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Abstract. This paper presents an analytical methodology to obtain

steady state throughput of a uniformly and fully loaded regular network.

The network operates using deflection routing under the condition that

a data packet is allowed to experience a finite number of deflections.

Unlike the published analytical methods, the proposed method allows

the analysis of a final number of deflections a packet can experience by

means of harnessing polynomials in a novel way. The analytical results

of the network throughput agree with the simulation results with rela-

tive error of 1% on average. The analysis is presented in the context of

the shufflenet with the node connectivity of two. The largest network

considered in the article has 896 nodes.
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1 Introduction

The all-optical technology [1] is being developed as the promise of future commu-
nication networks. Among various technical challenges, the most notable is the
lack of optical memories [2], which eliminates store-and-forward routing. There-
fore the all-optical switches cannot buffer packets but only delay, and then relay
them using deflection routing. Thus deflection routing is currently essential to
all-optical technology.

Deflection routing copes with the lack of optical memories by misdirecting a
data packet (i.e. sending it using a wrong connection) due to the lack of the de-
sired connection. Since this routing strategy is probabilistic, a packet can travel
indefinitely long in the network (the livelock problem, [3]) and impede network
performance. Moreover, unlimited deflection is undesirable, as the severely de-
layed packets are considered lost by the TCP protocol.

Barth et al. introduce in [4] the notion of mixed routing, a new method of
ensuring the maximal delay of a packet, according to which a packet is forwarded
with deflection routing up to the moment when it reaches some fixed number of



deflections. After that the packet is relayed in the network according to the rules
of convergence routing on an Euler cycle. In order to evaluate the performance
of their method, it is first necessary to evaluate the performance of deflection
routing with a finite number of allowed deflections, which motivates this article.

We describe an analytical method to evaluate the performance of a regular
network which operates using deflection routing under the condition of a finite
number of deflections. After a packet reaches the limit of deflections, it is elimi-
nated from the network and lost. The analysis applies to regular networks under
a full and uniform traffic load.

The analysis is based on the approach of Acampora and Shah presented in [5],
where they analyze uniformly loaded regular networks, but with no restrictions
imposed on the number of deflections (packets can experience any number of
deflections). We adopt their method to facilitate the analysis under the condition
of a finite number of deflections. We encourage a reader unfamiliar with their
method to read their article.

We extend their approach by the introduction of polynomials. Acampora
and Shah express the probabilities of packet presence by real numbers, while
we express these probabilities by polynomials of real coefficients. A polynomial
serves as a tool to remember a number of deflections a packet undergoes.

2 Network Model

The network is homogeneous: every node of the network functions both as a
routing node for packets in transit and as an access point where packets can
enter or exit the network.

The network works synchronously, i.e. time is divided into time slots and is
the same for every node. Packet transmissions take place at the beginning of
time slots.

The load of the network is full and uniform. During every time slot at every
node there are always enough packets waiting for admission, so that the network
is constantly fully loaded. The probabilistic nature of packet arrivals before their
admission is irrelevant to this analysis. A packet’s source and destination are
chosen uniformly from all the nodes. To ensure uniform traffic we allow a node
to be both a packet’s source and destination.

The analysis can be applied to a regular network or, using the graph theory
nomenclature, to a node symmetric network. In a regular network every node is
equivalent to every other node, which, together with the assumption of traffic
uniformity, allows the analysis to be carried out for one node only.

2.1 Shufflenet

To ease the description of our analysis we shall present it for one regular network.
For this purpose we choose the shufflenet with the node connectivity, also called
node degree, of two: two inbound and two outbound links. The network has
N = n2n nodes and M = 2N unidirectional links, where n is the network size.



There are n columns of nodes, where each column contains 2n nodes. A sample
network of size n = 2 is shown in Fig. 1. Nodes in the first column and the last
column are the same nodes.

This network can operate with mixed routing since it has an Euler cycle. A
necessary and sufficient condition for a network to have an Euler cycle is that
the node connectivity of its every node is even. Thus, the considered network
has an Euler cycle because the node connectivity of its every node is two.

1 5 1

2 6 2

3 7 3

4 8 4

Fig. 1. A shufflenet of size n = 2.
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Fig. 2. Logical structure of a node.

2.2 Deflection Routing

Deflection routing does not buffer packets as store-and-forward routing does but
instead relays them during the next time slot after the time slot in which they
arrived.

