
Efficient, Authenticated, and Fault-Tolerant
Key Agreement for Dynamic Peer Groups

Li Zhou and Chinya V. Ravishankar

Department of Computer Science & Engineering
University of California, Riverside

Riverside, CA 92521, USA
{lzhou,ravi}@cs.ucr.edu

Abstract. We present an efficient authenticated and fault-tolerant
protocol (AFTD) for tree-based key agreement. Our approach is driven
by the insight that when a Diffie-Hellman blinded key is updated, in
a tree-based method, it suffices to send the update to a small subset
of the group, instead of entire group, as current methods require.
Our scheme distributes each updated public key to a relatively small
subgroup, called its trust set, greatly improving performance. Moreover,
we use a threshold secret sharing method to distribute the function
of the trusted authority across trust sets, thereby guaranteeing key
authentication, enhancing fault-tolerance, and protecting our protocol
from impersonation attacks. Our performance analysis suggests that our
scheme significantly reduces the communication overhead and storage
requirement.

Keywords: Secure Group Communication, Key Agreement, Key Au-
thentication

1 Introduction

As a result of the increased popularity of group-oriented applications, such as
pay-TV, distributed interactive games, teleconferencing and chat rooms, there is
a growing demand for security services to achieve secure group communication.
A common method is to encrypt messages with a group key, so that entities out-
side the group cannot decode them. A satisfactory group communication system
would possess the properties of group key security, forward secrecy, backward
secrecy, and key authentication/integrity [1,2,3]. In this paper, we focus on Key
authentication/integrity, which ensures that public keys of group members can-
not be modified by adversaries. There are two approaches for generating such
group keys: centralized key distribution and distributed key agreement. Central-
ized key distribution uses a dedicated key server, resulting in simpler protocols.
However, centralized methods fail entirely once the server is compromised, so
that the central key server makes a tempting target for adversaries. In addition,
centralized key distribution is not suitable for dynamic peer groups, in which all
nodes play the same function and role, thus it is unreasonable to make one the

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 759–770, 2004.
c© IFIP International Federation for Information Processing 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

760 L. Zhou and C.V. Ravishankar

key server, placing all trust in it. In contrast, distributed key agreement requires
each member to contribute a share to generate the group key, resulting in more
complex protocols.

The group key is updated on every membership change for forward and
backward secrecy, a method called group rekeying. To reduce the number of
rekeying operations, Wong et al. [4] proposed a logical data structure called a
key tree that reduces the rekeying overhead from O(n) to O(log n), where n is the
group size. Based on this idea, Kim et al. proposed a tree-based key agreement
protocol, TGDH [1], which is a combination of key tree and Diffie-Hellman key
exchange to generate and maintain the group key.

Unfortunately, TGDH suffers from two drawbacks. As explained in Section 3,
it remains prone to impersonation attacks, and uses more messages than neces-
sary.

1.1 Our Work

In this paper, we propose a novel Authenticated, Fault-tolerant Tree-based
Diffie-Hellman key agreement protocol, AFTD, based on two key ideas. First,
as explained in Section 3, it is gross overkill to broadcast updated public keys
to all group members for recomputing the group key when a node ni joins or
leaves. It suffices to send each update to a much smaller subset of nodes in the
tree, called its trust set TS(ni). Second, we achieve robust key authentication
by distributing the function of trusted authority among the nodes in TS(ni),
using a threshold cryptographic scheme. Any k members of a node’s trust set
can serve as its public key certificate authority. Our performance analysis shows
this scheme can reduces the communication overhead from O(n2) to O(n log n)
for initialization, and from O(n log n) to O(n) for rekeying. It also reduces the
storage requirement for blinded keys from O(n) to O(log n). This feature is
particularly useful when a broadcast channel is unavailable.

