
1

Multi-domain diagnosis of end-to-end service
failures in hierarchically routed networks

Małgorzata Steinder
IBM T. J. Watson Research Center

19 Skyline Dr, Hawthorne, NY 10532
E-mail: steinder@us.ibm.com

Adarshpal S. Sethi
Computer and Information Sciences

University of Delaware, Newark, DE 19716
E-mail: sethi@cis.udel.edu

Abstract

Probabilistic inference was shown effective in non-deterministic diagnosis of end-to-end service fail-
ures. Since exact probabilistic diagnosis is known to be an NP-hard problem, approximate techniques were
investigated. They were shown efficient and accurate in isolating root causes of end-to-end disorder in
networks composed of tens of nodes but did not scale well to bigger networks. In addition, the require-
ment that a centralized manager posess a global knowledge of the system structure and state made the
techniques difficult to apply in real-life. This paper investigates an approach to improving the scalability
and feasibility of probabilistic diagnosis by exploiting the domain semantics of computer networks. The
proposed technique divides the computational effort and system knowledge among multiple, hierarchically
organized managers. Each manager performs fault localization in the domain it manages and requires only
the knowledge of its own domain. We show through simulation that the proposed approach increases the
effectiveness of probabilistic diagnosis and makes it feasible in networks of considerable size1.

I. I NTRODUCTION

End-to-end connectivity in a given protocol layer is frequently provided through a sequence of interme-
diate nodes such as bridges in the data-link layer or routers in the network layer. Communication problems
between a pair of these nodes, e.g., a malfunctioning interface, intermittent connectivity, etc., may disorder
one or more end-to-end paths provided using the failing host-to-host link. These end-to-end problems prop-
agate to higher system layers causing various application-level events, e.g., aborted transactions, session
timeouts, abnormal delays, etc. Therefore, it is important that host-to-host problems, both availability- and
performance-related ones, be identified quickly and accurately. Unfortunately, oftentimes host-to-host fail-
ures cannot be detected directly by monitoring host-to-host connectivity. This is due to the fact that certain
failure conditions cannot be monitored on a host-to-host basis either because there is no appropriate monitor-
ing mechanism or because of the associated overhead. Moreover, an end-to-end service user frequently does
not have the administrative authority allowing her to monitor host-to-host connectivity. In these situations,
host-to-host problems have to be identified by correlating indications of end-to-end disorder.

This paper adopts a service-oriented view of the network [16], in which end-to-end or host-to-host con-
nectivity between two nodes in a given protocol layer is considered a service provided by this layer to
higher layers. End-to-end service between nodesa andb is implemented using (i.e., depends on) a set of
host-to-host services between neighboring nodes on a path froma to b.

Diagnosis of end-to-end network service failures [37], [41] is a sub-task of fault localization [17], [22],
[46] that isolates host-to-host services responsible for availability or performance problems experienced
by end-to-end services. In a complete, multi-layer fault localization solution, end-to-end service failures
diagnosed by this sub-task may be reported by higher-layer fault localization mechanisms, which identify
them as causes of disorders observed in higher layers. Similarly, host-to-host service failures identified by

M. Steinder completed this work while with the Dept. of Computer and Information Sciences, University of Delaware
1Prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U. S. Army

Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.
S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
thereon.

2

the process of end-to-end service failure diagnosis, may be further analyzed by lower-layer fault localization
techniques to perform a more detailed fault determination [35]. These higher- and lower-layer techniques
are not discussed in this paper.

In the previous work [41], [36], we investigated an application of probabilistic reasoning to end-to-end
service failure diagnosis. The proposed approaches rely on a probabilisticfault propagation model(FPM),
which represents causal relationships between end-to-end and host-to-host service failures. The model has
a form of a bipartite causality graph with host-to-host and end-to-end service problems at the tails and at
the heads of the edges, respectively. Given the FPM, the fault localization problem is to find a set of host-
to-host failures (faults) that provide the most probable explanation (MPE) of observed end-to-end service
failures (symptoms). To solve this problem, in [41], an adaptation of Pearl’s belief updating [30] was used,
and in [36], a novel algorithm based on incremental hypothesis updating was proposed. The algorithms
were shown effective in the diagnosis of end-to-end service failures in networks composed of tens of nodes.
In addition, they proved to be resilient against lost and spurious symptoms, and to be insensitive to the
inaccuracies of the probabilistic FPM [39], [40].

Today’s networks are frequently composed of multiple domains, each with a different organization and
management policy. For example, the Internet is built of tens of thousands of autonomous systems (AS) [43].
An exterior gateway protocol between ASs, e.g., BGP [33], ensures that traffic routed from one AS to an-
other adheres to policies set-up by AS owners, which may concern privacy, security, or business objectives.
A network domain may be further divided into smaller sub-domains. In the Internet, the OSPF protocol [28]
divides an AS into areas, which are connected via a backbone. Networks that do not exhibit an explicit
domain-semantics in their structure may be also divided into domains for management purposes. For ex-
ample, a tree-shaped network topology may be divided into multiple sub-trees that are managed by separate
management entities. The algorithms proposed in [36], [41], [39], [40] are difficult to apply to such big
multi-domain topologies. They exhibit shortcomings typical of any centralized management scheme, which
include:

• Infeasibility – When subsystems are in different administrative domains, obtaining management infor-
mation, such as topology, routing, or internal state, may be impossible outside of a domain.

• Inefficiency – In large systems, the FPM’s size makes fault localization prohibitively time-consuming.
• Inflexibility – The same management strategy is applied to the entire system even though particular

subsystems may have different requirements.
• Single point of failure
• Vulnerability to security breaches resulting from maintaining management information of the entire

system in a central location
This paper introduces a multi-domain fault-localization technique, which increases the admissible net-

work size by an order of magnitude by taking advantage of the domain semantics of communication systems.
The proposed technique divides the computational effort and system knowledge involved in end-to-end
service-failure diagnosis among multiple hierarchically organized managers. Each manager is responsible
for fault localization within the network domain it governs, and reports to a higher-level manager that over-
sees and coordinates the fault-localization process of multiple domains. With this organization, the technique
is suitable for distributed diagnosis of end-to-end service failures in hierarchically routed networks.

Distributed fault localization has been recognized as an important objective of fault management sys-
tems [6], [21], [46], but few such distributed techniques have actually been proposed. A theoretical foun-
dation for the design of such systems has been laid by Bouloutas et al. [6] and Katzela et al. [20], who
investigate different schemes of non-centralized fault localization: decentralized and distributed schemes.
In a distributed approach, a system is divided into domains managed by separate managers that have to
cooperate to reach a solution. All managers have a partial knowledge of the system, both of its structure
and current state, and are organized according to various paradigms: either form a hierarchy (decentralized
scheme) or cooperate on a peer-to-peer basis (distributed scheme). The technique proposed in this paper
has properties of both these schemes. Similar to the decentralized scheme [20], we envision a hierarchy of
managers with a central manager making the final fault determination. Unlike the decentralized scheme,
however, higher-level managers not only arbitrate among solutions proposed by lower-level managers, but

3

also participate in the actual fault determination by proposing their own hypotheses composed of network
faults that cannot be identified by the lower-level managers.

The choice of the hierarchical paradigm is natural in fault management; even if multiple managers co-
operate as peers to reach a solution, a central trusted entity is needed to verify and present the solution
to a system administrator. In addition, the hierarchical paradigm is well suited to hierarchically organized
networks, such as the Internet.

While distributed fault management alleviates the problems associated with the centralized approach, it
is significantly more difficult to achieve due to the following reasons.

• Failure propagation among domains—Symptoms of a fault which occurred in one domain may be
observed in other domains. In fact, it is possible that a fault is not at all detected in the domain in which
it occurred.

• A lack of global information about the system structure and state—A symptom diagnosis is complicated
because not all its possible causes are visible in a domain in which the symptom was observed. A
symptom diagnosis is also hampered by the lack of information about symptoms observed or faults
identified in other domains; in the absence of sufficient internal observations, a domain manager may
be unable to diagnose a problem, which could be possible should the information from other domains
be available to the manager.

• The necessity to coordinate the operation of multiple managers—In a distributed solution, in addition
to analyzing observed symptoms, a manager has to cooperate with other managers to reach the final
solution. It is therefore necessary to define a protocol for communication among managers.

Our goal in this paper is to find a solution to end-to-end service failure diagnosis in a multi-domain
network while addressing the problems of failure propagation among domains and the lack of global knowl-
edge. While recognizing the fact that various probabilistic reasoning mechanisms can be used by managers,
we aim at presenting a generic technique of decomposing the problem of end-to-end service failure diag-
nosis into multiple smaller subproblems that complies with the domain semantics of the communication
systems and may be specialized for a variety of such reasoning mechanisms. We also aim at showing two
specializations of the generic technique tailored toward the iterative belief updating [41] and incremental
hypothesis updating [36] as probabilistic reasoning mechanisms. Our solution does not define a commu-
nication protocol used in the distributed approach and therefore does not constitute a complete distributed
technique. While we present what information has to be exchanged among managers, we do not investigate
types and structures of the exchanged PDUs, nor do we decide on a communication mechanism that should
be used by the managers or define specific actions taken by a manager when it receives a particular PDU.

The paper is structured as follows. In Section II, the centralized probabilistic algorithms, which were
introduced in [36], [41] are presented. In Section III, an outline of a multi-domain fault localization tech-
nique for hierarchically routed networks is proposed. A distributed fault propagation model is proposed in
Section IV, and a multi-domain fault localization algorithm is presented in Section V. In Section VI a multi-
domain algorithm based on event-driven belief updating [41] is introduced. In Section VII a multi-domain
algorithm derived from incremental hypothesis updating [36] is proposed. Section VIII presents results of
the simulation study conducted to verify the effectiveness of the proposed multi-domain techniques.

II. PROBABILISTIC DIAGNOSIS OF END-TO-END SERVICE FAILURES

When connectivity between nodesa andb in a given network layer is achieved through a sequence of
intermediate nodes, we say that the service of end-to-end communication between hostsa andb provided
by this layer to higher layers is implemented in terms of multiple services of host-to-host communication
between subsequent hops on the path from nodea to nodeb. A failure of a host-to-host service, such as
excessive delay, high packet loss rate, erroneous packet transmission, or total loss of connectivity, propagates
to an end-to-end service implemented using the failing host-to-host service. How a specific failure of a host-
to-host service affects a dependent end-to-end service is decided by the communication protocol used in the
given layer. For example, when the protocol implements an error detection mechanism, erroneous output
produced by a host-to-host service results in data loss in a dependent end-to-end service. When the protocol

4

does not implement an error detection mechanism, erroneous output produced by a host-to-host service does
not affect data loss rate of a dependent end-to-end service. Instead, erroneous output will be observed.

The problem of end-to-end service failure diagnosis is to identify the set of host-to-host service failures
that are the most probable causes of the observed end-to-end disorder based on the information on causal re-
lationships between host-to-host and end-to-end service failures provided in the form of a fault propagation
model (FPM). The FPM for end-to-end service failure diagnosis is a bipartite causality graph in which par-
entless nodes (calledlink nodes) represent host-to-host service failures (faults) and childless nodes (called
path nodes) represent end-to-end service failures (symptoms). Multiplelink or path nodes may exist for
every host-to-host or end-to-end service that correspond to different types of failures. Since causal relation-
ships between host-to-host and end-to-end service failures are difficult to determine due to their dynamic and
unpredictable nature, the FPM is a probabilistic one, in which eachlink node is labeled with the probability
of the corresponding fault’s independent occurrence, and causal edges betweenlink nodes andpathnodes
are weighted with the probability of the causal implication between corresponding faults and symptoms
(Figures 1(a) and 1(b)).

1

2

3

4

5

(a) Network

31: ↔ f

21:
*
↔ s 31:

*
↔ s 41:

*
↔ s 51:

*
↔s 32:

*
↔s 42:

*
↔ s 52:

*
↔ s 43:

*
↔ s 53:

*
↔ s 54:

*
↔ s

51: ↔ f 32: ↔ f 42: ↔f 43: ↔ f 54: ↔ f

)31:(↔ fp

)21:21:(
*

↔↔ f sp

(b) Fault propagation model

Fig. 1. The construction of an FPM for an example network. The FPM models only one failure type per path or link. It assumes
that all routes are bidirectional and that end-to-end routes for paths1

∗↔ 2, 1
∗↔ 4, 2

∗↔ 5, and3
∗↔ 5 are1↔ 3↔ 2, 1↔ 5↔ 4,

2↔ 4↔ 5, and3↔ 4↔ 5, respectively.

In this paper, we denote byS andF the set of all possible end-to-end service failures (symptoms) and
the set of all possible host-to-host service failures (faults), respectively. The set of all observed symptoms is
denoted bySO. In the process of fault localization, each observed symptom is mapped into the correspond-
ing pathnode of the FPM. End-to-end service diagnosis correlates all observed symptoms to isolate one or
more responsible faults, i.e.,link failures.

In our previous work, two approaches to solving this problem have been proposed. The first technique
utilizes Pearl’s belief updating [30] for polytrees as an approximation scheme in belief networks with undi-
rected loops and adapts it to calculating the most probable explanation (MPE) of observed symptoms [41],
[39]. The second approach obtains the MPE by incrementally updating a set of alternative explanation hy-
pothesis. Hence, the technique is calledincremental hypothesis updating[36], [40]. In this section, we
present a summary of these two techniques.