A packet at a node may have a preferred link which is a link that yields a
shortest path journey to its destination. A link is not considered preferred when
every link at the node offers a journey of the same length.

For a packet every node can be only a “care” node or a “don’t care” node.
At a “care” node the packet has a preferred link, as opposed to a “don’t care”
node where neither of the links is preferred.

At a node a packet is either deflected (it undergoes a deflection) or correctly
routed. A packet is deflected only at “care” nodes when it is refused a preferred
link, and it is correctly routed otherwise.

For instance, consider the network in Fig. 1 and a packet which is destined
for node 2. Node 5 is a “care” node where the bottom link is preferred. There
the packet experiences a deflection when it is sent along the upper link. At node
6 the packet does not possess a preferred link, is insusceptible to a deflection,
and therefore node 6 is a “don’t care” node.

Let an integer S be defined as the maximal number of deflections a packet can
suffer. A packet is allowed to have at most (S − 1) deflections, and is eliminated
from the network when it undergoes the Sth deflection. Every packet keeps a
counter of its number of experienced deflections.

A packet in the network always either is delivered at the destination or is
eliminated from the network. A successful packet experiences during its journey



at most (S − 1) deflections and finally reaches the destination. Conversely, for
an unsuccessful packet the number of deflections increases to S, and the packet
is eliminated from the network.

2.3 Node Type

Each node is of the type shown in Fig. 2, which is a modified version of the
type proposed in [6]. There are two major blocks: “add/drop” for receiving and
injecting packets, and “routing” for directing packets to appropriate neighbor
nodes. The “add/drop” block consists of two minor blocks, one absorbs packets,
the other injects packets. The node connectivity is two (two inputs “i1, i2”, and
two outputs “o1, o2”), but the analytical method is not limited to this case only
and should apply to any other node connectivity.

When a packet arrives at a node it is absorbed by the “abs.” block on con-
dition that this node is the packet’s destination. In every time slot at most two
packets can be absorbed, which are then relayed by the “rx” links. Packets are
injected into the network by the “inj.” block that can receive at most two packets
from its four inbound links. First, the packets from the “abs.” block are accepted.
Next, new packets from the “tx” links are admitted if no packet or one packet
arrived from the “abs.” block. New packets are admitted even if they cause a
contention.

The second major block is responsible for routing packets. Packets arrive
along the block’s inbound links, and are directed appropriately to the outbound
links. If a contention takes place, then the winning packet uses the preferred out-
bound link, while the deflections counter of the losing packet is increased by one.
The losing packet is eliminated from the network provided that its deflections
counter reaches the value of S, or otherwise it is sent to the remaining outbound
link.

A packet’s elimination renders one output link (either “o1” or “o2”) idle,
which cannot be utilized to transmit any other packet. Therefore the number of
links used by the eliminated packet during its journey is the packet’s number of
hops increased by one.

2.4 An Upper Bound on the Number of Used Links

In this subsection we obtain an upper bound on the number of links any packet
can use, which is defined as an integer K. The upper bound is derived for any
network, not only for the shufflenet. A successful packet, one that gets to its
destination, makes at most K hops, whereas an unsuccessful packet, one that is
eliminated from the network, uses at most K links.

To derive the value of K, consult Fig. 3, which presents the worst scenario of a
packet journey. The packet enters the network at the source node A and is bound
to the destination node B. The node A is at the greatest possible distance from
the node B, i.e. at the distance equal to the network’s diameter (the network’s
diameter is the length of the longest path of all shortest paths between any pair
of nodes). The packet travels without a deflection from the node A to the node



C using (diameter − 1) links. Right at the node C the packet experiences its
first deflection, and is sent back to the node A using one link. Now the packet
is again at the source node A where up to now it has used diameter links and
experienced one deflection. This situation happens exactly (S − 1) times, after
which the packet is at the node A with (S − 1) · diameter used links and (S − 1)
experienced deflections.

Next, the packet is at the node C after (diameter − 1) hops. From here a
packet either gets to the node B in one hop, or is eliminated and uses one link.
Therefore the worst scenario requires a packet to use K links:

K = S · diameter. (1)

For instance, for the network from Fig. 1 and S = 1 (no deflections allowed),
the value of K equals 3.

A

1

C B
1

(S − 1) loops

diameter − 1
Here the packet is deflected (S − 1) times.

Fig. 3. The worst scenario of delivering a packet.