The rest of this paper is organized as follows. We survey related work in
Section 2. Section 3 motivates our work and defines our intrusion model. We
present our solution in Section 4 and demonstrate performance analysis and
comparison in Section 5. Finally we make a conclusion in Section 6.

2 Related Work

Key trees [4,5] were first proposed for centralized key distribution, while Kim et
al. [1] adapted it to a distributed key agreement protocol TGDH. Every group
member create a key tree separately. Each leaf node is associated with a real
group member, while each non-leaf node corresponds to a subgroup of group G,
considered a virtual member . In Figure 3, virtual member V4 corresponds to the
subgroup that contains two real group members M3 and M4.

In TGDH, every node on the key tree has a Diffie-Hellman key pair based
on the prime p and generator α, used to generate the group key. Secret-public
key pair {KMi ,BKMi = αKMi mod p} is for real member Mi, and {KVi ,BKVi =

Efficient, Authenticated, and Fault-Tolerant Key Agreement 761

αKVi mod p} is for virtual member Vi. Public key BKMi is also called as blinded
key. Consider a node Mv whose left child is Mlv and right child node is Mrv

(to simplify the description, we do not distinguish real members from virtual
members here). Mi’s secret key can be computed in the usual Diffie-Hellman
fashion as KMv ≡ (BKlv)Krv ≡ (BKrv)Klv mod p.

With all blinded keys well-known, each group member can compute the secret
keys of all nodes on its key path, comprising the nodes from the leaf node up to
the root. The root node’s secret key KV0 is known to all group members, and
becomes the group key. In Figure 3, group member M2 knows the key pairs of
M2, V3, V1 and V0. V0’s secret key is the group key.

Steiner et al. [6,2] proposed a family of Group Diffie-Hellman (GDH) pro-
tocols for dynamic peer groups. Based on them, Ateniese et al. [7] proposed a
new multiparty authenticated key agreement protocol, which offers key authen-
tication/integrity, key confirmation, and non-repudiation of group membership.
However, some flaws in this protocol have been found by Pereira et al. [8].

Lee et al. [9,10] have designed several tree-based distributed key agreement
protocols, reducing the rekeying complexity by performing interval based rekey-
ing. They also present an authenticated key agreement protocol. As the success
of their scheme is partially based on a certificate authority, their protocol will
encounter the same problems as centralized trust mechanisms.

In [11], Kong et al. provide robust and ubiquitous security support for mo-
bile ad-hoc networks. In their scheme, they distribute the certificate authority
functions through a threshold secret sharing mechanism, in which each entity
holds a secret share, and multiple entities in a one-hop neighborhood jointly
provide certificate services. Our distributed trust mechanism differs from theirs
in two aspects. First, our goals are different. Second, the nodes that offer valid
certificates are different [12].

3 Motivation and Attack Model

TGDH [1] is a simple and efficient approach for the establishment of ephemeral
keys for group sessions, however, it suffers from two significant drawbacks.

First, although TGDH uses authenticated channels, it still seems vulnerable
to impersonation attacks. To provide authenticated blinded keys, TGDH sug-
gests that every protocol message be signed by its sender using some strong
public signature method such as DSA or RSA, and then verified by all receivers
using the sender’s public key. However, TGDH is a session key generation pro-
tocol, and does not address the long-term security of DSA or RSA keys. Since
adversaries can compromise those keys in the long run, these keys must be re-
freshed periodically from a trusted source that is available online. Our approach
is to define a trust set for each member Mi, and distribute the function of trusted
authority across trust sets so that any k members from this set can offer Mi’s
public key certificate, enhancing fault-tolerance. We distribute the function of
trust authority in a manner similar to the scheme in [11], which is based on
(k, n)-threshold secret sharing scheme. It is pointed out in [13] that scheme

762 L. Zhou and C.V. Ravishankar

in [11] is not usable in a group with malicious members since it does not provide
an important property known as verifiability. However, we focus on the correct
and secure generation of group keys in the face of outsider attacks mounted by
non-group members as in [14,15]. We do not address insider attacks mounted by
malicious group members because they can always reveal their own private keys
or the group key to non-group members, thus causing fraudulent membership
events or compromising group communication. Thus our scheme is unaffected
by the flaw pointed out in [13]. Detailed description of intrusion model appears
in [12].