A. Fault localization through iterative belief updating

The FPM for end-to-end service failure diagnosis can be interpreted as a belief network [30], in which
every node represents a binary valued random variable. Symptom observation is represented by assigning
1 to the corresponding belief network node and constitutes a part ofevidence. In this context, the fault
localization problem is to find the most probable assignment oflink nodes given the observed evidence.

Iterative belief updating proposed by Pearl [30] for singly-connected belief networks utilizes a message
passing schema in which the belief network nodes exchangeλ andπ messages that encode various condi-
tional probabilities [30]. Belief network nodeX receives messagesλ andπ from its children and parents,
respectively. Based on these messages it calculates new messagesλ andπ that it sends to its parents and chil-
dren, respectively. Moreover, nodeX calculates functionbel : {0, 1} → [0, 1], wherebel(x) (x ∈ {0, 1})
represents the probability thatX = x given the observed evidence. The belief updating algorithm in poly-
trees starts from an evidence node and propagates the changed belief along the graph edges by computingλ
andπ messages. In the application to belief networks with undirected loops, several such propagations are
performed to enforce the algorithm’s convergence.

5

In the application of iterative belief updating to fault localization (Algorithm 1), one traversal of the entire
belief network is performed for every observed symptom. The traversal starts from the belief network node
that represents the observed symptom. The network nodes are visited in a breadth-first order while ensuring
that no node is visited more than once. The event-driven analysis of all observed symptoms produces,
for every fault, the probability of its occurrence given the observed evidence. Based on this information
we approximately calculate the MPE using the following procedure. First, we choose a fault represented
by a random variable with the highest posterior probability of being equal to 1, where the assignment of
1 indicates the fault’s presence. Then we place the chosen fault in the MPE hypothesis, assign 1 to the
corresponding random variable, and perform one iteration of belief updating starting from this variable’s
node. This step is repeated until the following conditions hold: (1) the posterior distribution contains faults
whose probability is greater than 0.5, and (2) unexplained symptoms remain inSO.

The computational complexity of the algorithm is bound byO(|SO|2|F|) [41]. In particular, in the ap-
plication to the problem of end-to-end service failure diagnosis, it is bound byO(n5), wheren denotes the
number of intermediate network nodes such as routers or bridges.

Algorithm 1: MPE through iterative belief updating

FUNCTION inference(si):
let o be the breadth-first order starting from nodesi

FOR EACHnodex such thatx is not an unobserved path node, along orderingo DO

computeλ andπ messages for all parents and children ofx, respectively
DONE

END

Initialization :
set allλs to 1

Symptom analysis phase:
FOR EACHobserved symptomsi DO inference(si) DONE

computebel(x) for every nodex, x ∈ {0, 1}
Fault selection phase:

WHILE ∃ link nodefj for whichbel(1) > 0.5 andSO 6= ∅ DO

takefj with the greatestbel(1) and set it to 1
inference(fj)
remove allsi such thatp(si|fj) > 0 fromSO

computebel for every nodefi

END

B. Fault localization through incremental hypothesis updating

Incremental hypothesis updating[36] (IHU) creates a set of most likely hypotheses and makes all of them
available to a system administrator on a continuous basis. Each hypothesis is a subset ofF that explains
all symptoms inSO. We say that hypothesishj ⊆ F explains symptomsi ∈ SO if it contains at least one
fault that explainssi. After theith symptom analysis, the hypotheses are ranked using belief metricbi. The
algorithm proceeds in an event-driven and incremental fashion. The execution triggered by theith symptom,
si, creates a set of hypotheses,Hi, each explaining symptomss1 throughsi. SetHi is created by updating
Hi−1 with an explanation of symptomsi. We defineHsi as a set{fk ∈ F} such thatfk may causesi, i.e.,
the FPM contains a directed edge fromfk to si. Using the notation from [22],Hsi is the domain of symptom
si.

After theith symptom is processed, belief metricbi represents the probability that (1) all faults belonging
to hj have occurred, and (2)hj explains every observed symptomsk ∈ SO,i = {s1, . . . , si}. Formally,
bi(hj) is defined as follows:

bi(hj) =
(∏

fk∈hj

p(fk)
) ∏

sl∈SO,i

(
1−

∏
fk∈hj

(1− p(sl|fk)
)

(1)

6

To incorporate an explanation of symptomsi into the set of fault hypotheses, in theith iteration of the
algorithm, we analyze eachhj ∈ Hi−1. If hj is able to explain symptomsi, we puthj intoHi. Otherwise,
hj has to be extended by adding to it a fault fromHsi . To avoid a very fast growth in the size ofHi, the
following heuristic is used. Faultfl ∈ Hsi may be added tohj ∈ Hi−1 only if bi(hj ∪ {fl}) is bigger than
µ(fl), the maximumbi of a hypothesis inHi−1 that containsfl and explainssi. While updating the set of
hypothesis,bi(hj) is approximated iteratively based onbi−1(hj) using the following equations:

1) If hj ∈ Hi−1 andhj explainssi

bi(hj) = bi−1(hj)
(
1−

∏
fl∈hj∩Hsi

(1− p(si|fl)
)

(2)

2) Otherwise, iffl explainssi

bi(hj∪{fl}) = bi−1(hj) p(fl) p(si|fl) (3)
The upper bound on the worst case computational complexity of the resultant algorithm isO(|SO|k|F|) [36],
wherek is the maximum size of the set of hypotheses andk isO(|F|) (we usek = 2|F|). When|Hi| = k,
a new hypothesis may be added toHi only after a hypothesis with the smallestbi() is removed. In the
application to end-to-end service failure diagnosis in ann-node network, the worst case computational
complexity of Algorithm 2 isO(n4).

Algorithm 2: Incremental hypothesis updating

FUNCTION inference(si)
LET Hi = ∅
FOR EACHfl ∈ F LET µ(Fl) = 0 DONE

FOR EACHhj ∈ Hi−1 DO

FOR EACHfl ∈ hj such thatfl ∈ HSi DO µ(fl) = max(µ(Fl), bi(hj)) DONE

addhj toHi

DONE

FOR EACHhj ∈ Hi−1 −Hi DO

FOR EACHfl ∈ F ∩HSi such thatµ(fl) < bi(hj ∪ {fl}) DO

addhj∪{fl} toHi

DONE

DONE

END

Initialization:
letH0 = {∅} andb0(∅) = 1

Symptom analysis phase:
FOR EACHobserved symptomsi DO inference(si) DONE

Fault selection phase:
choosehj ∈ H|So| such thatb|So|(hj) is maximum

C. Comparison of techniques

In our previous work [36], [41], Algorithms 1 and 2 were evaluated through simulation in their application
to the problem of end-to-end service failure diagnosis. They both proved almost optimally accurate when
applied to a well instrumented network [36], [41]. However, Algorithm 2 proved much more efficient
allowing the isolation of up to 4 simultaneous faults in a 100-node network in less than 10 seconds. Using a
10-second fault-localization time as an admissibility criterion, the admissible network size for Algorithm 1,
in a similar scenario, is 35. In addition, while both algorithms analyze symptoms in an event-driven manner,
Algorithm 2 is also incremental at any time offering a complete solution to the symptoms observed thus far.
Algorithm 1 requires an additional computation to form an MPE and therefore it can propose a solution,
without increasing the complexity bound, only at the end of the fault localization process. Moreover, while
Algorithm 1 proposes a single solution, Algorithm 2 makes many solutions available by which it facilitates

7

an easy hypothesis replacement in case the most probable explanation turns out to be incorrect. On the
other hand, Algorithm 1 applies to FPMs of arbitrary shape (and therefore may be applied to almost all fault
localization problems), while Algorithm 2 is suitable for bipartite FPMs only.

Both algorithms can be easily enhanced to be resilient against lost and spurious symptoms. Such ex-
tensions were proposed in [39] and [40] for Algorithms 1 and 2, respectively. In addition, they were both
shown resilient to the inaccuracies of the probabilistic FPM. In Table I, we summarize and compare the most
important features of Algorithms 1 and 2.

TABLE I
SUMMARY OF THE MOST IMPORTANT FEATURES OFALGORITHMS 1 AND 2

Algorithm 1 Algorithm 2
Computational complexity in end-to-end
service failure diagnosis O(n5) O(n4)
Admissible network size 35 100
Fault propagation model arbitrary bipartite only
Isolates multiple simultaneous faults YES YES
Resilient to observation noise YES YES
Does not require exact probabilistic model YES YES
Event-driven YES YES
Incremental NO YES
Multiple alternative solutions NO YES

III. M ULTI -DOMAIN APPROACH TO END-TO-END SERVICE FAILURE DIAGNOSIS

In this section, we introduce a multi-domain approach to probabilistic diagnosis of end-to-end service
failures in hierarchically organized networks. (The technique presented in this paper is a continuation of the
initial study on multi-domain diagnosis presented in [38] and is free from accuracy and performance prob-
lems thereof.) The approach takes advantage of the domain semantics of real-life communication systems.
The management domains considered by the technique correspond to administrative or routing network do-
mains. We adopt the hierarchical organization of the management system, in which network domainsDi are
managed by separate managers DMi. If Di has sub-domains, the managers of these sub-domains report to
DMi. Thus, the management hierarchy established by domain managers (DMs) is isomorphic to the domain
relationship graph.

The multi-domain fault localization algorithm relies on the cooperation among DMs. Symptoms are
typically observed by DMs at the lowest-level of the management hierarchy, as they are usually reported by
either source or destination node of a failed end-to-end path. A DM begins the diagnosis of an end-to-end
path failure only if all of nodes of the path are located in its domain. Otherwise, the corresponding symptom
is delegated to the higher-level manager. While analyzing the failure of an end-to-end path that was reported
to it by a DM, the higher-level manager coordinates the actions of DMs that manage domains traversed by
the failed path. In particular, the higher-level manager delegates some tasks involved in the diagnosis of the
path failure to DMs of domains traversed by the failed path.

Although the technique proposed in this paper may be applied in networks with multiple levels of the
hierarchy, for simplicity, we focus on a two-level architecture. Consequently, we useN andDi to denote
the entire network and its sub-domain, respectively. At the root of the management hierarchy we position a
network manager NM which oversees and coordinates the operation of domain managers DMi.

We introduce the following notation.

nk → nl A directed link from nodenk to nodenl, wherenk andnl are node identifiers
that are unique network-wide, e.g., IP addresses

np1

∗→ npm A directed, possibly multi-hop path from nodenp1 to nodenpm consisting of
links np1 → np2 , . . ., npm−1 → npm .

8

s : nk
∗→ nl A symptom indicating a failure of pathnk

∗→ nl

f : nk → nl A fault associated with linknk → nl

i
∗→ j The set of all paths that begin in domainDi and end in domainDj , i.e.,i

∗→ j =
{nk

∗→ nl | nk ∈ Di andnl ∈ Dj}, wherei andj are unique domain identifiers,
e.g., IP subnet masks.

s : i
∗→ j A symptom associated with the set of pathsi

∗→ j. We say that symptoms : i
∗→

j occurred when at least ones : nk
∗→ nl occurred such thatnk ∈ Di andnl ∈

Dj .
d(nk) A function mapping a node identifier into an identifier of a domain to which the

node belongs. In IP networks, functiond(nk) is implemented using an IP address
mask.

For an end-to-end pathnp1

∗→ npm consisting of linksnp1 → np2 , . . ., npm−1 → npm we define the
following concepts.

Definition 1: Pathnp1

∗→ npm traversesDi iff ∃npj |npj ∈ Di. Pathnp1

∗→ npm is anintra-domain path

in Di if ∀npj |npj ∈ Di. Pathnp1

∗→ npm that traversesDi but is not an intra-domain path inDi is an
inter-domain pathwith respect toDi.

np1
npn=E

l
i,j

npm

Ili,j→Eli,j*

np1→ npm
*

npk=I
l
i,j

Di Dj
D

Fig. 2. Definition of a path segment, and ingress and egress gateways.

Definition 2: Let pathnp1

∗→ npm be an inter-domain path with respect toDl. LetDi andDj be domains
such thatnp1 ∈ Di andnpm ∈ Dj . Nodenpk

such that1 < k ≤ m, npk
∈ Dl, andnpk−1

/∈ Dl is aningress
gatewayfromDi toDj in Dl and is denoted byIli,j . Similarly, nodenpn such that1 ≤ n < m, npn ∈ Dl,
andnpn+1 /∈ Dl is anegress gatewayfromDi toDj in Dl and is denoted byEl

i,j . (Figure 2). When routes

are bidirectional, for anyi, j, andl, Ili,j = El
j,i = Gl

i,j andIlj,i = El
i,j = Gl

j,i.

Definition 3: Let pathnp1

∗→ npm such thatnp1 ∈ Di andnpm ∈ Dj be an inter-domain path with respect
toDl. PathIli,j

∗→ El
i,j is called anintra-Dl segmentof pathnp1

∗→ npm (Figure 2).
We make the following simplifying assumptions, which are usually valid in the case of hierarchically

routed networks.
1) Management domains are either disjoint or all-inclusive, i.e., for anyDi andDj , eitherDi ∩ Dj = ∅

or eitherDi = Dj .
2) No path enters the same domain more than once, i.e., for any pathnp1

∗→ npm consisting of links
np1 → np2 , . . ., npm−1 → npm , if d(npi) 6= d(npi+1) then for all j, such thatm > j > i + 1,
d(npj) 6= d(npi).