3 Analysis

The objective of the analysis is to obtain the steady state throughput λ of the
system, i.e. the average number of packets that reach their destinations in a
single time slot. Note that the number of packets admitted into the network is
not equal to the number of packets arriving at their destinations because packets
can be eliminated from the network.

The analysis in the following subsections is presented with the top-down
approach: the throughput is derived using values that are described in detail in
subsequent subsections.

3.1 Deriving λ

To obtain the network throughput first definitions of some probabilities are in-
troduced. The probability that a packet is delivered to its destination using k
links is denoted by:

PD[k] = P [a packet is delivered

using k links], k = 1, . . . ,K,
(2)



and the probability that a packet reaches its destination is:

PD =

K
∑

k=1

PD[k]. (3)

The probability that a packet is eliminated and used k links is denoted by:

PE [k] = P [a packet is eliminated and

used k links], k = 1, . . . ,K,
(4)

and the probability that a packet is eliminated is:

PE =

K
∑

k=1

PE [k]. (5)

Due to the limited number of deflections, every packet in the network even-
tually either reaches its destination or is eliminated from the network, and there-
fore:

PD + PE = 1. (6)

Packets that have experienced fewer than S deflections and have not been
eliminated from the network, usually reach their destinations using DD links:

DD =
1

PD

K
∑

k=1

kPD[k]. (7)

Correspondingly, eliminated packets (every such packet has experienced ex-
actly S deflections) use on average DE links:

DE =
1

PE

K
∑

k=1

kPE [k]. (8)

Not all the packets present in the network reach their destinations, but only
a fraction η of those packets do,

η =
DDPD

DDPD + DEPE

. (9)

The number of packets present in the network is equal to the number M of
the network links, since the network is fully loaded. However, the average number
of packets that are present in the network and that reach their destinations is:

M ′ = ηM. (10)

Finally, from Little’s law the network throughput is given by

λ =
M ′

DD

. (11)

To compute λ we need not only the value of M , which is provided by the
user, but more importantly the values of PD[k] and PE [k] for k = 1, . . . ,K. This
is the crux of the analysis, discussed in detail in the following subsection.



3.2 Deriving PD[k] and PE[k]

To obtain PD[k] and PE [k], the behavior of an average packet in the system is
modeled by the behavior of the test packet. Since the network is regular and the
traffic is uniform, the test packet is traced on its journey not to every node, but
only to node 1.

We calculate the probabilities that the test packet resides at a particular
node of the network during a particular time slot. These probabilities are stored
in the vectors Pk for k = 0, 1, 2, . . . ,K, where K is the maximal number of time
slots any packet can be present in the network. The probabilities of the test
packet residency in the network during the kth time slot are expressed by the
vector Pk:

Pk =

















p1,k(x)
...

pi,k(x)
...

pN,k(x)

















. (12)

with polynomial elements pi,k(x) of the form:

pi,k(x) =

S−1
∑

j=0

pi,k[j]xj . (13)

Each polynomial pi,k(x) provides information on the probability that the test
packet resides at node i during the kth time slot. This probability is hereafter
also referred to as residency probability. The polynomial is of the degree at most
(S − 1), deg pi,k(x) ≤ S − 1. The coefficient pi,k[j] provides the probability that
not only the packet resides at node i during the kth time slot, but also that the
test packet suffered j deflections on its journey up to this point. The polynomial
pi,k(x) for x = 1 becomes: pi,k(1) =

∑S−1

j=0
pi,k[j] and expresses the probability

of the test packet presence at the ith node during the kth time slot regardless
of the specific number of suffered deflections.

With the probability 1/N the test packet starts a journey at every node of
the network, including the destination node (i.e. the 1st node) to preserve traffic
uniformity. We realize that it is unrealistic for a packet to have the same node as
the source and the destination. Nonetheless, under this assumption the presented
analysis is more accurate. The vector P0 is:

P0 =

(

1

N
, . . . ,

1

N

)T

. (14)

The average value of the probability of a packet deflection at a “care” node is
denoted by d and called the probability of deflection. This value is assumed to be
constant and equal for every node. Conversely, p = (1−d) is the probability that



the test packet at a “care” node is not misrouted, but assigned to its preferred
outbound link.