Second, TGDH involves excessive communication and storage overheads
caused by broadcasting updated blinded keys. This problem becomes more se-
rious if membership events are common. Storage requirement also becomes an
important issue when resource limited devices, such as PDAs, are able to join
the group as qualified group members. In our scheme, instead of broadcasting
these updates, they are transmitted to a smaller subset of nodes (trust set), so
that communication and storage overheads can be reduced significantly.

4 Our Solution

4.1 Overview

TGDH [1] observes that a node n1 in the group needs to know the blinded key
of another node n2 only if n2 is on its co-path, defined as the set of siblings of
each node in the key path of n1. However, we offer the key insight that even
more is true. In fact, an update of a blinded key need be sent only to a small
subset of the group, instead of entire group. Because of the way Diffie-Hellman
key exchanges are used in a key tree to generate the group key, the blinded
key of any node ni is only needed by the leaf nodes of the subtree rooted at ni’s
sibling. This group of nodes, which we call ni’s trust set , forms the basis for both
improved efficiency as well as key authentication. We send each node’s blinded
keys only to its trust set. A node’s trust set is also entrusted with the task of
responding to requests for its public key, and provides key certificates using a
threshold cryptographic scheme. This insight is missing from earlier work.

Key Management Phases. In our scheme, each group member construct
a key independently. Each real group member Mi has two key pairs: a Diffie-
Hellman key pair, {KMi

,BKMi
= αKMi mod p}, which is used to generate the

group key, and an RSA secret-public key pair, {Di, Ei}, which is used to provide
source authentication. Non-leaf nodes Vi are virtual members, and have only a
Diffie-Hellman key pair {KVi

,BKVi
= αKVi mod p}.

Group key management in our approach occurs in two phases: the initial-
ization phase and the rekeying phase. Initialization is a one-time activity that
distributes appropriate public-key certificates to trust sets. While such initial-
ization may be done in many ways, we simplify our presentation by postulating
that this function is performed by a trusted authority (TA), which subsequently
goes offline. Offline here means the TA will not issue renewed public key cer-
tificates for existing group members during the process of group rekeying. New

Efficient, Authenticated, and Fault-Tolerant Key Agreement 763

M1

M2

Trusted Authority
(TA)

RSA key pair {SK, PK}

M1’s trust set

Initialization

M5

M3

M4

(a) Initialization Phase

M1

M2

(BKM1)SK

M1’s trust set

BKM1 ?

1. JR
2. (JR)SK

3. (JR)SK

JR: Join Request Message

Mn+1

(b) Rekey Option
1: Certification by
Peers

M1

M2

Offline Trusted Authority
(TA)

RSA key pair
{SK, PK}

(BKM1)SK

M1’s trust set

BKM1 ?

1. JR

2. (JR)SK

3. (JR)SK

JR: Join Request Message

Mn+1

(c) Rekey Option 2: Certifica-
tion by Offline Trusted Author-
ity

Fig. 1. AFTD overview

members wishing to join the group may obtain initial certificate from the TA at
any time prior to join.

This TA uses an RSA secret-public key pair {SK, PK}, and establishes public
key certificates for each group member Mi by signing Mi’s public key with its
secret key SK. Mi’s public key certificate 〈Mi,BKMi , Ei〉SK is now distributed
to its trust set. Since the public key PK is well known, any member of Mi’s trust
set can verify this certificate and obtain Mi’s public key.