3) All end-to-end paths that begin in domainDi, end in domainDj , and traverse domainDl enterDl

through the same node, i.e., ifnp1

∗→ npm andnq1

∗→ nqn are two paths that traverse linksnp1 →
np2 , . . ., npm−1 → npm andnq1 → nq2 , . . ., n′qn−1

→ n′qn
, respectively, such thatnp1 , nq1 ∈ Di,

npm , nqn ∈ Dj , and both paths traverse domainDl, then fornpt andnqs such thatnpt−1 , nqs−1 /∈ Dl

andnpt , nqs ∈ Dl, npt = nqs = Ili,j . In addition,np1

∗→ npm andnq1

∗→ nqn leaveDi through the
same node, i.e., fornpt andnqs such thatnpt , nqs ∈ Dl andnpt+1 , nqs+1 /∈ Dl, npt = nqs = El

i,j .
The solution proposed in this paper assumes that every DM has the minimum knowledge necessary for

9

fault diagnosis, i.e., it is able to obtain topology and routing information only in the domain it directly
manages. Thus, DMi is aware of linknk → nl if and only if bothnk andnl belong toDi, whereas NM
is aware of linknk → nl if and only if nk → nl is a link betweenDi andDj , and nodesnk andnl are
egress and ingress gateways inDi andDj , respectively. Consequently, NM is able to transform any path
np1

∗→ npm that traverses domainsDl1 , . . ., Dlk into a sequence of intra-domain path segments and links

np1

∗→ El1
l1,lk

, El1
l1,lk

→ Il2l1,lk
, Il2l1,lk

∗→ El2
l1,lk

, . . ., Elk−1

l1,lk
→ Ilkl1,lk

, Ilkl1,lk

∗→ npm (Figure 3). Moreover, DMi

is able to obtain a complete route for each end-to-end pathnk
∗→ nl such thatd(nk) = d(nl) = i, but

it cannot obtain the topology and routing information for any parts of the network located outside ofDi.
Consequently, DMi is unable to determine either a complete route or a path-segment sequence for any path
that is inter-domain with respect toDi.

Dl1 Dl2 Dlk-1 Dlk

np1
∗
 E l1, lk

l1

E l1, lk
l1 I l1, lk

l2 E l1, lk
l2 I l1, lk

l k−1 I l1, lk
lkE l1, lk

l k−1np1np1 npm

I l1, lk
l2
∗
 E l1, lk

l2 I l1, lk
lk−1
∗
 E l1, lk

lk−1 I l1, lk
lk−1
∗
 npm

np1
∗
 npm

Fig. 3. Transformation of an end-to-end path into a sequence of inter-domain links and intra-domain path segments.

This property of the proposed solution affects the way a FPM for multi-domain fault diagnosis and a fault
localization algorithm are designed, which are introduced in Sections IV and V, respectively.

IV. D ISTRIBUTED FAULT PROPAGATION MODEL

Recall from Section II that a fault propagation model (FPM) for end-to-end service-failure diagnosis is
a bipartite directed graph with host-to-host and end-to-end service failures at the tails and at the heads of
the graph edges, respectively. In the multi-domain solution, the fault propagation model (FPM) of the entire
network is distributed among DMs. Each manager maintains a part of the distributed FPM that represents the
manager’s knowledge of the system structure. An FPM built by DMi is a bipartite causality graph with end-
to-end and host-to-host service failures at the heads and at the tails of the edges, respectively, similar to the
model described in Section II. However, in the multi-domain approach, the FPM of DMi includes failures of
only these end-to-end paths and host-to-host links that are entirely located inDi. Similarly, the FPM of NM
includes failures of links that join different domains ofN . Failures of links that are completely contained in
domains ofN but which may affect end-to-end paths that span multiple domains are not explicitly included
in the FPM of NM but are represented in it by proxy fault nodes, calledP-nodes. Similarly, failures located
outsideDi that may result in an observation of a symptom corresponding to an end-to-end path located in
Di are represented in the FPM of DMi by proxy fault nodes, called̃P-nodes. Thus, the FPM built by DMi
has the same structure as in the centralized approach, but its scope is smaller and the interpretation of some
of the nodes is different. Similar to the centralized approach, multiple failure modes can be included in the
distributed FPM. In this case, an FPM of each DMi consists of multiple, possibly overlapping copies of such
bipartite causality graph. However, to clarify the presentation of the technique, the description provided in
this paper assumes that only one failure type is associated with every end-to-end path and host-to-host link.

A. Fault propagation model of the NM

Let us consider pathnp1

∗→ npm that traverses domainsDl1 , . . .,Dlk . Recall that NM transforms this path
into a sequence of intra-domain path segments and linksnp1

∗→ El1
l1,lk

, El1
l1,lk

→ Il2l1,lk
, Il2l1,lk

∗→ El2
l1,lk

, . . .,

Elk−1

l1,lk
→ Ilkl1,lk

, Ilkl1,lk

∗→ npm (Figure 3). In its FPM, NM has to represent the fact that a failure of end-to-end

10

pathnp1

∗→ npm may be caused by failures of one or more of these links and path segments. This can be
achieved by creating a symptom node representing pathnp1

∗→ npm and fault nodes representing failures of
its corresponding links and intra-domain path segments. However, we can observe that, with the exception
of np1

∗→ El1
l1,lk

andIlkl1,lk

∗→ npm , all paths that begin inDl1 and end inDlk are transformed into the same
sequence of intra-domain path segments and links. (This follows from the hierarchical routing assumption.)
Therefore, we can simplify the FPM by creating a single symptom node labeleds : l1

∗→ lk (Figure 4)
that represents all paths that begin inDl1 and end inDlk . For any such pathnp1

∗→ npm we say that node
s : l1

∗→ lk represents symptoms : np1

∗→ npm in the FPM of NM. Symptoms : l1
∗→ lk occurs when a

failure of at least one path that begins inDl1 and ends inDlk , e.g.,np1

∗→ npm , occurs.
The failure ofnp1

∗→ npm may be caused by a failure of one or more inter-domain links or intra-domain
segments ofnp1

∗→ npm . Therefore, in the FPM of NM, two types of fault nodes have to exist: (1) ordinary
fault nodes, like ones in the centralized case, which represent failures of inter-domain links; these faults are
directly isolated by NM, (2) proxy fault nodes, which represent failures that cannot be isolated by NM alone
because they are located in domains that are not directly managed by NM. For every domain, one or more
such proxy nodes are created as follows.

• For every ingress gateway node inDi, Iil,i, we create nodeP : Iil,i
∗→ ∗ that represents the set of intra-Di

paths that begin in nodeIil,i. We write thatP : Iil,i
∗→ ∗ = {Iil,i

∗→ nr|nr ∈ Di}.
• For every egress gateway node inDi, Ei

i,k, we create nodeP : ∗ ∗→ Ei
i,k that represents the set of

intra-Di paths that end in nodeEi
i,k. We write thatP : ∗ ∗→ Ek

k,·i = {nr
∗→ Ei

i,k|nr ∈ Di}.
• Moreover, for each pair of gateway nodesIil,k andEi

l,k, we create nodeP : Iil,k
∗→ Ei

l,k that represents

the intra-Di path segmentIil,k
∗→ Ei

l,k, i.e.,P : Iil,k
∗→ Ei

l,k = {Iil,k
∗→ Ei

l,k}.
In the FPM of NM, symptom nodes : l1

∗→ lk is connected to nodesP : ∗ ∗→ El1
l1,lk

, f : El1
l1,lk

→
Il2l1,lk

, P : Il2l1,lk

∗→ El2
l1,lk

, . . ., f : Elk−1

l1,lk
→ Ilkl1,lk

, P : Ilkl1,lk

∗→ ∗ (Figure 4). Overall, the FPM of NM
contains multiple such symptom nodes for all pairs of domains inN . These symptom nodes are connected
to overlapping sets of fault andP-nodes. Thus, the FPM of NM is a connected bipartite graph.


f : E l1, l k

l k−1 I l1, lk
l kf : E l1, lk

l1  I l1, l k
l2

P :∗
∗
E l1, lk
l1 P : I l1, lk

l2 
∗
E l1, lk
l2 P : I l1, lk

l k 
∗
∗P : I l1, lk

l k−1
∗
E l1, lk
l k−1

s: l1
∗
lk

Fig. 4. Construction of FPM for NM includingP-nodes representing domains.

Example 1:
Consider the network in Figure 5. We will describe the FPM built by the NM.
Figure 6 presents the FPM build by NM while assuming that only one fault exists in the system per every

end-to-end or host-to-host service, and that all routes are bidirectional. The FPM contains three symptom
nodes that represent paths between domainsD1 andD2, D1 andD3, andD2 andD3. Let us consider
paths between domainsD2 andD1. Since there is no direct route between these two domains, connectivity
between them is provided via domainD3, in particular via gateways 3.1 and 3.5. Thus, an end-to-end path
1.n1

∗↔ 2.n2 between these two domains is decomposed into the following sequence of inter-domain links
and intra-domain paths:1.n1

∗↔ 1.1, 1.1 ↔ 3.1, 3.1 ∗↔ 3.5, 3.5 ↔ 2.5, and2.5 ∗↔ 2.n2. Thus, in the
FPM of NM, nodes : 1 ∗↔ 2 is connected to link nodesf : 1.1 ↔ 3.1 andf : 3.5 ↔ 2.5, and toP-nodes
P : ∗ ∗↔ 1.1,P : 3.1 ∗↔ 3.5, andP : 2.5 ∗↔ ∗.

11

1.5

1.1

1.2

1.3

1.4
3.1

2.2

3.2
2.1

3.33.5

3.42.3

2.4

2.5

D2

D1

D3

N

Fig. 5. Example three-domain network topology.

1.31.1: ↔ f

21:
*
↔ s 31:

*
↔ s32:

*
↔ s

5.35.2 ↔ :f1.1*:
*
↔ P5.2*:

*
↔ P 5.3*:

*
↔ P1.3*:

*
↔ P5.31.3:

*
↔ P

Fig. 6. Fault propagation model created by NM in Figure 5. The model assumes that all routes and path failures are bidirectional,
and it allows only one failure type per path or link.

The final step in the creation of the FPM for NM is assigning prior failure probabilities toP-nodes and
conditional probabilities to causal edges betweenP-nodes and symptom nodes. Conditional probabilities
betweenP-nodes and symptom nodes do not have any intuitive interpretation. The approach chosen in
this paper assigns all conditional probabilities betweenP-nodes and symptom nodes to 1. The strength
with which faults located in sub-domains influence failures of paths that span multiple domains is modeled
using prior failure probabilities assigned toP-nodes.P-nodes do not have real-life correspondents, either,
since they are synthetic elements. As a result, their prior failure probabilities cannot be either assigned by an
expert or learned through system observation, as it is the case with ordinary fault nodes. In addition,P-nodes
represent failures located in other domains and their prior failure probabilities change during the process of
fault localization. Thus, prior failure probabilities associated withP-nodesP : Iil,i

∗→ ∗, P : ∗ ∗→ Ei
i,k, and

P : Iil,k
∗→ Ei

l,k in the FPM of NM must be calculated by the multi-domain technique based on the state
of the fault localization process inDi. Since this state is not accessible to NM, the probabilities have to be
calculated by DMi. The process in which it is done is discussed in Section V.

B. Fault propagation model of a DM

As it was stated at the beginning of this section, the FPM built by DMi includes all intra-Di paths and
links, i.e., all the information contained in the centralized model ofDi. Such a model is sufficient for the
diagnosis of symptoms observed inDi, but is not sufficient for the diagnosis of symptoms DMi receives
from NM. In the hierarchical fault management solution presented in this paper, diagnosis of a path failure
is delegated up and down the management hierarchy until managers of all domains traversed by the path are
notified. In particular, NM may delegate to DMi a part of a task involved in the diagnosis of pathnp1

∗→ npm

that traversesDi. In this case, DMi will be notified about a failure of its intra-domain path that constitutes
the intra-Di path segment ofnp1

∗→ npm . Observe that this notification does not mean that the intra-Di path
has necessarily failed. It only indicates a possibility of this segment’s failure, sincenp1

∗→ npm could have
been caused by its path-segment or link that is not located in domainDi. Thus, symptoms received by DM
from NM are typically associated with a high degree of uncertainty, i.e., they are likely to be spurious. In

12

our previous work [39], we presented a solution that allows us to incorporate spurious symptoms in an FPM.
In this section, we use these ideas as follows.

Let s : nr
∗→ nt be an intra-Di symptom received by DMi from NM in the process of diagnosing a failure

of inter-domain pathnp1

∗→ npm . To model the possibility thats : nr
∗→ nt is spurious in the FPM ofDMi,

we create a proxy fault node, called̃P-node that represents all possible causes ofs : nr
∗→ nt that are not

located inDi. Observe that, since pathnr
∗→ nt constitutes a segment of an inter-domain path, at least one

of nodesnr, nt is a gateway node inDi. Let l andk be identifiers of domains that contain nodesnp1 and
npm , respectively. Consider three possible cases.

• i = l, and in consequencent = Ei
l,k = Ei

i,k (Figure 7(a)). We create nodẽP : ∗ ∗→ Ei
i,k and connect it

to s : nr
∗→ nt.

• i = k, and in consequencenr = Iil,k = Iil,i (Figure 7(b)). We create nodẽP : Iil,i
∗→ ∗ and connect it to

s : nr
∗→ nt.

• i 6= l andi 6= k, and in consequencenr = Iil,k andnt = Ei
l,k (Figure 7(c)). We create nodẽP : Iil,k

∗→
Ei

l,k and connect it tos : nr
∗→ nt.

