built by; Didludes all intra®; paths and
links, i.e., all the information contained in the centralized modeDaf Such a model is sufficient for the
diagnosis of symptoms observed?m, but is not sufficient for the diagnosis of symptoms Piceives
from NM. In the hierarchical fault management solution presented in this paper, diagnosis of a path failure
is delegated up and down the management hierarchy until managers of all domains traversed by the path are
notified. In particular, NM may delegate to QM part of a task involved in the diagnosis of paf 5 Nopr
that traverse®;. In this case, DMwill be notified about a failure of its intra-domain path that constitutes
the intraD; path segment aof,, = np,, - Observe that this notification does not mean that the iRtrpath
has necessarily failed. It only indicates a possibility of this segment’s failure, sy;lce*» np,, could have
been caused by its path-segment or link that is not located in dafhaifhus, symptoms received by DM
from NM are typically associated with a high degree of uncertainty, i.e., they are likely to be spurious. In
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our previous work [39], we presented a solution that allows us to incorporate spurious symptoms in an FPM.
In this section, we use these ideas as follows.

Lets : n, — n, be an intraD; symptom received by DMrom NM in the process of diagnosing a failure
of inter-domain path,,, 5 Np,,- 10 model the possibility that : n, = n, is spurious in the FPM ab M,
we create a proxy fault node, callétnode that represents all possible causes ofi, — n, that are not
located inD;. Observe that, since path — n; constitutes a segment of an inter-domain path, at least one
of nodesn,., n; is a gateway node if;. Let/ andk be identifiers of domains that contain nodgs and
np,,,» respectively. Consider three possible cases.

. i=1,andin consequence = E;, = E!, (Figure 7(a)). We create node: » — E!, and connect it

tos: n, = Ng. ' ' o

i =k, andin consequence. = I}, = I;; (Figure 7(b)). We create node: I}, = x and connect it to
SNy = T¢. B

i #land: # k, and in consequence. = I}, andn; = E;, (Figure 7(c)). We create node: I =
E; , and connect it ta : n, — n.

@i=1

()i =k

-\
J

(c)i#kandi #1

Fig. 7. Definition of proxy nodes in the FPM of DM

Observe that eacR-nodeP : = Ei, P : I}, 5 «,0r P : I, = E;  in the FPM of DM corresponds
to P-nodeP : x = El,, P : 1}, = x orP : i, = E|, respectively, in the FPM of NM. Similar to
what we did in the case of NM, conditional probabilities on edges bet\ﬁeandes and symptom nodes in
the FPM of DM are set to 1, while prior failure probabilities assignedmodes in the FPM of DMare

calculated by NM and sent to DMogether with reported symptoms. In fact, in the FPM of D-nodes

can be created dynamically when corresponding symptoms are reported by the NM.
Example 2:

Consider the network in Figure 5. Figure 8 presents the FPM build by ®Mle assuming that only one
fault exists in the system per every end-to-end or host-to-host service and that all routes are bidirectional.
The FPM contains symptom nodes that represent all iBty@aths, which are connected to intEg-links
that are used to provide these paths. This part of the model is identical to the centralized model in Figure 1(b),
sinceDs has the same topology and routing as the network in Figure 1(a).

In addition to the fault nodes, in the distributed FPM, the FPM built bysDidludes thre@>-nodes. Since
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there are two gateways iDg, i.e., nodes 3.1 and 3.5, thenodes that need to be created &re x < 3.1,

P xS 3.5, andP 3.1 &5 3.5. NodeP : 3.1 & 3.5i0s connected onIy to symptom node 3.1 5 3.5,
Node?P : « < 3.1 is connected to symptom nodes 3.1 = 3.2, s : 3.1 = 3.3, ands : 3.1 = 3.4, while

nodeP : x < 3.5 is connected to nodes2 < 3.5, 3.3 < 3.5, and3.4 < 3.5. Note that other symptom
nodes do not hav®-nodes associated with them, since their corresponding paths may not be segments on
any intra-domain paths.

[s :3.1<—>3.3]

[s:3.1<—)3.2

[s:3.1<—>3.5] [s : 3.2(—)3.3] [s : 3.2(—)3.4 [s :3.2(—)3.4 [s :3.3(—)3.4]

%pi*(—>3.1 P 3. l(—)35

(PR35

[f 31e33 (3163532033 (f32034 (133034 (134035

Fig. 8. Fault propagation model created by PM Figure 5. The model assumes that all routes and path failures are bidirectional,
and it allows only one failure type per path or link.

V. MULTI-DOMAIN FAULT LOCALIZATION ALGORITHM

In this section, we present an outline of a multi-domain fault localization algorithm (Algorithm 3) based
on the distributed fault propagation model described in Section IV. We propose a general design of the
algorithm, which may be refined to create multi-domain versions of both Algorithms 1 and 2. In the pseudo-
code in Section V-B, parts of the algorithm that need to be specialized for different probabilistic reasoning
mechanisms are underlined. The refinements of these parts are be presented in Sections VI and VII for
Algorithms 1 and 2, respectively.

Similar to the centralized algorithms, the multi-domain fault localization algorithm proceeds in three
phases performed by every DM and NM: (1) model initialization, (2) symptom analysis, and (3) fault selec-
tion. In the initialization phase (see Algorithm 3), the model is reset by assigning prior failure probabilities
to proxy nodes. In our implementation, these probabilities are set to 0 in the FPM of NM, while in the FPM
of DM, no P-nodes exist at the beginning and therefore no assignment is needed.

Symptom-analysis and fault-selection phases progress by traversing the hierarchy of managers in a bottom-
up or top-down manner, whetbmttom-upandtop-downindicate the direction of the information flow. Pro-
cessing performed by DM or NM is triggered by a symptom arrival or by a message received from NM or
DM, respectively. For the clarity of presentation, in the pseudo-code of Algorithm 3 we use function calls
to indicate the exchange of information between managers. In the distributed implementation, the function
calls should be implemented by asynchronous message exchange rather than RPC-style invocations.

A. Symptom analysis phase

The symptom analysis phase is executed for every received alarm that indicates a failure of an end-to-end
path between two nodes. This alarm can be received either by the NM or a DM. A DM can start the symptom
analysis only if the entire failed path belongs to its domain. If the DM is not able to diagnose the symptom
it forwards it to the NM, which initiates the symptom diagnosis (functoalyzeinternal).