The initialization phase also distributes a secret share SKj of the secret
key SK to each group member Mj using Shamir’s (k, n)-threshold sharing [16],
which is used for creating partial public key certificates held by members of trust
sets. A node Mj in Mi’s trust set verifies the original certificate for Mi (signed
using SK), and re-encrypts it with SKj to create a partial certificate. Now any k
members in the trust set of a given group member can offer that group member’s
public key certificate by group signing of certificates.

In the rekeying phase, AFTD includes protocols in support of three opera-
tions: join, leave and interval multicast.

4.2 Initialization Phase

Assume the group G has n real group members M1, M2, . . . , Mn initially. We
describe how to distribute the function of the trusted authority to appropriate
subgroups (trust set) so that any k member nodes in an appropriate subgroup
can offer the corresponding valid certificate. Here “valid” means the certificate
has been signed with the system secret key SK.

Distributing the system secret key shares SKi. Our design uses
Shamir’s (k, n)-threshold scheme [16]. First, the TA randomly selects a (k − 1)-
degree polynomial f(x) = SK + a1 · x + · · · + ak−1 · xk−1, such that the
shared secret is f(0) = SK. Each group member obtains a secret share
SSMi = (f(Mi) mod m). For any k group members {M1, M2, . . . , Mk}, La-

764 L. Zhou and C.V. Ravishankar

grange interpolation yields SK ≡ ∑k
i=1(SSMi · lMi(0)) ≡ ∑k

i=1 SKi (mod m),
where lMi

(0) are the Lagrange coefficients1.
Obtaining valid certificates: The certificate X for any node is served by

the node’s trust set, with each member in that trust set providing a partial
certificate XSKi . With any k partial certificates, the requesting member can
compute the valid certificate as XSK1 · XSK2 · · ·XSKk = X(

∑k
i=1 SKi) = XSK

[11]. Thus, these k members can work like a trusted authority, and jointly offer
the certificate. (We use the t-bounded coalition offsetting algorithm proposed
in [11] to ensure that the above equation is valid.)

This approach has the nice feature that the system secret key SK is never
revealed to any member node nor to any subset of member nodes. They can
jointly reconstruct XSK , but never SK itself. While this method can be unsafe
if group members can be compromised [13], this difficulty does not arise in our
case, as explained in Section 3.

Further, AFTD improves fault-tolerance, since Shamir’s threshold scheme
ensures that any set of k −1 or less secret shares cannot jointly obtain SK. Thus
if any set of k − 1 or less secret shares have been discovered, the system secret
key SK is still safe from adversaries.

Defining Trust Sets. At the beginning, each group member is assigned a
unique member ID and associated with a leaf node of the key tree in ascending
order. To define trust sets, the group is first split into k-member clusters. The
members in the last cluster may have more than k group members when n is
not a multiple of k. The upper part of Figure 3 shows a 7-member group. When
k = 2, the group is divided into 3 clusters, and the last one has three members.

Definition 1 (Trust Set). The trust set of Mi or Vi (See Figure 2) is the set
of nodes in the union of all clusters that contain one or more leaf nodes of the
subtree rooted at Mi or Vi’s sibling node, and represented as TS(Mi) or TS(Vi).

In Figure 3, TS(V2) is the set of nodes in the first two clusters, which contain
all leaf nodes {M1, M2, M3, M4} of the subtree rooted at V2’s sibling node V1.

When the number of clusters in TS(Mi) is less than two, we improve fault
tolerance by including in TS(Mi) the first adjacent cluster formed by the leaves
of the sibling of Mi.

Distributing the Certificates to Trust Sets. After distributing the sys-
tem secret key shares to all group members, the trusted authority distributes
the stored public key certificates to appropriate trust sets. Then the TA works
offline and is used only to initialize new members joining the group. The system
can provide key authentication service to renewed RSA keys without the help of
the TA, since its function has been fully distributed to appropriate trust sets.