Dk
Dl=Di

np1=nr npmnt=E l , k
i

(a) i = l

Dl
Di=Dk

np1 npm=ntnr=I l , k
i

(b) i = k

Dl Dk
Di

np1 npmnr=I l , k
i nt=E l , k

i

(c) i 6= k andi 6= l

Fig. 7. Definition of proxy nodes in the FPM of DMi.

Observe that each̃P-nodeP̃ : ∗ ∗→ Ei
i,k, P̃ : Iil,i

∗→ ∗, or P̃ : Iil,k
∗→ Ei

l,k in the FPM of DMi corresponds

to P-nodeP : ∗ ∗→ Ei
i,k, P : Iil,i

∗→ ∗, or P : Iil,k
∗→ Ei

l,k, respectively, in the FPM of NM. Similar to

what we did in the case of NM, conditional probabilities on edges betweenP̃-nodes and symptom nodes in
the FPM of DMi are set to 1, while prior failure probabilities assigned toP̃-nodes in the FPM of DMi are
calculated by NM and sent to DMi together with reported symptoms. In fact, in the FPM of DMi, P̃-nodes
can be created dynamically when corresponding symptoms are reported by the NM.

Example 2:
Consider the network in Figure 5. Figure 8 presents the FPM build by DM3 while assuming that only one

fault exists in the system per every end-to-end or host-to-host service and that all routes are bidirectional.
The FPM contains symptom nodes that represent all intra-D3 paths, which are connected to intra-D3 links
that are used to provide these paths. This part of the model is identical to the centralized model in Figure 1(b),
sinceD3 has the same topology and routing as the network in Figure 1(a).

In addition to the fault nodes, in the distributed FPM, the FPM built by DM3 includes threẽP-nodes. Since

13

there are two gateways inD3, i.e., nodes 3.1 and 3.5, thẽP-nodes that need to be created areP̃ : ∗ ∗↔ 3.1,
P̃ : ∗ ∗↔ 3.5, andP̃ : 3.1 ∗↔ 3.5. NodeP̃ : 3.1 ∗↔ 3.5 is connected only to symptom nodes : 3.1 ∗↔ 3.5.
NodeP̃ : ∗ ∗↔ 3.1 is connected to symptom nodess : 3.1 ∗→ 3.2, s : 3.1 ∗→ 3.3, ands : 3.1 ∗→ 3.4, while
nodeP̃ : ∗ ∗↔ 3.5 is connected to nodes3.2 ∗↔ 3.5, 3.3 ∗↔ 3.5, and3.4 ∗↔ 3.5. Note that other symptom
nodes do not havẽP-nodes associated with them, since their corresponding paths may not be segments on
any intra-domain paths.

3.31.3: ↔f

2.313:
*
↔.s 3.31.3:

*
↔s 4.31.3:

*
↔s 5.31.3:

*
↔s 3.32.3:

*
↔s 4.32.3:

*
↔s 5.32.3:

*
↔s 4.33.3:

*
↔s 5.33.3:

*
↔s 5.34.3:

*
↔s

5.31.3: ↔f 3.32.3: ↔f 4.32.3: ↔f 4.33.3: ↔f 5.34.3: ↔f5.3
*

1.3:
~

↔P1.3
*

*:
~

↔P 5.3
*

*:
~

↔P

Fig. 8. Fault propagation model created by DM3 in Figure 5. The model assumes that all routes and path failures are bidirectional,
and it allows only one failure type per path or link.

V. M ULTI -DOMAIN FAULT LOCALIZATION ALGORITHM

In this section, we present an outline of a multi-domain fault localization algorithm (Algorithm 3) based
on the distributed fault propagation model described in Section IV. We propose a general design of the
algorithm, which may be refined to create multi-domain versions of both Algorithms 1 and 2. In the pseudo-
code in Section V-B, parts of the algorithm that need to be specialized for different probabilistic reasoning
mechanisms are underlined. The refinements of these parts are be presented in Sections VI and VII for
Algorithms 1 and 2, respectively.

Similar to the centralized algorithms, the multi-domain fault localization algorithm proceeds in three
phases performed by every DM and NM: (1) model initialization, (2) symptom analysis, and (3) fault selec-
tion. In the initialization phase (see Algorithm 3), the model is reset by assigning prior failure probabilities
to proxy nodes. In our implementation, these probabilities are set to 0 in the FPM of NM, while in the FPM
of DM, no P̃-nodes exist at the beginning and therefore no assignment is needed.

Symptom-analysis and fault-selection phases progress by traversing the hierarchy of managers in a bottom-
up or top-down manner, wherebottom-upandtop-downindicate the direction of the information flow. Pro-
cessing performed by DM or NM is triggered by a symptom arrival or by a message received from NM or
DM, respectively. For the clarity of presentation, in the pseudo-code of Algorithm 3 we use function calls
to indicate the exchange of information between managers. In the distributed implementation, the function
calls should be implemented by asynchronous message exchange rather than RPC-style invocations.

A. Symptom analysis phase

The symptom analysis phase is executed for every received alarm that indicates a failure of an end-to-end
path between two nodes. This alarm can be received either by the NM or a DM. A DM can start the symptom
analysis only if the entire failed path belongs to its domain. If the DM is not able to diagnose the symptom
it forwards it to the NM, which initiates the symptom diagnosis (functionanalyzeinternal).

1) Symptom processing by NM:In the process of diagnosing symptoms : np1

∗→ npm , the NM first
maps it into a symptom nodes : l1

∗→ lk in its FPM, such thatnp1 ∈ Dl1 andnpm ∈ Dlk . Then it splits the
failed path into its intra-domain path segments and inter-domain links, i.e., into a sequencenp1

∗→ El1
l1,lk

,

El1
l1,lk

→ Il2l1,lk
, Il2l1,lk

∗→ El2
l1,lk

, . . ., Elk−1

l1,lk
→ Ilkl1,lk

, Ilkl1,lk

∗→ npm . Segmentsnp1

∗→ El1
l1,lk

, Il2l1,lk

∗→ El2
l1,lk

,

14

. . ., Ilkl1,lk

∗→ npm are then interpreted as symptomss1 = s : np1

∗→ El1
l1,lk

, s2 = s : Il2l1,lk

∗→ El2
l1,lk

, . . .,

sk = s : Ilkl1,lk

∗→ npm that will be reported to DMl1 , DMl2 , . . ., DMlk , respectively. Since high uncertainty
is associated with these symptoms, the NM needs to calculate the probability with which the symptoms
should be considered spurious by DMs. Note that in the FPM of DMlj , all causes of symptomsj reported
by NM that are not located inDlj are represented by ãP-node that is attached to nodesj . Let us label this
nodeP̃(sj). Thus, the NM needs to calculate the prior probabilityp(P̃(sj)) that should be associated with
P̃(sj) in the FPM of DMi.

Recall that, in the FPM of NM,sj is represented by one or moreP-nodes. Letsj = s : nr → nt. If nr is
an ingress gateway inDi andnt is an egress gateway inDi, thensj is represented byP-nodesP : nr

∗→ nt,
P : nr

∗→ ∗, andP : ∗ ∗→ nt. If nr is an ingress gateway inDi, andnt is not an egress gateway inDi, then
sj is represented byP-nodeP : nr

∗→ ∗. Finally, if nt is an egress gateway inDi andnr is not an ingress
gateway inDi, thensj is represented byP-nodeP : ∗ ∗→ nt. The value ofp(P̃(sj)) is calculated using
functioncomputespurious, which is defined as follows. (The underlined parts of code need to be defined
separately for Algorithms 1 and 2.)

FUNCTION computespurious(s : nr → nt)
IF nr is an ingress gatewayAND nt is an egress gatewayTHEN

setPset = {P : nr
∗→ nt,P : ∗ ∗→ nt,P : nr

∗→ ∗}
RETURN

∏
P∈Pset

not proxy(P|evidence observed byNM)
ELSE IF nr is an ingress gatewayTHEN

RETURNnot proxy(P : nr
∗→ ∗|evidence observed byNM)

ELSE

RETURNnot proxy(P : ∗ ∗→ nt|evidence observed byNM)
END

After calculatingp(P̃(sj)) the NM delegates the diagnosis of symptomsj to DMlj , for j = 1 . . . k

(functionanalyzeexternal). Along the symptom, the NM passesp(P̃(sj)). It also sendsPj , a description
of theP-node connected tos : l1

∗→ lk that representsDlj in the FPM of NM. This description may be in
the form of, e.g., an IP-address mask. The last argument is needed so that DMlj can calculate the value of

p(Pj), which is required by NM to correctly diagnose symptoms : l1
∗→ lk. As a result of the diagnosis

performed by DMj , the NM obtainsp(Pj) and updates its FPM.
Observe that the diagnosis of the same symptomsj can be delegated to DMlj multiple times in the

process of fault localization if it constitutes a segment of multiple end-to-end paths whose failures are
reported as symptoms. This results in duplicate observations of the same symptom by DMlj . Since DMlj

does not process a symptom more than once, duplicate symptoms unnecessarily increase the communication
overhead. Thus it is desirable to prevent duplicate delegations of the same symptom to DMlj . Naturally,
we could do this by having the NM keep a record of all symptoms delegated to DMs, but this would waste
memory, and searching through the record to detect duplicates would be time consuming. Instead, we
observe the following. Since all end-to-end paths between domainsDl1 andDlk traverse the same domains
using the same ingress and egress nodes, any inter-domain symptoms : l1

∗→ lk that has previously been
analyzed by NM results in a duplicate symptom delegation to DMlj for j = 2 . . . k−1. Thus, NM maintains
a marking scheme in which unobserved-symptom nodes are marked asUNOBSERVEDin its FPM. Once
a symptom is observed, it is markedOBSERVEDINTERNAL. While analyzings : np1

∗→ npm when
s : l1

∗→ lk is markedOBSERVEDINTERNALthe NM refrains from delegating intra-domain path segments
of s : np1

∗→ npm to DMlj s for j = 2 . . . k − 1, but it does delegate the analysis to DMl1 and DMlk , since

end-to-end paths represented bys : l1
∗→ lk may differ in their path segments located inDl1 andDlk . This

method prevents NM from sending duplicate symptoms to DMlj s for j = 2 . . . k − 1 but does not aim at
preventing duplicate symptoms in DMl1 and DMlk .

When DMs complete the analysis of symptoms that have been delegated to them by NM they return the
values of correspondingp(Pj)s. Then, the NM updates its FPM and incorporates the changed values of

15

p(Pj)s in its state of fault localization (functionupdatehypotheses). Finally, NM analyzes symptoms :
l1

∗→ lk (function inference). This part of NMs operation depends on the probabilistic inference mechanism
used by NM, e.g., Algorithms 1 or 2.

2) Symptom processing by DM:DMi may start the processing of symptoms : np1

∗→ npm as a result
of two events: (1) it may observe a failure of pathnp1

∗→ npm whose all nodes belong toDi or (2) the
symptom may be delegated to DMi by NM. In the former case,s : np1

∗→ npm is an internal symptom, in
the latter case it is called an external symptom. Internal symptoms are considered more significant, since
they cannot be explained by faults located outside DMi. However, in the absence of internal symptoms,
the external ones help the DMi make correct diagnoses. To distinguish between different observations of
the same symptom, DMi marks symptom nodes as eitherUNOBSERVED, OBSERVEDINTERNAL, and
OBSERVEDEXTERNALwhen they are not processed, processed as a result of internal observation, and
processed as a result of a delegation by NM, respectively.

Internal symptoms are processed by functionanalyzeinternal. First, the association between the observed
symptom and its̃P-node (if one exists) is removed, as the symptom can no longer be explained by external
causes. Then, a probabilistic inference mechanism chosen for this DM is used to analyze the symptom.

The processing of external symptoms is done by functionanalyzeexternal. Assume thats : np1

∗→ npm

has been delegated to DMi as a result of a failure of an end-to-end path between domainsDl andDk. DMi

also receives two parameters from NM:P i
l,k andpspurious. Recall thatP i

l,k is a description of aP-node that

is connected to nodes : l
∗→ k in the FPM of NM, andpspurious is the probability with whichs : np1

∗→ npm

should be considered spurious by DMi. In the process of analyzings : np1

∗→ npm , DMi first updates its
FPM by settingp(P̃(s : np1

∗→ npm)) = pspurious in its FPM, whereP̃(s : np1

∗→ npm) is theP̃-node
connected to symptoms : np1

∗→ npm in the FPM of DMi. If the symptom has been previously analyzed,
DMi takes no further action and returns the stored value ofp(P i

l,k). Otherwise, it updates the FPM by

connectingP̃(s : np1

∗→ npm) to s : np1

∗→ npm , and updates the state of fault localization to reflect the
modified value ofp(P̃(s : np1

∗→ npm)). Then, a probabilistic reasoning mechanism is used to analyze the
symptom. Finally, functioncomputeprior is used to calculate the a value ofp(P i

l,k), which is defined as
follows.

DMi: FUNCTION computeprior(P i
l,k)

LET Si
l,k = {nr

∗→ nt ∈ P i
l,k|s : nr

∗→ nt is notUNOBSERVED}
IF Si

l,k = ∅ THEN RETURN0
RETURN

∏
si∈Si

l,k
symptombel(si), where

symptombel(si) =
{

1 if si is markedOBSERVEDINTERNAL
1−

∏
fj∈F (1− p(si|fj)fault bel(fj)) if si is markedOBSERVEDEXTERNAL

END

Intuitively, functioncomputeprior calculates the probability that all failures of intra-Di path segments
represented byP that have been reported by the NM can be explained by DMi. Clearly, if a failure reported
by NM has also been observed by DMi as an internal symptom, then the probability that it was caused inDi

is 1. Otherwise, DMi needs to calculate the probability that a failure reported by NM but not observed as an
internal symptom was caused by one or more faults inDi. Fault probabilities used in this case are obtained
based on symptom diagnosis performed by DMi up to this point. When no symptoms have been reported to
DMi functioncomputeprior returns 0.