Let us consider three examples of calculating residency probabilities. For each
example the setting is identical: the considered network is shown in Fig. 1; during
time slot 0 the test packet resides at every node with an equal probability; the
test packet is destined to node 1. We are interested in the residency probabilities
for nodes 3, 1 and 2 during time slot 1.

First, let us study the probability that the test packet resides at node 3. The
packet can reach node 3 from nodes 6 and 8, which are “don’t care” nodes with
respect to node 1. From a “don’t care” node the packet departs on any of the
node’s outbound links with an equal probability (the probability is 1/2 for the
node connectivity of two), and so: p3,1(x) = 1

2
· p5,0(x) + 1

2
· p7,0(x) = 1

8
.

Second, consider the probability that the test packet arrives at node 1. There
the test packet can arrive from nodes 5 and 7, which are both “care” nodes. Hence
the test packet at these two nodes has to be routed according to its preference:
p1,1(x) = p · p5,0(x) + p · p7,0(x) = p

4
.

The last example is most interesting. Node 2 can be reached by the test packet
from nodes 5 and 7 under the condition of losing a contention at each of the two
nodes. Losing a contention occurs with the probability d and thus: p2,1(x) = xd ·
p5,0(x) + xd · p7,0(x) = d

4
x. Multiplication by x expresses a deflection. Therefore

the probability d
4
x provides the information that the packet experienced one

deflection.
A very important fact to stress is that multiplication of a residency prob-

ability pi,k(x) by xd may result in a polynomial of the degree equal to S. As
stated earlier, a polynomial can be of the degree at most (S − 1). When such
an event arises, the polynomial’s highest term is discarded, which corresponds
to elimination of the test packet from the network.

To calculate the residency probabilities for every node during time slot 1, the
matrix T0 is introduced. The polynomial element t′i,j(x) of the matrix expresses
the probability of the test packet transition from node j to node i, provided
that the test packet resides at node j. Having defined T0, the computation of
the vector P1, i.e. residency probabilities for every node, is elementary:

P1 = T0P0. (15)

The following is the transition matrix T0 for the network shown in Fig. 1:

T0 =

























0 0 0 0 p 0 p 0
0 0 0 0 xd 0 xd 0
0 0 0 0 0 1

2
0 1

2

0 0 0 0 0 1

2
0 1

2

p 0 p 0 0 0 0 0
xd 0 xd 0 0 0 0 0
0 p 0 p 0 0 0 0
0 xd 0 xd 0 0 0 0

























. (16)

The elements of the transition matrix are deduced as follows. If a link between
nodes j and i does not exist, then the test packet cannot make a transition, and



for that reason t′i,j(x) equals 0. The test packet leaves a “don’t care” node j by
any of the two outbound links with an equal probability t′i,j(x) = 1/2. Transition
along a preferred link is represented by t′i,j(x) = p, while t′i,j(x) = xd corresponds
to a transition with a deflection. These rules are summarized below:

t′i,j(x) =















0 for no transition
1

2
for routing without preference

p for preferred routing
xd for routing with a deflection.

(17)

The first time slot is special, because the test packet is allowed to leave the
destination node, whereas during every other time slot the packet is absorbed by
the destination. The form of the matrix T0 reflects this exception by having two
nonzero elements in the first column. For every other time slot the transition
matrix is different and denoted by T :

T =

























0 0 0 0 p 0 p 0
0 0 0 0 xd 0 xd 0
0 0 0 0 0 1

2
0 1

2

0 0 0 0 0 1

2
0 1

2

0 0 p 0 0 0 0 0
0 0 xd 0 0 0 0 0
0 p 0 p 0 0 0 0
0 xd 0 xd 0 0 0 0

























. (18)

The following matrix equation serves to obtain the vectors Pk:

Pk = TPk−1, k = 2, . . . ,K. (19)

Up to this point the polynomial vectors Pk of probabilities have been derived,
from which the values of PD[k] and PE [k] are calculated. Let us start with
providing the easier one:

PD[k] = p1,k(1), k = 1, . . . ,K. (20)

The harder one is the probability of a packet elimination PE [k], which is
equal to the product of the probability of deflection d and the probability that
the test packet which endured (S−1) deflections is subject to routing at a “care”
node during the kth time slot:

PE [k] = d ·

N
∑

i=1

bi,k−1[S − 1], k = 1, . . . ,K, (21)

where the vector Bk, with elements bi,k, represents the residency probabilities
of the test packet being subject to routing at “care” nodes during the previous
time slot. The vector Bk is defined as:

Bk = (α1e1,k(x), . . . , αiei,k(x), . . . , αNeN,k(x))
T

, (22)



where αi = 1 if node i is a “don’t care” node (with regard to node 1), αi = 0 if
node i is a “care” node (with regard to node 1), and elements ei,k(x) belong to
the vector Ek:

Ek =

{

P0 for k = 0

(0, p2,k(x), . . . , pN,k(x))
T

for k = 1, 2, . . . , L.
(23)

The vector Ek expresses the probabilities that the test packet is subject to
routing at the kth time slot, while the vector Bk expresses the probabilities that
the test packet at the kth time slot is subject to routing at “care” nodes.

Now, the matrices T0 and T depend on the value of d. Following [5] the value
of d for a full and uniform load is:

d =
1

4
(1 − Pdc), (24)

where Pdc is defined in the following subsection.

3.3 Deriving Pdc

Pdc is the probability of encountering a “don’t care” node (with regard to node
1) by the test packet any time it arrives at a node during its entire journey. It
is defined as follows:

Pdc =

∑K

k=1

∑N

i=1
bi,k(1)

∑K

k=1

∑N

i=1
ei,k(1)

. (25)

In [5] the method for obtaining Pdc substantially differs from the method
presented here. There the probability is calculated for the test packet when it
reaches the destination, while our method takes into account not only delivered
but also eliminated packets.

The probability Pdc depends on the vectors Pk. These vectors rely on the
probability of deflection d, which in turn depends on Pdc. Thus a more precise
value of Pdc is acquired by successive approximations.

The initial guess for the value of Pdc is the ratio of the number of “don’t
care” nodes to the number of all nodes, which is the first rough approximation.
For the approximated value of Pdc the value of d is calculated from (24), new
matrices T0, T are generated, then vectors Pk are computed using (15), (19),
and finally a new and refined value of Pdc is obtained from (25).

The process is repeated the necessary number of times until the desired
precision of Pdc is reached. In our calculations the precision of the order of 10−4

was attained after a few iterations, as the successive values of Pdc converged
smoothly and fast.

Let us evaluate the running time of the algorithm. One iteration, which
produces the next approximation of Pdc, requires O(KN2) multiplications of
two polynomials: K number of vectors Pk need to be obtained, and each of them
costs O(N2) multiplications. A multiplication of two polynomials costs O(S2),
and therefore the overall cost of an iteration is O(KN 2S2).
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4 Results and Verification

This section presents our results of the analysis and their verification with sim-
ulations carried out within the framework of the Omnet++ software [7]. The
results are presented in Figures 4, 5, 6, 7 which display the analysis results as
fine squares, whereas the discrete simulation results are presented as lines to
distinguish them from the analysis results.

In comparison with simulations, the relative error of our analytical through-
put was on average below 1%, and for the network of size n = 1 it equaled
approximately 2%. The analysis of the network of size n = 1 was the most inac-
curate, whereas the accuracy of the analysis was increasing as we were enlarging
the size of the network.

Fig. 4 shows the network throughput λ as a function of the number of allowed
deflections S for various network sizes n. The throughput is similar for different
values of S. When the value of S is small, then packets do not live long in the
network, and in their place new packets are admitted. As a result, even though
many packets are eliminated (more than 50%), other packets are promptly ad-



mitted. When the value of S is large, then almost no packet is eliminated, but
there are long living packets which block the network and lower the thoughput.

Fig. 5 presents the probability PD with which a packet successfully arrives at
the destination provided it is allowed to undergo S deflections. There are three
series for n = 1, 4, 7. As expected, the probability increases in tandem with the
number of allowed deflections.

The probability PE [k], that a packet in the network of size n = 5 is eliminated
and that it used k number of links, is shown in Fig. 6 for S = 1, 2, 4, 6.

The last figure (Fig. 7) depicts the probability PD[k] with which a packet is
delivered to its destination in k number of hops in the network of size n = 5.
There are four series for S = 1, 2, 4, 6.

5 Conclusion

The article presented above discusses a novel methodology which incorporates
polynomials of real coefficients to allow the analysis of a finite number of de-
flections. Simulations have confirmed that this method is accurate and serves its
purpose.

Future work includes an analysis of mixed routing [4], to which our methodol-
ogy should be applicable. Another future plan is to further increase the accuracy
of our analysis.
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