4.3 The Rekeying Phase

To achieve forward and backward secrecy (Section 1), the group key must be
updated whenever new members join or old members leave. Each new member
1 Defined as lMi(x) = (x−M1)···(x−Mi−1)(x−Mi+1)(x−Mk)

(Mi−M1)···(Mi−Mi−1)(Mi−Mi+1)(Mi−Mk) .

Efficient, Authenticated, and Fault-Tolerant Key Agreement 765

MJ must also obtain a system secret share SSMJ
and some certificates so that

it can offer certificate services.
Localized Self-initialization. When an uninitialized new member MJ

joins the group, a k-coalition of old members which are share holders
{MJ1 , MJ2 , · · ·MJk

}, can jointly offer a system secret share SSMJ
to MJ as

follows:
SSMJ

≡ ∑k
i=1 SSMJi

· lMJi
(MJ) ≡ ∑k

i=1 SSJi (mod m).
The Lagrange coefficients and SSJi are known by MJ , so SSMJ1

can be
derived directly. Here we use the shuffling scheme presented in [11] to maintain
the secrecy of MJi

’s share.
The Join Protocol. Assume that a new member Mn+1 wishes to join a

n-member group which contains {M1, M2, . . . , Mn}. Mn+1 is required to au-
thenticate itself by presenting a join request signed with SK . Mn+1 may obtain
a signature on its join request either by establishing credentials with the offline
trusted authority, or by enlisting the cooperation of at least k nodes from the
group G willing to recognize and certify Mn+1’s request.

When the other group members receive this request, they independently de-
termine Mn+1’s insertion node [1] in the key tree, which is the shallowest right-
most node, or the root node when the key tree is well-balanced. They also inde-
pendently determine a real member called join sponsorMS [1] to take responsible
for coordinating the join, which is the rightmost leaf node in the subtree rooted
at the insertion node.

No keys change in the key tree at a join, except the blinded keys for nodes on
the key path for the sponsor node. The sponsor simply recomputes the group key,
and sends updates for blinded keys on its own key path to their corresponding
trust sets. Each member Mj of the sponsor node’s trust set creates a new partial
share SS’j of the secret key SK , and forwards it to Mn+1, which combines them
to obtain its new secret share SKn+1. The new node Mn+1 also sends its signed
certificate to the members of its trust set TS(Mn+1), and gets the public keys
needed for generating the group key. The join works as shown in Algorithm 1.

Algorithm 1 Join Protocol in AFTD

1: The new member Mn+1 broadcasts the signed join request to the group.
2: Group members determine the insertion point, and update their key trees by creating a new

intermediate node and promoting it to become the parent of both the insertion node and Mn+1.
3: Each group member adjusts the clusters in its key tree by adding Mn+1 to the smallest cluster

adjacent to the insertion point, or to the cluster on its right one in case of a tie. If the size of
the modified cluster goes up to 2k, split it into two clusters.

4: The sponsor MS computes the new group key, and sends the updated blinded keys of nodes on
its key path to their corresponding trust sets. These messages are signed by the sponsor Ms.

5: The members in these trust sets request the sponsor MS ’s certificate from TS(MS) to verify
the updated blinded keys they received.

6: Mn+1 obtains its secret share SKn+1 from TS(MS).
7: Mn+1 sends its valid public key certificates to its trust set, and gets the public keys needed for

generating the group key.

In Figure 3, M8 joins a 7-member group, and k = 2. The join sponsor M7
creates a new intermediate node V6 in the key tree and promotes it to become