1) Symptom processing by NMIn the process of diagnosing symptoam n,,, 5 N, the NM first
maps it into a symptom node: I; — I, in its FPM, such that,, € D;, andn,,, € D, . Then it splits the
failed path into its intra-domain path segments and inter-domain links, i.e., into a seqqenee E11

11 lo lo * lo I—1 M
B = 0 g, B o B = 1 1

!
* 11 l2 Iy
5 np,. Segmentsy,, — Bl Ezl,zk

1,lg? 1,0k
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e

l * . * [ l
o I}y, = np,, are then interpreted as symptoms= s : ny, — E; 1,52 = s : 17 SRR

1,1k 1,1k
Sp=8: 'éf,zk 5 np,, that will be reported to D], DM,,, ..., DM, , respectively. Since high uncertainty
is associated with these symptoms, the NM needs to calculate the probability with which the symptoms
should be considered spurious by DMs. Note that in the FPM of DMl causes of symptory; reported
by NM that are not located i®v;, are represented by7a-node that is attached to nodge Let us label this

nodeP(s;). Thus, the NM needs to calculate the prior probabjlitf(s;)) that should be associated with
P(s;) in the FPM of DM,

Recall that, in the FPM of NMgs; is represented by one or moRenodes. Let; = s : n, — ng. If n,. is
an ingress gateway iR; andn, is an egress gateway ;, thens; is represented b-nodesp : n, = ng,
P :n, — % andP : x — ng. If n, is an ingress gateway iR;, andn; is not an egress gateway 1, then
s; is represented by-nodeP : n, = «. Finally, if n; is an egress gateway #; andn, is not an ingress
gateway inD;, thens; is represented b-nodeP : x = n,. The value ofp(75(sj)) is calculated using
function computespurious which is defined as follows. (The underlined parts of code need to be defined
separately for Algorithms 1 and 2.)

FUNCTION computespuriougs : n, — ny)
IF n, is an ingress gatewayND n, iS an egress gatewayHEN
setPe; = {P :np — ny, P i % = ng, P iy — %}
RETURN [ [pep.., mot_prozy(P|evidence observed yM)
ELSE IFn, iS an ingress gatewayHEN
RETURN not_prozy(P : n, — x|evidence observed hyM)

ELSE
RETURN not_prozy(P : * — n;|evidence observed yM)

END

After calculatingp(ﬁ(sj)) the NM delegates the diagnosis of symptemto DM, for j = 1...k
(functionanalyzeexterna). Along the symptom, the NM passpsﬁ(sj)). It also sendsP;, a description

of the P-node connected to : I, — I, that represent®;, in the FPM of NM. This description may be in
the form of, e.g., an IP-address mask. The last argument is needed so thatddMalculate the value of

p(P;), which is required by NM to correctly diagnose symptem; % 1. As a result of the diagnosis
performed by DM, the NM obtaing(P;) and updates its FPM.

Observe that the diagnosis of the same symptgnean be delegated to DMmultiple times in the
process of fault localization if it constitutes a segment of multiple end-to-end paths whose failures are
reported as symptoms. This results in duplicate observations of the same symptom bySyide DM,
does not process a symptom more than once, duplicate symptoms unnecessarily increase the communication
overhead. Thus it is desirable to prevent duplicate delegations of the same symptom, toNaitirally,
we could do this by having the NM keep a record of all symptoms delegated to DMs, but this would waste
memory, and searching through the record to detect duplicates would be time consuming. Instead, we
observe the following. Since all end-to-end paths between dorfiajrendD,, traverse the same domains

using the same ingress and egress nodes, any inter-domain sympthm~ [, that has previously been
analyzed by NM results in a duplicate symptom delegation tq . OM j = 2... k£ —1. Thus, NM maintains

a marking scheme in which unobserved-symptom nodes are markeNN@BSERVED its FPM. Once

a symptom is observed, it is mark@BSERVEDNTERNAL While analyzings : n,, — n,, when

s: 1} = I}, is markedOBSERVEDNTERNAL the NM refrains from delegating intra-domain path segments
of s : ny, — nyp,, 10 DM;;sforj = 2...k — 1, butit does delegate the analysis to hMnd DM, , since

end-to-end paths representedsbyl; — [;, may differ in their path segments locateddp andD;, . This
method prevents NM from sending duplicate symptoms to,BNbr j = 2...k — 1 but does not aim at
preventing duplicate symptoms in DMand DM, .

When DMs complete the analysis of symptoms that have been delegated to them by NM they return the
values of corresponding(P;)s. Then, the NM updates its FPM and incorporates the changed values of
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p(Pj)s in its state of fault localization (functiompdatehypothesgs Finally, NM analyzes symptors :
1, = I, (functioninferencé. This part of NMs operation depends on the probabilistic inference mechanism
used by NM, e.g., Algorithms 1 or 2.

2) Symptom processing by DMDM; may start the processing of symptem n,, — n,,, as a result
of two events: (1) it may observe a failure of path, 5 ny,, Whose all nodes belong tB; or (2) the
symptom may be delegated to DMy NM. In the former cases : n,, 5 np,, IS an internal symptom, in
the latter case it is called an external symptom. Internal symptoms are considered more significant, since
they cannot be explained by faults located outside; DMowever, in the absence of internal symptoms,
the external ones help the DMhake correct diagnoses. To distinguish between different observations of
the same symptom, DMmarks symptom nodes as eithdNOBSERVEIDBSERVEDNTERNAL, and
OBSERVEIEXTERNALwhen they are not processed, processed as a result of internal observation, and
processed as a result of a delegation by NM, respectively.

Internal symptoms are processed by functioalyzeinternal. First, the association between the observed
symptom and it§>-node (if one exists) is removed, as the symptom can no longer be explained by external
causes. Then, a probabilistic inference mechanism chosen for this DM is used to analyze the symptom.

The processing of external symptoms is done by funaioalyzeexternal Assume tha : n,, — n,,,
has been delegated to Dids a result of a failure of an end-to-end path between donaiasndD,. DM;
also receives two parameters from NWIgék andpspurious. Recall thaﬂ?ik is a description of &-node that

is connected to node: [ = k in the FPM of NM, anspurious 1S the probability with whichs : ny,, N N
should be considered spurious by Mn the process of analyzing: n,, 5 np,,» DM; first updates its
FPM by settingp(P(s : 1y, — np,,)) = Dspurious IN its FPM, whereP(s : n,, > n,,. ) is theP-node
connected to symptom: n,,, = np,, IN the FPM of DM. If the symptom has been previously analyzed,
DM; takes no further action and returns the stored valup(®f,). Otherwise, it updates the FPM by

connectingP (s : ny, — n,,.) 10 s : n, — n,, , and updates the state of fault localization to reflect the
modified value ofp(P(s : n,, — n,,.)). Then, a probabilistic reasoning mechanism is used to analyze the

symptom. Finally, functiorcomputeprior is used to calculate the a vaIuep(ﬂD;"k), which is defined as
follows.