Example 3:
Let us consider the symptom analysis phase performed by managers of the network in Figure 5 on page 11

after failures of paths1.5 ∗↔ 2.4, 3.1 ∗↔ 3.4, 1.3 ∗↔ 3.4, 1.3 ∗↔ 2.1 are observed.
1) Path1.5 ∗↔ 2.4 fails. Symptoms : 1.5 ∗↔ 2.4 is observed by NM. NM splits1.5 ∗↔ 2.4 into a

sequence of intra-domain path segments and links1.5 ∗↔ 1.1, 1.1 ↔ 3.1, 3.1 ∗↔ 3.5, 3.5 ∗↔ 2.5,
and2.5 ∗↔ 2.4. Messages containing{s : 1.5 ∗↔ 1.1, p(P̃ : ∗ ∗↔ 1.1),P : ∗ ∗↔ 1.1}, {s : 3.1 ∗↔

16

3.5, p(P̃ : 3.1 ∗↔ 3.5),P : 3.1 ∗↔ 3.5}, and{s : 2.5 ∗↔ 2.4, p(P̃ : 2.5 ∗↔ ∗),P : 2.5 ∗↔ ∗}
are sent to DM1, DM3, and DM2, respectively. DM1, DM3, and DM2 update their FPMs, analyze
external symptomss : 1.5 ∗↔ 1.1, s : 3.1 ∗↔ 3.5, ands : 2.5 ∗↔ 2.4, respectively, and calculate
prior probabilities forP nodesP : ∗ ∗↔ 1.1, P : 3.1 ∗↔ 3.5, andP : 2.5 ∗↔ ∗, respectively. Finally,
symptoms : 1 ∗↔ 2 is analyzed by NM and markedOBSERVEDINTERNAL.

2) Path3.1 ∗↔ 3.4 fails, which is an intra-domain path inD3. Internal symptoms : 3.1 ∗↔ 3.4 is analyzed
by DM3, and markedOBSERVEDINTERNAL.

3) Path1.3 ∗↔ 3.4 fails and symptoms : 1.3 ∗↔ 3.4 is analyzed by NM. The NM splits path1.3 ∗↔ 3.4
into a sequence of1.3 ∗↔ 1.1, 1.1 ↔ 3.1 and3.1 ∗↔ 3.4. Messages containing{s : 1.3 ∗↔ 1.1, p(P̃ :
∗ ∗↔ 1.1),P : ∗ ∗↔ 1.1} and{s : 3.1 ∗↔ 3.4, p(P̃ : 3.1 ∗↔ ∗),P : 3.1 ∗↔ ∗} are sent to DM1 and
DM3, respectively. DM1 analyzes external symptoms : 1.3 ∗↔ 1.1 and computesp(P : ∗ ∗↔ 1.1).
However, DM3 ignores symptoms : 3.1 ∗↔ 3.4 and returns the most recent value ofp(P : 3.1 ∗↔ ∗),
since the current marking ofs : 3.1 ∗↔ 3.4 in DM3 is OBSERVEDINTERNAL. Finally, symptom
s : 1 ∗↔ 3 is analyzed by NM.

4) Path1.3 ∗↔ 2.1 fails and as a result symptoms : 1.3 ∗↔ 2.1 is analyzed by NM, which splits
path1.3 ∗↔ 2.1 into sequence1.3 ∗↔ 1.1, 1.1 ↔ 3.1, 3.1 ∗↔ 3.5, 3.5 ∗↔ 2.5, and2.5 ∗↔ 2.1.
Messages containing{s : 1.3 ∗↔ 1.1, p(P̃ : ∗ ∗↔ 1.1),P : ∗ ∗↔ 1.1} and{s : 2.5 ∗↔ 2.1, p(P̃ :
2.5 ∗↔ ∗),P : 2.5 ∗↔ ∗} are sent to DM1 and DM2, respectively. To avoid duplicate symptoms,
no message is sent to DM3 since the current marking of symptoms : 1 ∗↔ 2 in the FPM of NM is
OBSERVEDINTERNAL. After DM1 and DM2 return new values ofp(P : ∗ ∗↔ 1.1) andp(P : 2.5 ∗↔
∗), respectively, the NM updates its FPM, but it does not analyze symptoms : 1 ∗↔ 2 since its marking
is OBSERVEDINTERNAL.

B. Fault selection phase

In the fault selection phase, DMs formulate their final explanation hypotheses and report them to a system
administrator. Before this can happen, DMs and NM have to synchronize their FPMs by updating prior
failure probabilities associated with their proxy nodes. Although these probabilities are constantly modified
during the symptom analysis phase, this is only a partial process, and more thorough synchronization of the
models is needed before final hypotheses can be proposed.

Fault selection phase is a cooperative process initiated by NM, which first obtains from DMs prior failure
probabilities associated with proxy nodes in its FPM, and then calculates spurious symptom probabilities
that are assigned to proxy nodes in the FPMs of DMs.

Afterwards, DMs and NM can proceed independently of one another to update their fault localization
state (functionupdatehypotheses) and choose the most likely hypothesis (functionselectbesthypothesis).
Both function depend on the probabilistic inference mechanism used by DM or NM. In particular, function
selectbesthypothesisconstitutes the fault selection phase of either Algorithm 1 or Algorithm 2.

Algorithm 3: Multi-domain algorithm

Initialization :
NM: FOR everyP i

l,k DO p(P i
l,k) = 0 DONE

Symptom analysis phase:
DM: FOR every observed symptoms : np1

∗→ npm DO

IF d(np1) = DID AND d(npm) = DID THEN

analyzeinternal(s : np1

∗→ npm)
ELSE NM→analyzeinternal(s : np1

∗→ npm)
DONE

17

NM: FOR every observed symptoms : np1

∗→ npm DO analyzeinternal(s : np1

∗→ npm) DONE

DMi: FUNCTION analyzeinternal(s : np1

∗→ npm)
IF s : np1

∗→ npm is not markedOBSERVEDINTERNAL THEN

setp(s : np1

∗→ npm |P̃(s : np1

∗→ npm)) = 0
marks : np1

∗→ npm asOBSERVEDINTERNAL

inference(s : np1

∗→ npm)
END

NM: FUNCTION analyzeinternal(s : np1

∗→ npm)

maps : np1

∗→ npm to s : l1
∗→ lk such thatnp1

∗→ npm ∈ l1
∗→ lk

transformnp1

∗→ npm into np1

∗→ El1
l1,lk

, El1
l1,lk

→ Il2l1,lk
, Il2l1,lk

∗→ El2
l1,lk

, . . .,

Elk−1

l1,lk
→ Ilkl1,lk

, Ilkl1,lk

∗→ npm

determine proxy nodes connected tos : l1
∗→ lk:

P1 = P : ∗ ∗→ El1
l1,lk

, P2 = P : Il2l1,lk

∗→ El2
l1,lk

, . . ., Pk = P : Ilkl1,lk

∗→ ∗
sets1 = s : np1

∗→ El1
l1,lk

, s2 = s : Il2l1,lk

∗→ El2
l1,lk

, . . ., sk = s : Ilkl1,lk

∗→ npm

FOR 1 ≤ j ≤ k DO

IF s : l1
∗→ lk is markedUNOBSERVEDOR j = 1 OR j = k THEN

pspurious =computespurious(Pj)
p(Pj) = DMlj →analyzeexternal(sj , Pj , pspurious)

DONE

IF s : l1
∗→ lk is not markedOBSERVEDINTERNAL THEN

updatehypotheses()

marks : l1
∗→ lk asOBSERVEDINTERNAL

inference(s : l1
∗→ lk)

END

DMi: FUNCTION analyzeexternal(s : np1

∗→ npm , P i
l,k, p(P̃(s : np1

∗→ npm))
setp(P̃(s : np1

∗→ npm)) = pspurious

IF s : np1

∗→ npm is not markedUNOBSERVEDTHEN returnp(P i
l,k)

ELSE

connectP̃(s : np1

∗→ npm) to s : np1

∗→ npm and setp(s : np1

∗→ npm |P̃(s : np1

∗→ npm)) = 1
updatehypotheses()

marks : np1

∗→ npm asOBSERVEDEXTERNAL

inference(s : np1

∗→ npm)
return computeprior(P i

l,k)
END

Fault selection phase:
NM: FOR everyP i

l,k DO p(P i
l,k) = DMi →computeprior(P i

l,k) DONE

FOR everyP i
l,k DO DMi →set spurious(P̃ i

l,k, computespurious(P i
l,k)) DONE

FOR everyDMi DO DMi →selectfaults() DONE

selectfaults()

DM/NM: FUNCTION selectfaults()
updatehypotheses()
selectbesthypothesis()

END

18

C. Computational complexity

A precise bound on the computational complexity of Algorithm 3 may not be obtained without deciding
on the probabilistic reasoning mechanism to be used by the algorithm, which affects the complexity of
algorithm’s steps presented using the underlined font. However, the general process of calculating this bound
and sources of the complexity are discussed here. In Sections VI and VII, we give a tighter assessment
of the algorithm’s complexity when using belief updating (Algorithm 1) and the incremental technique
(Algorithm 2) as reasoning mechanisms, respectively.

The complexity of Algorithm 3 results from symptom analysis performed in the symptom analysis phase,
fault selection performed in fault selection phase, and the calculation of probabilities exchanged among
managers in all phases of the algorithm. In the following analysis, we use|N | and|Di| to denote the num-
ber of domains inN or nodes inDi, respectively. Recall that in the pseudo-code of Algorithm 3, parts of the
code that need to be specialized for different probabilistic reasoning mechanisms are encoded as functions
not proxy, fault bel, inference, updatehypotheses, and selectbesthypothesis. Let fnot proxy , ffault bel ,
finference , fupdate hypotheses , andfselect best hypothesis be functions such that the computational complex-
ities of not proxy, fault bel, inference, updatehypotheses, andselectbesthypothesisareO(fnot proxy),
O(ffault bel),O(finference),O(fupdate hypotheses), andO(fselect best hypothesis), respectively.

The computational cost incurred by the NM in the symptom analysis phase is due to (1) executingcom-
putespuriousfor every symptom observed by NM, and (2) analyzing previously unobserved symptoms.
The former operation is invoked at least twice for each symptom observed by NM (i.e., while delegating
symptoms to source and destination domains of a failed path). In addition, the operation may be invoked
at mostO(|N |) times for each observed symptom whose marking isUNOBSERVED(i.e., while delegating
symptoms to all domains traversed by a failed path). Overall, since the number of path nodes in the FPM
of NM is O(|N |2), the number of invocations isO(max(|SO|, |N |3)) during the entire symptom analysis
phase. Also, the computational complexity ofcomputespuriousis equal to that ofnot proxy . The task of
analyzing previously unobserved symptoms is executed at mostmin(|SO|, |N |2) times, since no symptom
in the FPM of NM can be analyzed more than once. It involves functionsupdatehypothesesandinference.
As a result, the computational complexity of the symptom analysis phase during entire fault localization
process isO(|SO|fnot proxy + min(|SO|, |N |2)(finference + fupdate hypotheses)).

The computational complexity of the symptom analysis phase performed by DMi is due to analyzing
internal symptoms in functionanalyzeinternal and analyzing external symptoms in functionanalyze ex-
ternal. Since each symptom in the FPM of DMi may be analyzed at most once as an internal one, the
computational cost of internal symptom analysis isO(min(|SO|, |Di|2)finference). The analysis of exter-
nal symptoms involves three functions:updatehypotheses, inference, andcomputeprior. The complexity
of the last function depends on the number ofP-nodes that represent domainDi in the FPM of NM. Ob-
serve that in the FPM of NM,Di may be represented by at mostO(|Di|) P-nodes of typeP : ∗ ∗→ nt

andP : nr
∗→ ∗ (one for everynr or nt in Di). Each suchP-node representsO(|Di|) intra-Di path

segments, and therefore its prior probability will be calculated at mostO(|Di|) times (once for every path
segment, which is delegated as an external symptom). The computational complexity of a single invoca-
tion is, in this case,O(|Di|2ffault bel). Similarly, in the FPM of NM,Di may be represented by at most

O(|Di|2) P-nodes of typeP : nr
∗→ nt that each represent exactly one intra-Di path segment and there-

fore their prior probabilities may be calculated at most once during the symptom analysis phase. In this
case, the computational cost of a single invocation isO(|Di|ffault bel). Overall, the cost ofcomputeprior
in the entire symptom analysis phase isO(|Di|3ffault bel). Also, since each symptom may be analyzed
as external at most once, the number of times functionsupdatehypothesesand inferenceare executed is
O(min(|SO|, |Di|2)). Therefore, the computational complexity of the entire symptom analysis phase per-
formed by DMi isO(min(|SO|, |Di|2)(fupdate hypotheses + finference) + |Di|3ffault bel).