766 L. Zhou and C.V. Ravishankar

Mi orVi

)Trust Set TS (Mi or Vi

Fig. 2. Trust Set
of Mi or Vi

M M M

M M M M M

M

V V

V V

V

V V

V V V V

MMM

V0

1

3 4

321 4

2

0

1

3

1 2 3 4

4

2

5

5

6

M joins8

MM

V 5 M

clusters

sponsor
6 7 8

6

7

5

Fig. 3. Join Process in AFTD

M M M M

M

M

V

V

V V V

V

V

M

0

1 2

3

1 2 3 4

6

8

6

54

M leaves

M M MM M

V

V V

V V V

0

1

3

1 2 43

6

2

4

9

clusters

M 9

VM 7 14

6MM

V 5

5

5 M 7

8

sponsor

Fig. 4. Leave Process in AFTD

the parent of M7 and M8. The sponsor M7 computes the new group key, sending
the updated BKV6 and BKV2 to their corresponding trust sets {M5, M6, M7, M8}
and {M1, M2, M3, M4} respectively. Finally as the size of the third cluster is
extended to 2k = 4, it splits into two clusters: {M5, M6} and {M7, M8}.

Leave Protocol. Assume that a member ML wishes to leave a n-member
group. First ML initiates the leave protocol by sending a leave request. When
the other group members receive the request, they independently determine the
sponsor node, which is defined as in [1] to be the right-most leaf node of the
subtree rooted at the leaving member’s sibling node. The leave protocol works
as shown in Algorithm 2.

Algorithm 2 Leave Protocol in AFTD

1: The former sibling node of ML is promoted to replace ML’s parent node.
2: The size of the cluster that formerly contained ML is decreased by one, and merges with an

adjacent cluster if its size drops below k. The new cluster may split if its size is 2k or larger.
3: The sponsor MS picks a new secret key K′

Ms
, computes the new group key, and sends the

updated blinded keys of nodes on its key path to their corresponding trust sets. These messages
are signed by the sponsor Ms.

4: The members in these trust sets request MS ’ certificate from TS(MS) to verify the updated
blinded keys they received.

In Figure 4, M8 leaves a 9-member group where k = 2. The sponsor M9
picks a new secret key KM9 and computes the new group key, sending updated
BKM9 , BKV6 and BKV2 to their corresponding trust sets {M5, M6, M7, M9},
{M5, M6, M7, M9} and {M1, M2, M3, M4} respectively.

Interval Multicast Protocol. AFTD can also realize secure interval mul-
ticast, in which a group member wants to send data to a subgroup of group G.
This problem is discussed by Gouda et al. [17], who describe a new use of key
trees. They are concerned about using the existing subgroup keys in the key tree
to securely multicast data to different subgroups within the group. Unlike their
approach, which depends on a centralized key server to maintain the unique key
tree and manage all keys, AFTD solves this problem in a distributed fashion.
For the detailed algorithm, please refer to [12].

Efficient, Authenticated, and Fault-Tolerant Key Agreement 767

Updating Secret Keys & Secret Shares. In AFTD, each group member
is required to update its Diffie-Hellman keys before each group session, or during
a session when it is selected as a sponsor on a member’s leaving. Source authenti-
cation of the updated blinded keys is guaranteed by the sender’s RSA signature.
Further, to ensure the long-term secrecy of the RSA keys, AFTD requires each
group member to renew its RSA key pair periodically, and send it to its trust
set securely using its current RSA secret key. AFTD adopts the proactive secret
share update algorithm in [18] to periodically update the system secret shares
to invalidate compromised secret shares.

4.4 Security of Trusted Authority

The trusted authority, which may be distributed, is on-line during initialization,
but remains offline subsequently. During initialization, the TA distributes valid
key certificates and secret shares of its secret key SK, so that the function of
key authentication can be realized and distributed across appropriate trust sets.
Since the duration of initialization is relatively short, it is safe for us to use the
TA at that time.

During the rekeying phase, the trusted authority may be approached by new
group members for authentication and creation of valid key certificates for them.
In this mode, the trusted authority works offline, in that it only communicates
with new group members, making compromises of TA unlikely.

4.5 The Number of Rekeying Messages Received

On a rekeying event, all members in the trust sets of the nodes on the sponsor’s
key path will receive an updated blinded key. As in [1], we use the term co-path
for the set of siblings of each node on the key path of member Mi. The nodes on a
co-path have disjoint subtrees, so that the set of leaf nodes for these subtrees are
also disjoint. Thus, the leaf nodes of each node in the co-path fall into clusters
with minimal overlaps.