DM;: FUNCTION computeprior (P; ;)
LET 8}, = {n, = ny € Pj|s : n, = ny is nNotUNOBSERVED
IF S/}, = ) THEN RETURNO
RETURN Hsz_esli’k symptormbel(s;), where

1 if s; is markedOBSERVEDNTERNAL
symptombel(s;) =

1- Hfjef(l — p(s;|fj)faultbel(f;)) if s; is markedOBSERVEIEXTERNAL

END

Intuitively, function computeprior calculates the probability that all failures of intfy-path segments
represented by that have been reported by the NM can be explained by.[MNearly, if a failure reported
by NM has also been observed by D&k an internal symptom, then the probability that it was caus@y in
is 1. Otherwise, DMneeds to calculate the probability that a failure reported by NM but not observed as an
internal symptom was caused by one or more faul®;inFault probabilities used in this case are obtained
based on symptom diagnosis performed by, to this point. When no symptoms have been reported to

DM; functioncomputeprior returns 0.
Example 3:

Let us consider the symptom analysis phase performed by managers of the network in Figure 5 on page 11
after failures of paths.5 <> 2.4,3.1 & 3.4,1.3 & 3.4, 1.3 & 2.1 are observed.
1) Pathl.5 < 2.4 fails. Symptoms : 1.5 < 2.4 is observed by NM. NM splitd.5 <> 2.4 into a
sequence of intra-domain path segments and links> 1.1, 1.1 < 3.1, 3.1 & 3.5, 3.5 & 2.5,
and2.5 & 2.4. Messages containings : 1.5 < 1.1,p(P : x & 1.1),P - % & 1.1}, {s : 3.1 &
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3.5,p(P : 3.1 & 35),P : 3.1 & 35}, and{s : 2.5 <& 2.4, p(P : 25 & ), P : 2.5 S x}
are sent to DM, DM3, and DM,, respectively. DM, DM3, and DM, update their FPMs, analyze
external symptoms : 1.5 & 1.1, s : 3.1 & 3.5, ands : 2.5 < 2.4, respectively, and calculate
prior probabilities forP nodesP : « <& 1.1, P : 3.1 <& 3.5, andP : 2.5 & «, respectively. Finally,
symptoms : 1 < 2 is analyzed by NM and markedBSERVEDNTERNAL

2) Path3.1 <& 3.4 fails, which is an intra-domain path 5. Internal symptons : 3.1 < 3.4 is analyzed
by DM3, and markedBSERVEDNTERNAL

3) Pathl.3 & 3.4 fails and symptons : 1.3 < 3.4 is analyzed by NM. The NM splits path3 < 3.4
into a sequence df.3 < 1.1, 1.1 «— 3.1 and3.1 < 3.4. Messages containings : 1.3 & 1.1, p(P :
£ & 1), P & L1} and{s: 3.1 & 3.4,p(P : 3.1 <& %), P : 3.1 & %} are sent to DM and
DM3, respectively. DM analyzes external symptom: 1.3 < 1.1 and computeg(P : * < 1.1).
However, DV ignores symptons : 3.1 < 3.4 and returns the most recent valuepdP : 3.1 <& ),
since the current marking of : 3.1 <> 3.4 in DM3 is OBSERVEDNTERNAL Finally, symptom
s: 1S 3is analyzed by NM.

4) Path1.3 <& 2.1 fails and as a result symptom : 1.3 < 2.1 is analyzed by NM, which splits
path1.3 < 2.1 into sequencd.3 < 1.1, 1.1 < 3.1, 3.1 & 3.5, 3.5 & 2.5, and2.5 & 2.1.
Messages containings : 1.3 < 1.1,p(P : * & 1.1),P : + & 1.1} and{s : 2.5 & 2.1, p(P -
2.5 & %), P : 2.5 & x} are sent to DM and DM, respectively. To avoid duplicate symptoms,
no message is sent to D\ince the current marking of symptasn: 1 <> 2 in the FPM of NM is
OBSERVEDNTERNAL After DM; and DM, return new values gf(P : * <> 1.1) andp(P : 2.5 <&
%), respectively, the NM updates its FPM, but it does not analyze symptom™> 2 since its marking
is OBSERVEDNTERNAL

B. Fault selection phase

In the fault selection phase, DMs formulate their final explanation hypotheses and report them to a system
administrator. Before this can happen, DMs and NM have to synchronize their FPMs by updating prior
failure probabilities associated with their proxy nodes. Although these probabilities are constantly modified
during the symptom analysis phase, this is only a partial process, and more thorough synchronization of the
models is needed before final hypotheses can be proposed.

Fault selection phase is a cooperative process initiated by NM, which first obtains from DMs prior failure
probabilities associated with proxy nodes in its FPM, and then calculates spurious symptom probabilities
that are assigned to proxy nodes in the FPMs of DMs.

Afterwards, DMs and NM can proceed independently of one another to update their fault localization
state (functiorupdatehypothesésand choose the most likely hypothesis (functimbectbesthypothesis
Both function depend on the probabilistic inference mechanism used by DM or NM. In particular, function
selectbesthypothesisonstitutes the fault selection phase of either Algorithm 1 or Algorithm 2.

Algorithm 3: Multi-domain algorithm

Initialization :
NM: ForeveryP;, Do p(P;,) = 0 DONE
Symptom analysis phase
DM: FORevery observed symptom n, = Np,, DO
IF d(np,) = DID AND d(n,,,) = DID THEN
analyzeinternal(s : n,, — n,,)
ELSE NM—analyzeinternal(s : n,, — n,,.)
DONE
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NM: FOR every observed symptom n,, — n,, DO analyzeinternal(s : n,, — n,, ) DONE

DM;: FUNCTION analyzeinternal(s : n,, Bl Npyn)
IF 5 :np, — ny,, is not markedBSERVEDNTERNAL THEN
setp(s : ny, — np, |P(s: np, — 1y, )) =0
marks : n,, — n, asOBSERVEDNTERNAL
inferencés : n,, — n,,)

END

NM: FUNCTION analyzeinternal(s : n,, — n,,.)
maps : ny, — nyp,, t0s: l1 — I such thaty,, = n,, €1 = Ik

* H * 11 11 lo lo * lo
transformn,,, — n,,, into n]lg1 =B Bl 2, 2B
k—1 Uk g *
Elhlk - Ill:lk’ Ilhlk = Npm,
. *
determine proxy nodes connectedstol; — [:
_D., X El _ D .l * pl2 _p .k *
Pl_P*—)Ell,lk’P2_PIlhlk_)Ell,lk"Pk_,])lll,lk_)*

5 ER

1 l *
S9 =5 : 172 ll,lk""’sk:‘szllf,lk_)np

—c- * gl
sets; = s:ny — E A

FOR1 < j < kDO
IF s:1; — i is markedUNOBSERVEDR j = 1 OR j = k THEN
Dspurious =COMpuUtespuriougP;)
p(P;) = DM;, —analyzeexterna(s;, P;, pspurious)

1
1.k’ m

DONE

IF s: 11 = I is not markedDBSERVEDNTERNAL THEN
updatehypothese3$
marks : I; — I, asOBSERVEDNTERNAL
inferencés : 1, — Ij)

END

DM;: FUNCTION analyzeexterna(s : n,, — n,, ., P;k p(P(s: np, = np,))

setp(75(s FMpy = npm)) = Pspurious

IF 5 :np, — np,, is Not markedJNOBSERVEDHEN returnp(Pik)