The computational cost incurred by NM in the fault selection phase is due to invokingcalculatespurious,
which is done at most|N |3 times. (Since each of|N |2 symptom nodes in the FPM of NM is connected to
at most|N | proxy nodes, there are at most|N |3 probabilities to calculate). The computational cost incurred

19

by NM in the fault selection phase is also due to functionselectfaults, which isO(fupdate hypotheses +
finference). Overall, the computational complexity of NM in the fault selection phase isO(|N |3fnot proxy +
fupdate hypotheses + fselect best hypotheses).

In the fault selection phase, DMi calculates prior probabilities ofP-nodes on behalf of NM and chooses
the best hypothesis. Its computational cost incurred in this phase isO(fupdate hypotheses+fselect best hypothesis)+
|Di|3ffault bel).

From the above analysis it is clear that the algorithm’s performance depends on the efficiency of calculat-
ing probabilities that are exchanged between DMs and NM. In Sections VI and VII, we present the process
of calculating these probabilities in detail and refine computational complexity bounds for multi-domain
fault localization using belief updating and incremental hypothesis updating.

Finally, recall that one of the initial objectives of our research on multi-domain fault localization was
improving the efficiency of end-to-end service failure diagnosis. While the analysis provided in this section
does not allow us to quantify this improvement, we can observe that a potential algorithm’s speed-up is
likely to result from the following properties of the algorithm.

• DMs and NM operate on smaller FPMs than would be the case with the centralized approach. Recall
that the complexities of Algorithms 1 and 2 areO(n5) andO(n4), respectively. If we managed to keep
the complexities of managers’ algorithms within these bounds when using belief-network approach
and the incremental technique as reasoning mechanisms, by decomposing the fault localization prob-
lem intom smaller subproblems we could achieve complexities ofO(mn5) andO(mn4) instead of
O(m5n5) andO(m4n4), respectively.

• DMs process a smaller number of symptoms than in the centralized case. Observe that multiple end-to-
end path failures map into a single symptom node in the FPM of the NM. In the centralized technique,
these path failures are mapped into different symptom nodes and therefore have to be analyzed sepa-
rately.

• Since DMs can execute in parallel, many symptoms may be simultaneously analyzed, thereby reducing
the overall fault localization time.

D. Signaling overhead

The signaling overhead of Algorithm 3 results from the exchange of symptoms and probabilities between
NM and DMs and therefore is related to the number of probability values produced in every phase of the
algorithm. In the symptom analysis phase, the number of messages exchanged between NM and DMs is
related to the number of observed symptoms. For every symptom observed by the NM at least two messages
will be sent to DMs. In addition, symptoms that have not been previously analyzed by NM result in messages
sent to at most|N | DMs for each such symptom. As a result the messaging overhead incurred in this phase
isO(max(|SO|, |N |3)).

In the fault selection phase, the messaging overhead results from the exchange of probabilities needed to
update the FPMs. The number of messages exchanged between NM and DMs is alsoO(|N |3). Thus, in the
entire algorithm, the messaging overhead isO(max(|SO|, |N |3)).

VI. M ULTI -DOMAIN FAULT LOCALIZATION USING BELIEF NETWORKS

In this section, we introduceAlgorithm 3A , a multi-domain version of Algorithm 1, which constitutes
a refinement of the fault localization technique presented in Sections III-V. The refinement introduces def-
initions of functionsnot proxy, fault bel, inference, updatehypotheses, andselectbesthypothesis, which
were left undefined in the description of the general multi-domain technique.

Function not proxy(P i
l,k) calculates the conditional probability that faults represented byP i

l,k in the FPM
of NM did not occur, given the observed evidence. Using the probabilistic reasoning mechanism of Algo-
rithm 1 this probability may be expressed usingλ messages received by nodeP i

l,k from its children nodes in
the belief network that constitutes the FPM of NM. LetλPi

l,k
(x) indicate a product of messagesλ received

byP i
l,k from its children. Forx = 1, λPi

l,k
(x) is interpreted as the probability that the observed symptoms,

children ofP i
l,k, occur given the failure condition represented byP i

l,k has occurred. Similarly, forx = 0,

20

λPi
l,k

(x) is interpreted as the probability that the observed symptoms, children ofP i
l,k, occur given the fail-

ure condition represented byP i
l,k has not occurred. Using this information, we can derivenot proxy(P i

l,k) as
follows. Recall that in the FPM of DMi, the values ofλsj (x), which are assigned to nodesj that represents
a failure of a path inP i

l,k, are 1 and 0 forx = 1 andx = 0, respectively. This assignment indicates our
total confidence in the ocurrence ofsj . To represent the fact that the symptom may be spurious, we should
use assignmentλsj (x) = λPi

l,k
(x) for all suchsj . In our solution, instead of modifying the assignment of

λsj , we use aP̃-node that represents all external causes ofsj . Thanks to this choice, every timeλPi
l,k

(x)
changes, we need to modify just one prior probability in the FPM of DMi instead of multiple values of
λsj . The assignement of the prior probability to theP̃-node that is connected to symptom nodesj in the
FPM of DMi should be such that the behavior ofsj , which is expressed by the values ofλ messages it
sends to its children, is the same as ifλsj (x) was set toλPi

l,k
(x). This objective can be achieved by setting

not proxy(P i
l,k) as follows.

not proxy(P i
l,k) =

λPi
l,k

(0)

λPi
l,k

(1)

Function fault bel(fk) estimates the probability that faultfk exists inDi given evidence observed inDi. It
may be calculated using messages received by the belief network node that representsfi in the FPM of DMi.
Let λfi

(x) indicate a product of messagesλ sent to nodefi by its children. The probability thatfk occured
or did not occur given the observed evidence may be expressed asαλfi

(1)p(fi) andαλfi
(0)(1 − p(fi)),

respectively, whereα is a normalizing constant. Therefore, we calculatefault bel(fk) as follows.

fault bel(fi) = αλfi
(1)p(fi)

Function inference(si) is identical to the like-named function in the centralized Algorithm 1, which was
presented in Section II.

Function updatehypothesesupdates the state of fault localization to incorporate modified values of prior
failure probabilities associated withP- andP̃-nodes in the FPMs of the NM and a DM, respectively. In the
context of iterative belief updating, this process involves recalculating messagesπ sent by aP- or P̃-node
to its children, for everyP- or P̃-node whose prior failure probability has changed. For this purpose, the
message-updating equations used in functioninferenceof the centralized algorithm are used [30].

Function selectbesthypothesesexecutes the fault selection phase of Algorithm 1.
Observe that the computational complexities of functionsnot proxyandfault bel areO(1). Functionin-

ferenceisO(n3), wheren is the number of network nodes. In the case of NM and DMi this is expressed as
O(|N |3) andO(|Di|3), respectively. Since functionupdatehypothesesinvolves the calculation ofπ mes-
sages for some belief network nodes, while functioninferenceperformes this calculation for all belief net-
work nodes, the computational complexity ofupdatehypothesesis clearlyO(finference) = O(n3). Finally,
the computational complexity of functionselectbesthypothesesisO(n4), wheren = |N | or n = |Di| in
the case of NM or DMi, respectively.

After substituting the above refinements for the partial results derived in Section V-C, we conclude
that the computational cost incurred by NM in the symptom analysis phase and fault selection phase is
O(min(|SO||N |3, |N |5)) andO(|N |4), respectively. Therefore, we can express the computational com-
plexity of fault localization performed by NM asO(|N |5)).

Similarly, we can refine the computational cost of the symptom analysis phase and fault selection phase of
DMi toO(min(|SO||Di|3, |Di|5)) andO(|Di|4). Thus, the computational complexity of fault localization
performed by DMi isO(|Di|5).

Note that both for NM and DM, we managed to maintain their original computational complexity limit of
O(n5), which allows us to maximize scalability gains resulting from the multi-domain approach.

VII. M ULTI -DOMAIN INCREMENTAL HYPOTHESIS UPDATING

In this section, we introduceAlgorithm 3B , a multi-domain version of Algorithm 2, which constitutes
a refinement of the fault localization technique presented in Sections III-V. Similar to Algorithm 1, the

21

refinement introduces definitions of functionsnot proxy, fault bel, inference, updatehypotheses, andse-
lect besthypothesis, which were left undefined in Section V.

In the context of the incremental techniquefunction not proxy(P i
l,k) calculates the conditional probability

that faults represented byP i
l,k in the FPM of NM did not occur, given the observed evidence. This probability

may be expressed as follows. LetHj represent the current set of hypotheses produced by DMi. Recall that
each hypothesis is a subset ofF ∪ P, whereP is the set of allP-nodes in the FPM of NM.

not proxy(P i
l,k) = 1−

∑
h∈Hj |Pi

l,k∈h

bj(h)

Function fault bel(fk) estimates the probability that faultfk exists inDi given evidence observed inDi.
It is caclulated by summing the belief metric associated with hypotheses that containfk.

fault bel(fk) =
∑

h∈Hj |fk∈h

bj(h)

Function inference(si) is is identical with the like-named function in the centralized Algorithm 2, which
was presented in Section II.

Function updatehypothesesupdates the state of fault localization to incorporate modified values of prior
failure probabilities associated withP- andP̃-nodes in the FPMs of the NM and a DM, respectively. In the
context of the incremental technique, this function involves replacing the old value of the prior probability
of nodex with the new value of this probability, in the belief metric associated with each hypothesish that
containsx. This is done by settingbj(h) = bj(h)pnew(x)

pold(x) . This replacement is done for every nodex, whose
prior failure probability has changed.

Function selectbesthypothesesexecutes the fault selection phase of Algorithm 2.
Observe that functionsnot proxyandfault bel involve searching through the set of hypotheses and sum-

ming up the belief metric of some of the hypotheses. These calculations can be done in advance, when
hypotheses are created in functioninference, which allows us to amortize the cost of calculatingnot proxy
and fault bel with the cost of running functioninference. Thus, the computational complexities of both
functions areO(1). Functioninferenceis O(n2), wheren is the number of network nodes, i.e.,O(|N |2)
andO(|Di|2) in the case of NM and DM, respectively. Functionupdatehypothesesscans through|Hj |
hypotheses and updates at mostn probabilities each time it is invoked. Recall that|Hj | = O(n). Thus
the computational complexity ofupdatehypothesesisO(|N |2) andO(|Di|2) in the case of NM and DM,
respectively. Finally, the computational complexity of functionselectbesthypothesesisO(1).

After substituting the above refinements for the partial results derived in Section V-C, we conclude
that the computational cost incurred by NM in the symptom analysis phase and fault selection phase is
O(min(|SO||N |2, |N |4)) andO(|N |3), respectively. Therefore, we can express the computational com-
plexity of fault localization performed by NM asO(|N |4).

Similarly, we can refine the computational cost of the symptom analysis phase and fault selection phase of
DMi toO(min(|SO||Di|2, |Di|4)) andO(|Di|3). Thus, the computational complexity of fault localization
performed by DMi isO(|Di|4).

Note that similar to the multi-domain version of Algorithm 1 we managed to maintain the computational
complexity bound of the centralized Algorithm 2 in its multi-domain version for both NM and DM.

VIII. S IMULATION STUDY

In this section, we evaluate the performance of Algorithms 3A and 3B through simulation. Our purpose is
to assess the accuracy of both algorithms in a multi-domain communication network. The study uses sets of
fault localization scenarios in which faults and symptoms are randomly generated based on the conditional
probability distribution that describes non-deterministic causal relationships between faults and symptoms
in a real-life system. In the distribution, for every faultf and symptoms, we setp(s|f) = 0 if the end-to-
end service whose failure is represented bys is not provided using the host-to-host service whose failure
is represented byf . Otherwise,0 < p(s|f) ≤ 1. One may argue that a better method of evaluating the
algorithms is to simulate a network injecting faults in it in a controlled manner and allowing symptoms to be

22

generated by the simulated system itself. Unfortunately, network simulators available today do not facilitate
creating such a study as they do not provide functionality that is needed to inject performance problems,
monitor system performance, or obtain configuration information necessary to build the fault propagation
model. The amount of effort necessary to provide this functionality makes it impractical for us to design
such a simulation. In addition, our approach relies on the existence of solutions to several problems that are
still a subject of an active research activity, e.g., building and updating an FPM or optimal probe placement.
When using a network simulator to create an experimental study, we first would have to solve these open
problems. Moreover, using synthetic tests rather than a network simulator, makes the study independent of
particular network configurations, routing protocols, and instrumentation mechanisms.

In this section, we first describe the design of the simulation experiments and then present and explain the
results of the study.

A. Simulation design

The simulation study presented in this section uses network topologies similar to those of the Internet.
The generation of random graphs resembling the topology of real-life networks has been a widely studied
research area [1], [2], [4], [9], [18], [26]. Out of several topology generators available, we choose one based
on Barabasi-Albert power-law model [4], because its implementation is available in public domain, and
because topologies built based on this model have been shown to be reasonably representative of the Internet
topology [8]. We use an implementation of the Barabasi-Albert model provided by BRITE generator [25],
which is capable of generating hierarchical network topologies: AS-level and router-level ones.

The simulation model of the study created two level hierarchical topologies usingN andn to denote the
number of domains and the number of routers in every domain, respectively. To investigate the impact of
network topology, we useN = 10 andN = 50, and we varyn from 5 to 75. Typically, we choose a
maximum domain size such that the fault localization time of a single scenario does not exceed 10s. Our
experiments ignore positive, lost, and spurious symptoms. Consequently, we assume that the observation of
the system state is accurate.