Because of the way they are defined(Section 4.2), the trust sets of the nodes
on the key path of member Mi have small overlap. Consequently, each group
member receives nearly the same number of rekeying messages in our scheme.
For example, in Figure 3, V6 and V2 are on the key path of the sponsor M7. V5
and V1 are on the co-path of M7, which have disjoint subtrees, so that V6 an V2
have disjoint trust sets. V6’s trust set is {M5, M6, M7, M8}, and V2’s trust set
is {M1, M2, M3, M4}. Each member of these trust sets will receive one updated
blinded key.

5 Performance Analysis

5.1 Communication Overheads

The Initialization Phase. The communication overhead is measured by the
number of the messages. In the initialization phase of AFTD, the trusted au-
thority distributes the certificates of each node in the key tree to its trust set.

768 L. Zhou and C.V. Ravishankar

Since every node in each trust set receives a message, the overall communication
overhead of the first phase is measured by the number of nodes in all trust sets.

If n is the group size and hVi is the height of Vi, there are at most 2lg n−hVi

leaf nodes on the subtree of Vi’s sibling node. Since the cluster size is k, the
number of shares needed to reconstruct the certificate, these nodes will fall into
at most � 2lg n−hVi

k � clusters. Hence, the size of Vi’s trust set is no more than

� 2lg n−hVi

k � · k < 2lg n−1−hVi + 2k nodes. As the maximum number of nodes in
each level hVi is 2hVi , the communication overhead of each level is at most
2hVi · (2lg n−hV Mi + 2k). Therefore, we can compute the overall communication
overhead in the initialization phase as CInitial =

∑lg n
i=1 2i · (2lg n−i + 2k) =

O(n log n).

The Rekeying Phase. In the rekeying phase of AFTD, when a new member
joins or an old member leaves, keys for nodes on the sponsor node’s key path
must be updated and multicast. Hence for each level of the key tree, only one
node’s blinded key has been updated and must be multicast to its trust set.
Since the size of the trust set of the nodes on level hVi is at most � 2lg n−hVi

k � ·k <

2lg n−hVi +2k nodes, we can compute the overall communication in this stage as
CRekey =

∑lg n
i=1(2

lg n−i + 2k) = O(n).

0

5000

10000

15000

20000

25000

30000

35000

40000

40 60 80 100 120 140

N
um

be
r

of
 M

es
sa

ge
s

Group Size

TGDH
AFTD(k=3)
AFTD(k=5)
AFTD(k=8)

AFTD(k=11)

(a) Initialization Phase

0
100
200
300
400
500
600
700
800
900

1000

40 60 80 100 120 140

N
um

be
r

of
 M

es
sa

ge
s

Group Size

TGDH
AFTD(k=3)
AFTD(k=5)
AFTD(k=8)

AFTD(k=11)

(b) Rekeying Phase

AFTD
TGDH

40
60

80
100

120
140

Group Size 20
40

60
80

100

Number of Rekey Events

0

40000

80000

120000

160000

Number of Messages

(c) Total Communication
Overhead(k = 5)

AFTD
TGDH

40
60

80
100

120
140

Group Size 20
40

60
80

100

Number of Rekey Events

0

40000

80000

120000

160000

Number of Messages

(d) Total Communication
Overhead(k = 11)

1

2

3

4

5

6

7

8

40 50 60 70 80 90 100 110 120 130 140

A
vg

. N
um

be
r

of
 M

es
sa

ge
s

Group Size

TGDH
AFTD(k=3)
AFTD(k=5)
AFTD(k=8)

AFTD(k=11)