ELSE
connectP (s : ny, — ny,, ) 105 =y, > ny, and sep(s : ny, — np, |P(s: np, —nyp,))) = 1
updatehypothesg$
marks : n,, — n, asOBSERVEEXTERNAL
inferencés : n,, — n,, )
return computeprior (7; ;)

END
Fault selection phase
NM: ForeveryP}, po p(P},) = DM; —computeprior(P},) DONE
FOReveryP/, DO DM; —>setspuriou$75i,§, computespuriougP; ,)) DONE
FOReveryDM; Do DM; —selectfaulty) DONE
selectfaulty)

DM/NM: FUNCTION selectfaulty))
updatehypothes€3
selectbesthypothesi§

END
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C. Computational complexity

A precise bound on the computational complexity of Algorithm 3 may not be obtained without deciding
on the probabilistic reasoning mechanism to be used by the algorithm, which affects the complexity of
algorithm’s steps presented using the underlined font. However, the general process of calculating this bound
and sources of the complexity are discussed here. In Sections VI and VII, we give a tighter assessment
of the algorithm’s complexity when using belief updating (Algorithm 1) and the incremental technique
(Algorithm 2) as reasoning mechanisms, respectively.

The complexity of Algorithm 3 results from symptom analysis performed in the symptom analysis phase,
fault selection performed in fault selection phase, and the calculation of probabilities exchanged among
managers in all phases of the algorithm. In the following analysis, wéNisand|D;| to denote the num-
ber of domains inV or nodes irD;, respectively. Recall that in the pseudo-code of Algorithm 3, parts of the
code that need to be specialized for different probabilistic reasoning mechanisms are encoded as functions
notproxy, faultbel, inference updatehypothesgsand selectbesthypothesis Let fro¢ prozy, [fauit_vels
finferencea fupdate,hypotheses: and fselect,best,hypothesis be functions such that the CompUtationaI Complex'
ities of not_proxy, fault_bel, inference updatehypothesgsand selectbesthypothesisare O( frot_prosy).
O(ffault,bel)v O(fmference)- O(fupdate,hypotheses)v ando(fselect,best,hypothesis)- respeCtiVely-

The computational cost incurred by the NM in the symptom analysis phase is due to (1) exeouiing
pute spuriousfor every symptom observed by NM, and (2) analyzing previously unobserved symptoms.
The former operation is invoked at least twice for each symptom observed by NM (i.e., while delegating
symptoms to source and destination domains of a failed path). In addition, the operation may be invoked
at mostO(|\V|) times for each observed symptom whose markingN&OBSERVER.e., while delegating
symptoms to all domains traversed by a failed path). Overall, since the number of path nodes in the FPM
of NM is O(|NV|?), the number of invocations i®(max(|So|, |N]?)) during the entire symptom analysis
phase. Also, the computational complexityamimputespuriousis equal to that of.ot_prozy. The task of
analyzing previously unobserved symptoms is executed at miogtSo |, |V]?) times, since no symptom
in the FPM of NM can be analyzed more than once. It involves functimusatehypotheseandinference
As a result, the computational complexity of the symptom analysis phase during entire fault localization
process i@(|SO|fnot,pmzy + min(’SO’v ‘N|2)(f'mference + fupdate,hypotheses))-

The computational complexity of the symptom analysis phase performed hyiDtie to analyzing
internal symptoms in functioanalyzeinternal and analyzing external symptoms in functianalyze ex-
ternal. Since each symptom in the FPM of DMhay be analyzed at most once as an internal one, the
computational cost of internal symptom analysi€iémin(|So|, |D;|?) finference)- The analysis of exter-
nal symptoms involves three functiongpdatehypothesesnference andcomputeprior. The complexity
of the last function depends on the nhumbefehiodes that represent domdin in the FPM of NM. Ob-
serve that in the FPM of NMD; may be represented by at ma8t|D;|) P-nodes of typeP : * — n;
andP : n, — x (one for everyn, or n; in D;). Each suchP-node represent®(|D;|) intra-D; path
segments, and therefore its prior probability will be calculated at %¢gP;|) times (once for every path
segment, which is delegated as an external symptom). The computational complexity of a single invoca-
tion is, in this case(’)(]Di\foaulLbel). Similarly, in the FPM of NM,D; may be represented by at most
O(|D;]?) P-nodes of typeP : n, — n, that each represent exactly one infPapath segment and there-
fore their prior probabilities may be calculated at most once during the symptom analysis phase. In this
case, the computational cost of a single invocatiof?(§D;| ff,.it_rer). Overall, the cost otomputeprior
in the entire symptom analysis phase($|D;|? ffuu_vet). Also, since each symptom may be analyzed
as external at most once, the number of times functiggdatehypothesesandinferenceare executed is
O(min(|Sp|, |D;|?)). Therefore, the computational complexity of the entire symptom analysis phase per-
formed by DM is O(mln(|30’, ‘Di|2)(fupdate,hypotheses + finference) + |Di‘3ffault,bel)-

The computational cost incurred by NM in the fault selection phase is due to invekiogjate spurious
which is done at mogt\|? times. (Since each df\'|* symptom nodes in the FPM of NM is connected to
at most|\V| proxy nodes, there are at maaf|? probabilities to calculate). The computational cost incurred
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by NM in the fault selection phase is also due to functsatectfaults which is O( fupdate_hypotheses +
finference). Overall, the computational complexity of NM in the fault selection phas(|8V'|? f,.ot_prozy +
fupdate,hypotheses + fselect,best,hypotheses)-

In the fault selection phase, DMalculates prior probabilities d?-nodes on behalf of NM and chooses
the best hypothesis. Its computational cost incurred in this pha3gfiSdate_nypotheses+fselect_vest _hypothesis)+
IDil? fauit _bet)-

From the above analysis it is clear that the algorithm’s performance depends on the efficiency of calculat-
ing probabilities that are exchanged between DMs and NM. In Sections VI and VII, we present the process
of calculating these probabilities in detail and refine computational complexity bounds for multi-domain
fault localization using belief updating and incremental hypothesis updating.

Finally, recall that one of the initial objectives of our research on multi-domain fault localization was
improving the efficiency of end-to-end service failure diagnosis. While the analysis provided in this section
does not allow us to quantify this improvement, we can observe that a potential algorithm’s speed-up is
likely to result from the following properties of the algorithm.

« DMs and NM operate on smaller FPMs than would be the case with the centralized approach. Recall

that the complexities of Algorithms 1 and 2 &n°) andO(n*), respectively. If we managed to keep

the complexities of managers’ algorithms within these bounds when using belief-network approach
and the incremental technique as reasoning mechanisms, by decomposing the fault localization prob-
lem intom smaller subproblems we could achieve complexitie€®6fn®) and O(mn?) instead of
O(mSn®) andO(m*n?), respectively.

« DMs process a smaller number of symptoms than in the centralized case. Observe that multiple end-to-
end path failures map into a single symptom node in the FPM of the NM. In the centralized technique,
these path failures are mapped into different symptom nodes and therefore have to be analyzed sepa-
rately.