Using the topology generator we create a random network composed ofN domains andn nodes in
each domain. We determine routes between any source and destination using the shortest-path policy for
intra-domain routes. We choose inter-domain routes such that the number of visited domains is minimized.
Then, we generate prior failure probabilities for inter-domain and intra-domain links, which are uniformly
distributed over the range[0.0001, 0.001]. For each intra-domain linkl and pathp, we randomly choose the
probability thatp fails if l fails from set{0.25, 0.5, 0.75}. For each inter-domain pathp, we assume that
if any path segment or link involved inp fails thenp fails as well. Consequently, in the FPM of the NM,
the conditional probabilities are all equal to 1. Furthermore, we randomly generate a subset of symptoms
observable in every domain to include 50% of all intra-domain paths. The observability ratio for inter-
domain paths is 2%. The observability ratio [39], [40] is a measure of the system instrumentation degree.
By using it, we recognize that only some failure conditions are monitored by the management systems. As
a result, a manager can see only a fraction of failures that exist in the system it manages.

Test scenarios are generated using the same conditional probability distribution that is used by the man-
agers in their FPMs. This technique of generating scenarios assumes that the fault propagation model
accurately represents relationships among faults and symptoms. However, from our previous studies, we
know that the fault localization techniques considered in this paper are accurate even if an FPM they are
executed on is approximate.

We distinguish three types of experiments: those involving only intra-domain link failures, those involving
only inter-domain link failures, and those involving both types of failures. In every study, two performance
metrics are calculated: detection rate, DR, defined as a percentage of faults occurring in the network which
are isolated by the technique, and false positive rate, FPR, defined as a percentage of faults reported by the
technique that are not occurring in the network [41], [39].

B. Experimental results

In Figures 9(a)-9(b), we show the accuracy of Algorithm 3A applied to fault localization in a ten-domain
network, in which each domain is composed of up to 70 nodes. Thus the entire network consists of up to

23

700 nodes. Figures 10(a)-10(b) present the results of the same experiment executed using Algorithm 3B.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70

D
et

ec
tio

n
ra

te

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(a) Detection rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60 70

F
al

se
 p

os
iti

ve
 r

at
e

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(b) False positive rate

Fig. 9. Accuracy of Algorithm 3A in a ten-domain network.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70

D
et

ec
tio

n
ra

te

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(a) Detection rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60 70

F
al

se
 p

os
iti

ve
 r

at
e

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(b) False positive rate

Fig. 10. Accuracy of Algorithm 3B in a ten-domain network.

The figures compare the accuracy achievable in scenarios involving only inter-domain, only intra-domain,
and both types of faults. Clearly, the mixed-failure scenarios are the most difficult to diagnose since they
always involve at least two concurrent faults and the interpretation of their symptoms, which may overlap,
leads to ambiguity. This difficulty results in a lower fault-localization accuracy of mixed-fault scenarios
compared to that of other types of scenarios, which is conspicuous in networks of small size. Scenarios
involving only inter-domain symptoms are the easiest to solve as the number of suspect faults is usually
small compared to the amount of evidence available even with the very small observability ratio we have
chosen. In addition, in our two-level set-up, the NM does not receive any ambiguous information (from a
higher-level manager). Henceforth, it knows that all symptoms have to be explained in its domain. Intra-
domain scenarios are similar to mixed scenarios, because both inter-and intra-domain symptoms may be
generated as a result of intra-domain faults. Thus, in intra-domain scenarios, domain managers have to deal
with the same level of ambiguity as is the case with mixed-fault scenarios.

To understand the difference among these three types of experiments it is useful to compare the numbers
of simultaneous faults and symptoms generated in each experiment, which are presented in Figures 11(a)-
11(b). These figures show that in inter-domain scenarios, the number of faults existing in the network is
small (in most experiments only one fault was present), and does not change as the domain size increases,
while the number of symptoms observed grows fast with the growing domain size. When the number of
observed symptoms is big and the number of faults to isolate is small, fault localization may be performed
with very high accuracy. Naturally, a big number of symptoms to diagnose increases the fault localization

24

time. In intra-domain- and mixed-fault scenarios, increasing the domain size also increases the frequency of
multi-fault scenarios.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70

N
um

be
r

of
 s

im
ul

ta
ne

ou
s

fa
ul

ts

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(a) Average number of simultaneous faults

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70

N
um

be
r

of
 s

ym
pt

om
s

re
ce

iv
ed

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(b) Average number of observed symptoms

Fig. 11. Average number of faults and symptoms generated in experiment scenarios for a ten-domain network

Figures 12(a)-12(b) compare the fault localization times of Algorithms 3A and 3B. The fault localization
time is defined as the time needed to analyze all symptoms received in the considered fault localization sce-
nario and to propose the most probable hypothesis. It is measured under the assumption that each symptom
is available to the fault localization process as soon as the analysis of the previous symptom has completed.
Thus, this measurement ignores the impact of symptom latencies. As expected, Algorithm 3B offers a much
better performance than Algorithm 3A, which is due to its lower computational complexity. The difference
in performance among mixed-, intra-domain-, and inter-domain-fault scenarios results from their different
complexities expressed by the number of simultaneous faults and the number of received symptoms.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60 70

F
au

lt
lo

ca
liz

at
io

n
tim

e
[m

s]

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(a) Algorithm 3A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60 70

F
au

lt
lo

ca
liz

at
io

n
tim

e
[m

s]

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(b) Algorithm 3B

Fig. 12. Fault localization time in a network composed of ten domains.

We repeat the same set of experiments using networks composed of 50 domains. The results of the study
are presented in Figures 13(a)-13(b) for Algorithm 3A and in Figures 14(a)-14(b) for Algorithm 3B, respec-
tively. Note that, in the case of Algorithm 3B, we now work with networks composed of as many as 3000
nodes. For completeness, we also include Figures 15(a)-15(b), which show the average numbers of faults
and symptoms generated in the considered fault scenarios. Figures 16(a)-16(b) compare the fault localiza-
tion times of Algorithms 3A and 3B. The study performed on a fifty-domain network confirms the results
discussed previously. However, note that in a bigger network, the complexity of scenarios is much higher:
in a fifty-domain network, our fault localization techniques are required to accurately diagnose scenarios
that involve more than 6 simultaneous faults (Figure 15(a)) and more than 2500 symptoms (Figure 15(b)).

In Figures 17(a)-17(c) we present the comparison of detection rate, false positive rate, and fault localiza-

25

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 20 30 40 50 60

D
et

ec
tio

n
ra

te

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(a) Detection rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60

F
al

se
 p

os
iti

ve
 r

at
e

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(b) False positive rate

Fig. 13. Accuracy of Algorithm 3A in a fifty-domain network.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 20 30 40 50 60

D
et

ec
tio

n
ra

te

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(a) Detection rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60

F
al

se
 p

os
iti

ve
 r

at
e

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(b) False positive rate

Fig. 14. Accuracy of Algorithm 3B in a fifty-domain network.

tion time for centralized and multi-domain versions of Algorithms 1 and 2. Due to the excesive computation
time of centralized algorithms we had to significantly limit the scope of the experiments, which were ex-
ecuted in a five-domain network in which the domain size varied between 5 and 15. The observability
ratios of intra-domain and inter-domain symptoms were 0.5 and 0.1, respectively. The figures show that dis-
tributed fault localization performed according to the framework defined by Algorithm 3 may be as accurate
as centralized fault localization, while offering much better scalability. In fact, in smaller networks, multi-
domain fault localization may be even more accurate as centralized one, because it takes advantage of the
hierarchical composition of network paths. Multi-domain fault localization proves much more efficient than
centralized one, decreasing the fault localization time by a order of magnitude. (Since the algorithms are
implemented in JAVA, some of the computational cost incurred by centralized algorithms is due to the large
size of the fault propagation model, which reduces the amount of memory available to the fault localization
process thereby increasing garbage-collection overhead.) Further improvement of the algorithms’ efficiency
is possible by executing managers in parallel.

IX. D ISCUSSION

In this section, we discuss practical aspects of Algorithm 3 that are important to its applicability in real-
life systems. These issues concern the creation of the fault propagation model, the validity of the distributed
technique’s assumptions, multi-layer fault localization, and the incremental property of the distributed ver-
sion of Algorithm 2.

26

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60

N
um

be
r

of
 s

im
ul

ta
ne

ou
s

fa
ul

ts

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(a) Average number of simultaneous faults

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60

N
um

be
r

of
 s

ym
pt

om
s

re
ce

iv
ed

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(b) Average number of observed symptoms

Fig. 15. Average number of faults and symptoms generated in experiment scenarios for a fifty-domain network

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 20 30 40 50 60

F
au

lt
lo

ca
liz

at
io

n
tim

e

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(a) Algorithm 3A

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 20 30 40 50 60

F
au

lt
lo

ca
liz

at
io

n
tim

e

Domain size

mixed types of faults
inter-domain faults only
intra-domain faults only

(b) Algorithm 3B

Fig. 16. Fault localization time in a network composed of fifty domains.

A. Obtaining the fault propagation model

Clearly, the biggest challenge in applying the fault localization technique proposed in this paper to real-
life problems is obtaining the probabilistic fault propagation model. To build an FPM for end-to-end service
failure diagnosis a knowledge of network logical topology and communication protocols is needed. The
problem of building FPMs is beyond the scope of this paper. However, in this section we would like to
emphasize that although it is not an easy task, building such models is possible with the information that is
typically available through widely-deployed management protocols.

The network topology may be obtained automatically through various network topology detection mecha-
nisms, which are built into some commercially available network management systems [44]. Other manage-
ment systems implement proprietary techniques that allow the discovery of hardware configuration changes
such as addition or removal of a network adapter or host [14]. The IETF has recently recognized a need
for a standardized means of representing the physical network connections by proposing thePhysical
Topology MIB [5], which can be used to obtain topology information if it is implemented in the man-
aged domain.

Obtaining dynamic dependencies is significantly more difficult since the dependency model has to be
continuously updated while the modeled system is running. In spite of that, many tools exist that facilitate
the process of model building. These tools are usually specific to particular network services or functions.
For example, all active TCP connections on a host may be retrieved using thenetstatapplication [42]. A
current route between a host and any other host may be obtained using programtraceroute[42].

Network management protocols such as SNMP [10] provide a means to determine dependencies estab-
lished using configuration or real-time routing protocols. For example, the management system may obtain

27

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 6 8 10 12 14 16

D
et

ec
tio

n
ra

te

Domain size

Algorithm 3A
Algorithm 3B

Algorithm 1
Algorithm 2

(a) Detection rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 4 6 8 10 12 14 16

F
al

se
 p

os
iti

ve
 r

at
e

Domain size

Algorithm 3A
Algorithm 3B

Algorithm 1
Algorithm 2

(b) False positive rate

 0

 500

 1000

 1500

 2000

 2500

 4 6 8 10 12 14 16

F
au

lt
lo

ca
liz

at
io

n
tim

e
[m

s]

Domain size

Algorithm 3A
Algorithm 3B

Algorithm 1
Algorithm 2

(c) Fault localization time

Fig. 17. Comparison of centralized and multi-domain fault localization.

the topology, which was dynamically established in the data-link layer by the Spanning Tree Protocol [31]
using the data contained indot1dBase Group ofBridge MIB [12]. Updates of the spanning tree may be
triggered bynewRoot and topologyChange traps [12]. In the network layer of the Internet, current
routes may be calculated fromipRoutingTable of TCP/IP MIB-II [24]. In source routing protocols
(e.g., Source-Directed Relay of the military protocol MIL-STD 188-220 [13] and Dynamic Source Rout-
ing [19] proposed for wireless mobile networks), the current route between two hosts is embedded in the
header of every transmitted packet. When BGP [33] is used as an inter-domain routing protocol, the NM
can use the SNMP protocol [11] to query the BGP MIB [45] on exterior gateways. The BGP MIB contains
all information that is needed by the NM to build its FPM, i.e., the list of exterior gateways (BGP peers [33])
and the information on interconnections among the gateways. Similarly, intra-domain routing information
can be obtained via the SNMP from the intra-domain routers. For example, the OSPF MIB [3] can be
queried in a domain using the OSPF [28] as a routing protocol.

Other techniques of obtaining network topology have been also investigated. To monitor hierarchical
network topology, Novaes [29] uses IP multicast. Siamwalla et al. [34] propose several heuristics that
exploit SNMP, DNS, ping, and traceroute facilities to discover the network level topology of the Internet on
both intra-domain and backbone levels. Govindan et al. [15] infer the Internet map using hop-limited probes.
Reddy et al. [32] investigate a distributed topology discovery technique for the Internet. Breitbart et al. [7]
present an algorithm that obtains both network and data-link layer topology usingTCP/IP MIB-II [24] and
Bridge MIB[12]. The algorithm of Lowekamp et al. [23] discovers the topology of a large Ethernet network
allowing incomplete data inBridge MIBtables.

To build a probabilistic FPM, in addition to the information on the structure of dependencies in the con-
sidered system, we also need an assessment of confidence that a failure of an antecedent function or service
causes a failure of a dependent function or service. When such information is not available, the same value
may be assigned to all edges in the probabilistic FPM. As more information becomes available that allows
us to say that causal relationships between certain link and path failures are stronger than causal relation-
ships between other link and path failures, this knowledge can be used to modify the FPM by changing the
conditional probabilities accordingly. Thus, the probabilistic FPM does not require the precise knowledge of
the conditional probability distribution. In fact, discrete confidence levels can be used instead of continuous
probability values. In our previous work [39], [40], we have shown that, in a well instrumented network, as
few as three confidence levels allow fault localization to be almost as accurate as with the precise knowl-
edge of the conditional probability distribution. The value of the probabilistic fault localization technique
proposed in this paper is that it can improve the accuracy of fault localization, as compared to deterministic
techniques, by taking advantage of available information on non-deterministic causal relationships among
failure conditions.