« Since DMs can execute in parallel, many symptoms may be simultaneously analyzed, thereby reducing
the overall fault localization time.

D. Signaling overhead

The signaling overhead of Algorithm 3 results from the exchange of symptoms and probabilities between
NM and DMs and therefore is related to the number of probability values produced in every phase of the
algorithm. In the symptom analysis phase, the number of messages exchanged between NM and DMs is
related to the number of observed symptoms. For every symptom observed by the NM at least two messages
will be sentto DMs. In addition, symptoms that have not been previously analyzed by NM result in messages
sent to at most\'| DMs for each such symptom. As a result the messaging overhead incurred in this phase
is O(max(|Sol, IV ?).

In the fault selection phase, the messaging overhead results from the exchange of probabilities needed to
update the FPMs. The number of messages exchanged between NM and DMgI§.AI$Y. Thus, in the
entire algorithm, the messaging overhea®isnax(|So|, |NV[?)).

VI. MULTI-DOMAIN FAULT LOCALIZATION USING BELIEF NETWORKS

In this section, we introducalgorithm 3A, a multi-domain version of Algorithm 1, which constitutes
a refinement of the fault localization technique presented in Sections IlI-V. The refinement introduces def-
initions of functionsnot proxy, fault_bel, inference updatehypothesesandselectbesthypothesiswhich
were left undefined in the description of the general multi-domain technique.

Function noLprox;(Pl" ;) calculates the conditional probability that faults representeﬁfl%yn the FPM
of NM did not occur, gi\}en the observed evidence. Using the probabilistic reasoning mechanism of Algo-
rithm 1 this probability may be expressed usihmessages received by ndﬂﬁk from its children nodes in
the belief network that constitutes the FPM of NM. Q@};k(x) indicate a prdduct of messagkseceived

by Pﬁk from its children. Forr = 1, )\plik(x) is interpreted as the probability that the observed symptoms,
children of P/, occur given the failure condition represented®y, has occurred. Similarly, for = 0,
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)\Pi (x) is interpreted as the probability that the observed symptoms, chiIdrPf\kobccur given the fail-

ure condltlon represented byk has not occurred. Using this information, we can demNEproxy(Pl k) as
follows. Recall that in the FPM of DM the values of\,; (x), which are assigned to nodeg that represents

a failure of a path mPl o are land O for =1 andx = 0, respectively. This assignment indicates our
total confidence in the ocurrence ©of To represent the fact that the symptom may be spurious, we should
use assignment;, (z) = )\pi («) for all suchs;. In our solution, instead of modifying the assignment of

As;» We use aP-node that represents all external causes;ofThanks to this choice, every time, ( )

changes, we need to modify just one prior probability in the FPM of; idtead of multiple values of
As;- The assignement of the prior probability to tRenode that is connected to symptom negen the
FPM of DM; should be such that the behavior ©f which is expressed by the values bfmessages it
sends to its children, is the same as jf(x) was set toxpli’k (x). This objective can be achieved by setting

not proxy(P; ) as follows.
Api, (0)
Api, (1)

Function fault_bel( f;) estimates the probability that faiflf exists inD; given evidence observed . It
may be calculated using messages received by the belief network node that regteaghtsFPM of DM.
Let \f, («) indicate a product of messagesent to nodef; by its children. The probability thaf, occured
or did not occur given the observed evidence may be expressedad)p(f;) anda, (0)(1 — p(fi)),
respectively, where: is a normalizing constant. Therefore, we calcufatdt_bel( f;.) as follows.

faultbel(f;) = aXy, (1)p(f;)

Function inferencés;) is identical to the like-named function in the centralized Algorithm 1, which was
presented in Section Il.

Function updatehypothesegpdates the state of fault localization to incorporate modified values of prior
failure probabilities associated wifh- andP-nodes in the FPMs of the NM and a DM, respectively. In the
context of iterative belief updating, this process involves recalculating messages by &P- or P-node
to its children, for everyP- or P-node whose prior failure probability has changed. For this purpose, the
message-updating equations used in fundtiderenceof the centralized algorithm are used [30].

Function selectbesthypothesesxecutes the fault selection phase of Algorithm 1.

Observe that the computational complexities of functioosproxy andfault belare(1). Functionin-
ferenceis O(n?), wheren is the number of network nodes. In the case of NM and; It is expressed as
O(IN?) andO(|D;|?), respectively. Since functionpdatehypothese@volves the calculation of mes-
sages for some belief network nodes, while funciifierenceperformes this calculation for all belief net-
work nodes, the computational complexitywgfdatehypothesess clearlyO( finference) = O(n?). Finally,
the computational complexity of functicselectbesthypothesess O(n*), wheren = |[N| orn = |D;| in
the case of NM or DM respectively.

After substituting the above refinements for the partial results derived in Section V-C, we conclude
that the computational cost incurred by NM in the symptom analysis phase and fault selection phase is
O(min(|So||NV 2, IN|?)) and O(|JN|4), respectively. Therefore, we can express the computational com-
plexity of fault localization performed by NM a8(|\V]°)).

Similarly, we can refine the computational cost of the symptom analysis phase and fault selection phase of
DM, to O(min(|So||D; |3, |D:l?)) andO(|D;|*). Thus, the computational complexity of fault localization
performed by DM is O(|D; ).

Note that both for NM and DM, we managed to maintain their original computational complexity limit of
O(n®), which allows us to maximize scalability gains resulting from the multi-domain approach.

notproxy(P; ) =

VII. M ULTI-DOMAIN INCREMENTAL HYPOTHESIS UPDATING

In this section, we introducalgorithm 3B, a multi-domain version of Algorithm 2, which constitutes
a refinement of the fault localization technique presented in Sections Ill-V. Similar to Algorithm 1, the
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refinement introduces definitions of functionst proxy, fault_bel, inference updatehypothesesandse-
lect besthypothesiswhich were left undefined in Section V.

In the context of the incremental technicuaction noLproxy(Pik) calculates the conditional probability
that faults represented byk in the FPM of NM did not occur, given the observed evidence. This probability
may be expressed as follows. L7t represent the current set of hypotheses produced by Rcall that
each hypothesis is a subset®fU P, whereP is the set of allP-nodes in the FPM of NM.

notproxy(Pi,) =1— > bi(h)
heH;|P} ,€h

Function fault_bel( /) estimates the probability that faylf exists inD; given evidence observed ;.
Itis caclulated by summing the belief metric associated with hypotheses that cfintain

faultbel(f) = > bj(h)

hEHj |fk>6h

Function inferencés;) is is identical with the like-named function in the centralized Algorithm 2, which
was presented in Section Il.

Function updatehypothesegpdates the state of fault localization to incorporate modified values of prior
failure probabilities associated wifh- andP-nodes in the FPMs of the NM and a DM, respectively. In the
context of the incremental technique, this function involves replacing the old value of the prior probability
of nodex with the new value of this probability, in the belief metric associated with each hypothdsid
containse. This is done by setting; (k) = bj(h)%(%). This replacement is done for every nadevhose
prior failure probability has changed.

Function selectbesthypotheseexecutes the fault selection phase of Algorithm 2.

Observe that functionsot proxy andfault_belinvolve searching through the set of hypotheses and sum-
ming up the belief metric of some of the hypotheses. These calculations can be done in advance, when
hypotheses are created in functioference which allows us to amortize the cost of calculatimgt_proxy
and fault_bel with the cost of running functiomference Thus, the computational complexities of both
functions areD(1). Functioninferenceis O(n?), wheren is the number of network nodes, i.€(|\|?)
and O(|D;|?) in the case of NM and DM, respectively. Functiopdatehypothesescans through,|
hypotheses and updates at mosgprobabilities each time it is invoked. Recall that;| = O(n). Thus
the computational complexity afpdatehypothesess O(|JA|?) andO(|D;|?) in the case of NM and DM,
respectively. Finally, the computational complexity of functssectbesthypotheses O(1).

After substituting the above refinements for the partial results derived in Section V-C, we conclude
that the computational cost incurred by NM in the symptom analysis phase and fault selection phase is
O(min(|So||N|?, N |*)) and O(JN3), respectively. Therefore, we can express the computational com-
plexity of fault localization performed by NM a8(|\[4).

Similarly, we can refine the computational cost of the symptom analysis phase and fault selection phase of
DM; to O(min(|So||D;|?, |D:|*)) andO(|D;|?). Thus, the computational complexity of fault localization
performed by DM is O(|D;[*).

Note that similar to the multi-domain version of Algorithm 1 we managed to maintain the computational
complexity bound of the centralized Algorithm 2 in its multi-domain version for both NM and DM.

VIIl. SIMULATION STUDY

In this section, we evaluate the performance of Algorithms 3A and 3B through simulation. Our purpose is
to assess the accuracy of both algorithms in a multi-domain communication network. The study uses sets of
fault localization scenarios in which faults and symptoms are randomly generated based on the conditional
probability distribution that describes non-deterministic causal relationships between faults and symptoms
in a real-life system. In the distribution, for every fayiland symptons, we setp(s|f) = 0 if the end-to-
end service whose failure is representedshiy not provided using the host-to-host service whose failure
is represented by. Otherwise0 < p(s|f) < 1. One may argue that a better method of evaluating the
algorithms is to simulate a network injecting faults in it in a controlled manner and allowing symptoms to be
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generated by the simulated system itself. Unfortunately, network simulators available today do not facilitate
creating such a study as they do not provide functionality that is needed to inject performance problems,
monitor system performance, or obtain configuration information necessary to build the fault propagation
model. The amount of effort necessary to provide this functionality makes it impractical for us to design
such a simulation. In addition, our approach relies on the existence of solutions to several problems that are
still a subject of an active research activity, e.g., building and updating an FPM or optimal probe placement.
When using a network simulator to create an experimental study, we first would have to solve these open
problems. Moreover, using synthetic tests rather than a network simulator, makes the study independent of
particular network configurations, routing protocols, and instrumentation mechanisms.

In this section, we first describe the design of the simulation experiments and then present and explain the
results of the study.

A. Simulation design

The simulation study presented in this section uses network topologies similar to those of the Internet.
The generation of random graphs resembling the topology of real-life networks has been a widely studied
research area[1], [2], [4], [9], [18], [26]. Out of several topology generators available, we choose one based
on Barabasi-Albert power-law model [4], because its implementation is available in public domain, and
because topologies built based on this model have been shown to be reasonably representative of the Internet
topology [8]. We use an implementation of the Barabasi-Albert model provided by BRITE generator [25],
which is capable of generating hierarchical network topologies: AS-level and router-level ones.

The simulation model of the study created two level hierarchical topologies D&igdn to denote the
number of domains and the number of routers in every domain, respectively. To investigate the impact of
network topology, we us& = 10 and N = 50, and we varyn from 5 to 75. Typically, we choose a
maximum domain size such that the fault localization time of a single scenario does not exceed 10s. Our
experiments ignore positive, lost, and spurious symptoms. Consequently, we assume that the observation of
the system state is accurate.

Using the topology generator we create a random network composad ddmains and: nodes in
each domain. We determine routes between any source and destination using the shortest-path policy for
intra-domain routes. We choose inter-domain routes such that the number of visited domains is minimized.
Then, we generate prior failure probabilities for inter-domain and intra-domain links, which are uniformly
distributed over the rand@.0001, 0.001]. For each intra-domain linkand pattp, we randomly choose the
probability thatp fails if [ fails from set{0.25,0.5,0.75}. For each inter-domain pafh we assume that
if any path segment or link involved in fails thenp fails as well. Consequently, in the FPM of the NM,
the conditional probabilities are all equal to 1. Furthermore, we randomly generate a subset of symptoms
observable in every domain to include 50% of all intra-domain paths. The observability ratio for inter-
domain paths is 2%. The observability ratio [39], [40] is a measure of the system instrumentation degree.
By using it, we recognize that only some failure conditions are monitored by the management systems. As
a result, a manager can see only a fraction of failures that exist in the system it manages.

Test scenarios are generated using the same conditional probability distribution that is used by the man-
agers in their FPMs. This technique of generating scenarios assumes that the fault propagation model
accurately represents relationships among faults and symptoms. However, from our previous studies, we
know that the fault localization techniques considered in this paper are accurate even if an FPM they are
executed on is approximate.

We distinguish three types of experiments: those involving only intra-domain link failures, those involving
only inter-domain link failures, and those involving both types of failures. In every study, two performance
metrics are calculated: detection rate, DR, defined as a percentage of faults occurring in the network which
are isolated by the technique, and false positive rate, FPR, defined as a percentage of faults reported by the
technique that are not occurring in the network [41], [39].

B. Experimental results

In Figures 9(a)-9(b), we show the accuracy of Algorithm 3A applied to fault localization in a ten-domain
network, in which each domain is composed of up to 70 nodes. Thus the entire network consists of up to
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700 nodes. Figures 10(a)-10(b) present the results of the same experiment executed using Algorithm 3B.
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Fig. 9. Accuracy of Algorithm 3A in a ten-domain network.
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Fig. 10. Accuracy of Algorithm 3B in a ten-domain network.

The figures compare the accuracy achievable in scenarios involving only inter-domain, only intra-domain,
and both types of faults. Clearly, the mixed-failure scenarios are the most difficult to diagnose since they
always involve at least two concurrent faults and the interpretation of their symptoms, which may overlap,
leads to ambiguity. This difficulty results in a lower fault-localization accuracy of mixed-fault scenarios
compared to that of other types of scenarios, which is conspicuous in networks of small size. Scenarios
involving only inter-domain symptoms are the easiest to solve as the number of suspect faults is usually
small compared to the amount of evidence available even with the very small observability ratio we have
chosen. In addition, in our two-level set-up, the NM does not receive any ambiguous information (from a
higher-level manager). Henceforth, it knows that all symptoms have to be explained in its domain. Intra-
domain scenarios are similar to mixed scenarios, because both inter-and intra-domain symptoms may be
generated as a result of intra-domain faults. Thus, in intra-domain scenarios, domain managers have to deal
with the same level of ambiguity as is the case with mixed-fault scenarios.