28

B. Hierarchical routing assumption

The are a number of real-life situations, where the assumptions introduced in Section III do not hold.
This concerns particularly the single ingress- and egress-gateway assumption, which implies single-path
routing. In reality, multiple paths may exist between a source and a destination. A router decides which of
available paths it should choose based on various criteria [27], which include, for example, the parameters
of a TCP connection to which a packet belongs (to ensure all packets in the same TCP session use the same
route), (2) the TOS field in an IP datagram (in OSPF [28] used to differentiate the provided service based
on an objective specified in the TOS fields), or theoptionsfield of an IP datagram. The easiest way to
incorporate multiple routes between a source and a destination in the FPM is by including all links in these
routes as possible causes of an end-to-end disorder between the source and destination. Then, conditional
probabilities may be used to account for the frequency with which one route is used with respect to other
routes. Investigating more refined techniques of modeling multi-path routing is a future research problem.

C. Multi-level fault localization

In this paper, we presented a multi-domain fault localization solution that organizes domain and network
managers into a two-level hierarchy. This technique may be easily extended to a multi-level hierarchical
solution. In the extended technique, managers at intermediate levels perform functions of both a DM and
the NM and their FPMs contain features of FPMs of both a DM and the NM, i.e., they contain bothP- and
P̃-nodes. Combining these models and functionalities is rather straightforward. The only issue requiring an
explanation is the calculation of the prior failure probabilities assigned toP-nodes in an FPM of a DM that
is not a leaf-level manager. Recall from Section V that this probability is calculated by a DM using function
computeprior based on posterior fault probabilities represented byfault bel. In a two-level hierarchy, each
fault considered by a DM in the process of calculatingcomputeprior belongs to its managed domain (it
represents a failure of one of the domain’s host-to-host links), and therefore the values offault bel can
be obtained easily. In a multi-level hierarchy, a DMi that is not a leaf-level manager may need to obtain
fault bel(fj), wherefj represents a failure of a path segmentnp1

∗→ npm that spans multiple sub-domains
of theDi. In this case,fj may have no representation in the FPM of DMi. Thus, to calculatefault bel(fj)
exactly, DMi would have to splitnp1

∗→ npm into path-segments and linksnp1

∗→ El1
l1,lk

, El1
l1,lk

→ Il2l1,lk
,

Il2l1,lk

∗→ El2
l1,lk

, . . ., Elk−1

l1,lk
→ Ilkl1,lk

, Ilkl1,lk

∗→ npm , whereDl1 , . . ., Dlk are sub-domains ofDi that are

traversed bynp1

∗→ npm . Then, DMi would request DMl1 , . . ., DMlk to estimate the failure probabilities of
segmentsnp1

∗→ El1
l1,lk

, Il2l1,lk

∗→ El2
l1,lk

, . . ., Ilkl1,lk

∗→ npm , respectively, using functioncomputeprior. Thus,
assumingsn represents a path segment corresponding to domainDln , fault bel(fj) would be obtained using
the following formula:

fault bel(fj) = 1−
k∏

n=1

(1− computeprior({sn}))
k−1∏
n=1

(1− fault bel(f : Eln
l1,lk

→ Iln+1

l1,lk
))

It may be shown that, in general, such an exact approach would require the number of steps that is
exponential with the depth of the management hierarchy. A reasonable approach to avoiding this complexity
is to map every segmentsn into Pn, the closest-matchingP-node in the FPM of DMi, and use function
fault bel(Pn) instead ofcomputeprior({sn}). Note that forn = 2 . . . k − 1, this mapping is exact because
the FPM of DMi containsP-nodesP : Ilnl1,lk

∗→ Eln+1

l1,lk
= {sn}. Thus, the approximation concerns only the

first and last segments of pathnp1

∗→ npm .

D. Incremental algorithm

Recall from Section II that one of the positive features of Algorithm 2 is its ability to formulate an expla-
nation hypothesis in an incremental manner. Thanks to this feature, the algorithm continuously provides a
system administrator with information about which faults are likely to exist in the system given symptoms
observed thus far. The distributed version of Algorithm 2, Algorithm 3B, is not incremental as it requires
model synchronization each time an explanation is to be proposed. In our future research, we would like

29

to restore the incremental property in Algorithm 3B. In one approach, we could eliminate the model syn-
chronization from the fault selection phase altogether. This would make the algorithm incremental. Un-
fortunately, eliminating model synchronization from the fault selection phase slightly deteriorates the fault
localization accuracy. Thus, to maintain the high accuracy, a more intelligent approach to model synchro-
nization is needed that would update prior probabilities associated withP- andP̃-nodes on a continuous
basis during the symptom analysis phase without increasing its computational complexity. Once complete
model synchronization is incorporated in the fault selection phase, it will no longer be required in the fault
selection phase thereby allowing the algorithm to propose an explanation in an incremental manner.

X. CONCLUSION

The paper introduces a multi-domain fault localization approach to end-to-end service failure diagnosis
in hierarchically routed networks. This approach divides the computational effort and system knowledge
involved in end-to-end service-failure diagnosis among multiple, hierarchically organized managers. Each
manager is responsible for fault localization within the network domain it governs, and reports to a higher-
level manager that oversees and coordinates the fault-localization process of multiple domains. The paper
identifies two main difficulties of fault management in multi-domain networks: failure propagation among
domains and a lack of global information about the system structure and state. To address these challenges,
the paper first proposes an algorithmic framework for the design of probabilistic hierarchical multi-domain
fault localization techniques. It then introduces two refinements that expand on the centralized algorithms
introduced in our previous work: iterative belief updating [41] and incremental hypothesis updating [36].
The multi-domain approach is shown to provide high accuracy while increasing the admissible network size
by an order of magnitude.2

REFERENCES

[1] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. InProc. of 32nd Annual ACM symposium on
Theory of Computing, pages 171–180, Portland, OR, May 2000.

[2] R. Albert and A. Barabasi. Topology of evolving network:local events and universality.Physica Review Letters, pages
5234–5137, 2000.

[3] F. Baker and R. Coltun.OSPF Version 2 Management Information Base. IETF Network Working Group, 1995. RFC 1850.
[4] A. Barabasi and R. Albert. Emergence of scaling in random networks.Science, pages 509–512, Oct. 1999.
[5] A. Bierman and K. Jones.Physical topology MIB. IETF Network Working Group, 2000. RFC 2922.
[6] A. T. Bouloutas, S. B. Calo, A. Finkel, and I. Katzela. Distributed fault identification in telecommunication networks.Journal

of Network and Systems Management, 3(3), 1995.
[7] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri, and A. Silberschatz. Topology discovery in heterogeneous

IP networks. InProc. of IEEE INFOCOM, pages 265–274, 2000.
[8] T. Bu and D. Towsley. On distringuishing between Internet power law topology generators. InProc. of IEEE INFOCOM,

New York, NY, Jun. 2002.
[9] K. Calvert, M. Doar, and E. Zegura. Modeling Internet topology.IEEE Transactions on Communications, pages 160–163,

Dec. 1997.
[10] J. Case, M. Fedor, M. Schoffstall, and J. Davin.A Simple Network Management Protovol (SNMP). IETF Network Working

Group, 1990. RFC 1157.
[11] J. D. Case, K. McCloghrie, M. T. Rose, and S. Waldbusser.Protocol Operations for Version 2 of the Simple Network Man-

agement Protocol (SNMPv2). IETF Network Working Group, 1996. RFC 1905.
[12] E. Decker, P. Langille, A. Rijsinghani, and K. McCloghrie.Definition of Managed Objects for Bridges. IETF Network

Working Group, 1993. RFC 1493.
[13] DoD. Military Standard—Interoperability Standard for Digital Message Device Subsystems (MIL-STD 188-220B), Jan. 1998.
[14] S. Fakhouri, G. Goldszmidt, I. Gupta, M. Kalantar, and J. Pershing. GulfStream – a system for dynamic topology management

in multi-domain server farms. InIEEE International Conference on Cluster Computing, 2001.
[15] R. Govindan and H. Tangmunarunkit. Heuristics for Internet map discovery. InProc. of IEEE INFOCOM, pages 1371–1380,

2000.
[16] P. Hasselmeyer. An infrastructure for the management of dynamic service networks.IEEE Communications Magazine,

41(4):120–126, 2003.
[17] G. Jakobson and M. D. Weissman. Alarm correlation.IEEE Network, 7(6):52–59, Nov. 1993.

2The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied of the Army Research Lab or the U.S. Government.

30

[18] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology generator. Technical Report CSE-TR443-00, EECS, University of
Michigan, 2000.

[19] D. Johnson and D. Maltz.Dynamic Source Routing in Ad Hoc Wireless Networks, chapter 5, pages 153–181. Kluwer
Academic Publishers, 1996.

[20] I. Katzela, A. T. Bouloutas, and S. Calo. Comparison of distributed fault identification schemes in communication networks.
Technical Report RC 19630 (87058), T. J. Watson Research Center, IBM Corp., Sep. 1993.

[21] I. Katzela, A. T. Bouloutas, and S. B. Calo. Centralized vs distributed fault localization. In A. S. Sethi, F. Faure-Vincent, and
Y. Raynaud, editors,Integrated Network Management IV, pages 250–263. Chapman and Hall, May 1995.

[22] I. Katzela and M. Schwartz. Schemes for fault identification in communication networks.IEEE Transactions on Networking,
3(6):733–764, 1995.

[23] B. Lowecamp, D. R. O’Hallaron, and T. R. Gross. Topology discovery for large Ethernet networks. InProc. of ACM
SIGCOMM, pages 239–248, 2001.

[24] K. McCloghrie and M. Rose.Management Information Base for Network Mangement of TCP/IP-based internets: MIB-II.
IETF Network Working Group, 1991. RFC 1213.

[25] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE:universal topology generation from a user’s perspective. Technical
Report BUCS-TR-2001-003, Computer Science Department, Boston University, Apr. 2001.

[26] A. Medina, I. Matta, and J. Byers. On the origin of power laws in Internet topologies.ACM Computer Communications
Review, 30(2):18–28, Apr. 2000.

[27] J. T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison Wesley Longman, 1998.
[28] J. T. Moy. OSPF Version 2. IETF Network Working Group, 1998. STD 54.
[29] M. Novaes. Beacon: A hierarchical network topology monitoring system based in IP multicast. In A. Ambler, S. B. Calo,

and G. Kar, editors,Services Management in Intelligent Networks, number 1960 in Lecture Notes in Computer Science, pages
169–180. Springer-Verlag, 2000.

[30] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers,
1988.

[31] R. Perlman.Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols. Addison Wesley,
1999.

[32] A. Reddy, D. Estrin, and R. Govindan. Large-scale fault isolation.Journal on Selected Areas in Communications, 18(5):723–
732, 2000.

[33] Y. Rekhter and T. Li.A Border Gateway Protocol 4 (BGP-4). IETF Network Working Group, 1995. RFC 1771.
[34] R. Siamwalla, R. Sharma, and S. Keshav. Discovering Internet topology. Technical report, Cornell University, 1998.
[35] M. Steinder. Probabilistic inference for diagnosing service failures in communication systems. PhD thesis, University of

Delaware, 2003.
[36] M. Steinder and A. S. Sethi. Non-deterministic diagnosis of end-to-end service failures in a multi-layer communication

system. InProc. of ICCCN, pages 374–379, Scottsdale, AZ, 2001.
[37] M. Steinder and A. S. Sethi. The present and future of event correlation: A need for end-to-end service fault localization. In

N. Callaos et al., editor,World Multi-Conf. Systemics, Cybernetics, and Informatics, volume XII, pages 124–129, Orlando,
FL, 2001.

[38] M. Steinder and A. S. Sethi. Distributed fault localization in hierarchically routed networks. In M. Feridun, P. Kropf, and
G. Babin, editors,13th Int’l Workshop on Distributed Systems: Operations and Management, number 2506 in Lecture Notes
in Computer Science, pages 195–207, Montréal, Canada, Oct. 2002. Springer.

[39] M. Steinder and A. S. Sethi. Increasing robustness of fault localization through analysis of lost, spurious, and positive
symptoms. InProc. of IEEE INFOCOM, New York, NY, 2002.

[40] M. Steinder and A. S. Sethi. Non-deterministic event-driven fault diagnosis through incremental hypothesis updating. In
G. Goldszmidt and J. Schoenwaelder, editors,Integrated Network Management VIII, Colorado Springs, CO, Mar. 2003.

[41] M. Steinder and A.S. Sethi. End-to-end service failure diagnosis using belief networks. In R. Stadler and M. Ulema, editors,
Proc. Network Operation and Management Symposium, pages 375–390, Florence, Italy, Apr. 2002.

[42] W. R. Stevens.TCP/IP Illustrated, volume I. Addison Wesley, first edition, 1995.
[43] A. S. Tanenbaum.Computer Networks. Prentice Hall, second edition, 1996.
[44] Tivoli. Netview for Unix: Administrator’s Guide, Version 6.0, Jan. 2000.
[45] S. Willis, J. Burruss, and J. Chu.Definitions of Managed Objects for the Fourth Version of the Border Gateway Protocol

(BGP-4) using SMIv2. IETF Network Working Group, 1994. RFC 1657.
[46] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and robust event correlation.IEEE Communications

Magazine, 34(5):82–90, 1996.