To understand the difference among these three types of experiments it is useful to compare the numbers
of simultaneous faults and symptoms generated in each experiment, which are presented in Figures 11(a)-
11(b). These figures show that in inter-domain scenarios, the number of faults existing in the network is
small (in most experiments only one fault was present), and does not change as the domain size increases,
while the number of symptoms observed grows fast with the growing domain size. When the number of
observed symptoms is big and the number of faults to isolate is small, fault localization may be performed
with very high accuracy. Naturally, a big number of symptoms to diagnose increases the fault localization
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time. In intra-domain- and mixed-fault scenarios, increasing the domain size also increases the frequency of
multi-fault scenarios.
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Fig. 11. Average number of faults and symptoms generated in experiment scenarios for a ten-domain network

Figures 12(a)-12(b) compare the fault localization times of Algorithms 3A and 3B. The fault localization
time is defined as the time needed to analyze all symptoms received in the considered fault localization sce-
nario and to propose the most probable hypothesis. It is measured under the assumption that each symptom
is available to the fault localization process as soon as the analysis of the previous symptom has completed.
Thus, this measurement ignores the impact of symptom latencies. As expected, Algorithm 3B offers a much
better performance than Algorithm 3A, which is due to its lower computational complexity. The difference
in performance among mixed-, intra-domain-, and inter-domain-fault scenarios results from their different
complexities expressed by the number of simultaneous faults and the number of received symptoms.
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Fig. 12. Fault localization time in a network composed of ten domains.

We repeat the same set of experiments using networks composed of 50 domains. The results of the study
are presented in Figures 13(a)-13(b) for Algorithm 3A and in Figures 14(a)-14(b) for Algorithm 3B, respec-
tively. Note that, in the case of Algorithm 3B, we now work with networks composed of as many as 3000
nodes. For completeness, we also include Figures 15(a)-15(b), which show the average numbers of faults
and symptoms generated in the considered fault scenarios. Figures 16(a)-16(b) compare the fault localiza-
tion times of Algorithms 3A and 3B. The study performed on a fifty-domain network confirms the results
discussed previously. However, note that in a bigger network, the complexity of scenarios is much higher:
in a fifty-domain network, our fault localization techniques are required to accurately diagnose scenarios
that involve more than 6 simultaneous faults (Figure 15(a)) and more than 2500 symptoms (Figure 15(b)).

In Figures 17(a)-17(c) we present the comparison of detection rate, false positive rate, and fault localiza-
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Fig. 14. Accuracy of Algorithm 3B in a fifty-domain network.

tion time for centralized and multi-domain versions of Algorithms 1 and 2. Due to the excesive computation
time of centralized algorithms we had to significantly limit the scope of the experiments, which were ex-
ecuted in a five-domain network in which the domain size varied between 5 and 15. The observability
ratios of intra-domain and inter-domain symptoms were 0.5 and 0.1, respectively. The figures show that dis-
tributed fault localization performed according to the framework defined by Algorithm 3 may be as accurate
as centralized fault localization, while offering much better scalability. In fact, in smaller networks, multi-
domain fault localization may be even more accurate as centralized one, because it takes advantage of the
hierarchical composition of network paths. Multi-domain fault localization proves much more efficient than
centralized one, decreasing the fault localization time by a order of magnitude. (Since the algorithms are
implemented in JAVA, some of the computational cost incurred by centralized algorithms is due to the large
size of the fault propagation model, which reduces the amount of memory available to the fault localization
process thereby increasing garbage-collection overhead.) Further improvement of the algorithms’ efficiency
is possible by executing managers in parallel.

IX. DISCUSSION

In this section, we discuss practical aspects of Algorithm 3 that are important to its applicability in real-
life systems. These issues concern the creation of the fault propagation model, the validity of the distributed
technique’s assumptions, multi-layer fault localization, and the incremental property of the distributed ver-
sion of Algorithm 2.
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Fig. 15. Average number of faults and symptoms generated in experiment scenarios for a fifty-domain network
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Fig. 16. Fault localization time in a network composed of fifty domains.

A. Obtaining the fault propagation model

Clearly, the biggest challenge in applying the fault localization technique proposed in this paper to real-
life problems is obtaining the probabilistic fault propagation model. To build an FPM for end-to-end service
failure diagnosis a knowledge of network logical topology and communication protocols is needed. The
problem of building FPMs is beyond the scope of this paper. However, in this section we would like to
emphasize that although it is not an easy task, building such models is possible with the information that is
typically available through widely-deployed management protocols.

The network topology may be obtained automatically through various network topology detection mecha-
nisms, which are built into some commercially available network management systems [44]. Other manage-
ment systems implement proprietary techniques that allow the discovery of hardware configuration changes
such as addition or removal of a network adapter or host [14]. The IETF has recently recognized a need
for a standardized means of representing the physical network connections by propogthydival
Topology MIB [5], which can be used to obtain topology information if it is implemented in the man-
aged domain.

Obtaining dynamic dependencies is significantly more difficult since the dependency model has to be
continuously updated while the modeled system is running. In spite of that, many tools exist that facilitate
the process of model building. These tools are usually specific to particular network services or functions.
For example, all active TCP connections on a host may be retrieved usimgts$tatapplication [42]. A
current route between a host and any other host may be obtained using ptagramute[42].

Network management protocols such as SNMP [10] provide a means to determine dependencies estab-
lished using configuration or real-time routing protocols. For example, the management system may obtain
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Fig. 17. Comparison of centralized and multi-domain fault localization.

the topology, which was dynamically established in the data-link layer by the Spanning Tree Protocol [31]
using the data contained @otldBase Group ofBridge MIB[12]. Updates of the spanning tree may be
triggered bynewRoot andtopologyChange traps [12]. In the network layer of the Internet, current
routes may be calculated froipRoutingTable of TCP/IP MIB-II [24]. In source routing protocols

(e.g., Source-Directed Relay of the military protocol MIL-STD 188-220 [13] and Dynamic Source Rout-
ing [19] proposed for wireless mobile networks), the current route between two hosts is embedded in the
header of every transmitted packet. When BGP [33] is used as an inter-domain routing protocol, the NM
can use the SNMP protocol [11] to query the BGP MIB [45] on exterior gateways. The BGP MIB contains
all information that is needed by the NM to build its FPM, i.e., the list of exterior gateways (BGP peers [33])
and the information on interconnections among the gateways. Similarly, intra-domain routing information
can be obtained via the SNMP from the intra-domain routers. For example, the OSPF MIB [3] can be
gueried in a domain using the OSPF [28] as a routing protocol.

Other techniques of obtaining network topology have been also investigated. To monitor hierarchical
network topology, Novaes [29] uses IP multicast. Siamwalla et al. [34] propose several heuristics that
exploit SNMP, DNS, ping, and traceroute facilities to discover the network level topology of the Internet on
both intra-domain and backbone levels. Govindan et al. [15] infer the Internet map using hop-limited probes.
Reddy et al. [32] investigate a distributed topology discovery technique for the Internet. Breitbart et al. [7]
present an algorithm that obtains both network and data-link layer topology TERYP MIB-II [24] and
Bridge MIB[12]. The algorithm of Lowekamp et al. [23] discovers the topology of a large Ethernet network
allowing incomplete data iBridge MIBtables.

To build a probabilistic FPM, in addition to the information on the structure of dependencies in the con-
sidered system, we also need an assessment of confidence that a failure of an antecedent function or service
causes a failure of a dependent function or service. When such information is not available, the same value
may be assigned to all edges in the probabilistic FPM. As more information becomes available that allows
us to say that causal relationships between certain link and path failures are stronger than causal relation-
ships between other link and path failures, this knowledge can be used to modify the FPM by changing the
conditional probabilities accordingly. Thus, the probabilistic FPM does not require the precise knowledge of
the conditional probability distribution. In fact, discrete confidence levels can be used instead of continuous
probability values. In our previous work [39], [40], we have shown that, in a well instrumented network, as
few as three confidence levels allow fault localization to be almost as accurate as with the precise knowl-
edge of the conditional probability distribution. The value of the probabilistic fault localization technique
proposed in this paper is that it can improve the accuracy of fault localization, as compared to deterministic
techniques, by taking advantage of available information on non-deterministic causal relationships among
failure conditions.
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B. Hierarchical routing assumption

The are a number of real-life situations, where the assumptions introduced in Section Ill do not hold.
This concerns particularly the single ingress- and egress-gateway assumption, which implies single-path
routing. In reality, multiple paths may exist between a source and a destination. A router decides which of
available paths it should choose based on various criteria [27], which include, for example, the parameters
of a TCP connection to which a packet belongs (to ensure all packets in the same TCP session use the same
route), (2) the TOS field in an IP datagram (in OSPF [28] used to differentiate the provided service based
on an objective specified in the TOS fields), or ty@ionsfield of an IP datagram. The easiest way to
incorporate multiple routes between a source and a destination in the FPM is by including all links in these
routes as possible causes of an end-to-end disorder between the source and destination. Then, conditional
probabilities may be used to account for the frequency with which one route is used with respect to other
routes. Investigating more refined techniques of modeling multi-path routing is a future research problem.

C. Multi-level fault localization

In this paper, we presented a multi-domain fault localization solution that organizes domain and network
managers into a two-level hierarchy. This technique may be easily extended to a multi-level hierarchical
solution. In the extended technique, managers at intermediate levels perform functions of both a DM and
the NM and their FPMs contain features of FPMs of both a DM and the NM, i.e., they contaifPbatid
P-nodes. Combining these models and functionalities is rather straightforward. The only issue requiring an
explanation is the calculation of the prior failure probabilities assignéd-tmdes in an FPM of a DM that
is not a leaf-level manager. Recall from Section V that this probability is calculated by a DM using function
computeprior based on posterior fault probabilities representethint_bel. In a two-level hierarchy, each
fault considered by a DM in the process of calculataegnputeprior belongs to its managed domain (it
represents a failure of one of the domain’s host-to-host links), and therefore the valizest dfel can
be obtained easily. In a multi-level hierarchy, a DMat is not a leaf-level manager may need to obtain
fault bek(f;), wheref; represents a failure of a path segmept — n,,, that spans multiple sub-domains
of theD;. In this casef; may have no representation in the FPM of PMhus, to calculatéault_bel(f;)
exactly, DM would have to splitz,, — n,,, into path-segments and links,, = E', , E!!

il —hale
. | :
1 S ER BRI S, whereDy,, ..., Dy, are sub-domains ob; that are
1tk 1tk 1tk 1y'k 1tk m

traversed byi,, — n,,,. Then, DM would request DV, ..., DM, to estimate the failure probabilities of

* gl la * =l Ik * . . . .
segmentsy,, — E;, 12, — B2, ... 1, — np,, respectively, using functiocomputeprior. Thus,

assumings,, represents a path segment corresponding to doMgairfault_bel( f;) would be obtained using
the following formula:

la
- Ilhlk’

k k-1
faultbel(f;) = 1 — [ (1 — computeprior({s,})) [] (1 — faultbel(f : E[", — 1;71"))
n=1 n=1

It may be shown that, in general, such an exact approach would require the number of steps that is
exponential with the depth of the management hierarchy. A reasonable approach to avoiding this complexity
is to map every segment, into P,,, the closest-matchin@-node in the FPM of DN and use function
fault_bel(P,,) instead ofcomputeprior({s,,}). Note that forn = 2...k — 1, this mapping is exact because

the FPM of DM containsP-nodespP : IfT I - Eﬁ"“ = {sn}. Thus, the approximation concerns only the
first and last segments of path, = n,,..

e

D. Incremental algorithm

Recall from Section Il that one of the positive features of Algorithm 2 is its ability to formulate an expla-
nation hypothesis in an incremental manner. Thanks to this feature, the algorithm continuously provides a
system administrator with information about which faults are likely to exist in the system given symptoms
observed thus far. The distributed version of Algorithm 2, Algorithm 3B, is not incremental as it requires
model synchronization each time an explanation is to be proposed. In our future research, we would like
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to restore the incremental property in Algorithm 3B. In one approach, we could eliminate the model syn-
chronization from the fault selection phase altogether. This would make the algorithm incremental. Un-
fortunately, eliminating model synchronization from the fault selection phase slightly deteriorates the fault
localization accuracy. Thus, to maintain the high accuracy, a more intelligent approach to model synchro-
nization is needed that would update prior probabilities associatedRviind P-nodes on a continuous

basis during the symptom analysis phase without increasing its computational complexity. Once complete
model synchronization is incorporated in the fault selection phase, it will no longer be required in the fault
selection phase thereby allowing the algorithm to propose an explanation in an incremental manner.

X. CONCLUSION

The paper introduces a multi-domain fault localization approach to end-to-end service failure diagnosis
in hierarchically routed networks. This approach divides the computational effort and system knowledge
involved in end-to-end service-failure diagnosis among multiple, hierarchically organized managers. Each
manager is responsible for fault localization within the network domain it governs, and reports to a higher-
level manager that oversees and coordinates the fault-localization process of multiple domains. The paper
identifies two main difficulties of fault management in multi-domain networks: failure propagation among
domains and a lack of global information about the system structure and state. To address these challenges,
the paper first proposes an algorithmic framework for the design of probabilistic hierarchical multi-domain
fault localization techniques. It then introduces two refinements that expand on the centralized algorithms
introduced in our previous work: iterative belief updating [41] and incremental hypothesis updating [36].
The multi-domain approach is shown to provide high accuracy while increasing the admissible network size
by an order of magnitudé.
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