(e) Avg Number of Mes-
sages

0

50

100

150

200

250

300

40 60 80 100 120 140

N
um

be
r

of
 K

ey
s

Group Size

Blinded key (TGDH)
RSA public key (TGDH)

Blinded key (AFTD)
RSA public key (AFTD)

(f) Storage Requirement
(k = 5)

Fig. 5. Communication & Storage Overheads

Efficient, Authenticated, and Fault-Tolerant Key Agreement 769

Table 1. Performance of TGDH and AFTD Compared

Communication Overhead Storage Requirement
Initialization Phase Rekeying Phase Blinded Key RSA Public Key

TGDH O(n2) O(n log n) O(n) n
AFTD O(n log n) O(n) O(log n) 2k

Figure 5(a) and (b) show the effects of different thresholds k on the commu-
nication overheads of AFTD. They also compare the communication overhead of
our scheme to that of TGDH. Figure 5(c) and (d) compare the total communica-
tion overhead of AFTD with that of TGDH, where k = 5 and 11 separately. Total
communication overhead is defined as the combined communication overhead of
initialization phase and multiple rekeying events. Clearly, the communication
overhead of our scheme is significantly smaller than that of TGDH, especially in
large dynamic group scenarios.

The value of k is a system-dependent parameter, and represents a tradeoff
between system security and fault-tolerance. Further, as seen from the above
figures, the communication overhead of our scheme is insensitive to k.
Number of Messages Received on Rekeying. As explained in Section 4.5,
each group member receives nearly the same number of rekeying messages in
our scheme, because of the way trust sets are defined. Thus, the average number
of messages on an rekeying event is a reasonable measure of communication
overhead. Figure 5(e) compares the average number of messages received by each
group member on an rekeying event. As the group size increases, the average
number of messages received decreases to approximately one in our scheme,
while it remains at lg n in TGDH. For example, when the group size is 128, each
group member receives around two rekeying message in our scheme, but about
seven in TGDH. This demonstrates the scalability of AFTD in terms of the load
experienced by group members.

5.2 Computation Overhead and Storage Requirements

Table 1 compares the performance of TGDH and AFTD. Due to space limita-
tion, readers are referred [12] for a detailed analysis of computation and storage
requirements.

6 Conclusion

In this paper, we have presented AFTD, an efficient, authenticated and fault-
tolerant tree-based key agreement protocol. Central to our technique is a thresh-
old secret sharing based method to distribute the function of trusted authority
to appropriate trust sets. Our performance analysis shows that our approach can
significantly reduce the communication and storage overheads.

770 L. Zhou and C.V. Ravishankar

Acknowledgement. This work is supported in part by grants from Tata Con-
sultancy Services, Inc., and the Fault-Tolerant Networks program of Defense
Advanced Research Projects Agency, under contract F30602-01-2-0536.

References

1. Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for
dynamic collaborative groups. In: Proceedings of the CCS’00. (2000)

2. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups.
IEEE TRANSACTIONS on Parallel and Distributed Systems 11 (2000)

3. Perrig, A.: Efficient collabortive key management protocols for secure au-
tomonomous group communication. In: Proceedings of CrypTEC’99. (1999)

4. Wong, C., Gouda, M., Lam, S.: Secure group communication using key graphs. In:
Proceedings of the ACM SIGCOMM’98, Vancouver, Canada (1998)

5. Wallner, D., Harder, E., Agee, R.: Key management for multicast: Issues and
architecture. In: Internet Draft, draft-wallner-key-arch-01.txt. (1998)

6. Steiner, M., Tsudik, G., Waidner, M.: Cliques: A new approach to group key
agreement. In: Proceedings of the ICDCS’98, Amsterdam, Netherlands (1998)

7. Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and
key agreement protocols. IEEE Journal of Selected Areas in Communications 18
(2000)

8. Pereira, O., Quisquater, J.: A security analysis of the cliques protocols suites. In:
Proceedings of the 14-th IEEE Computer Security Foundations Workshop. (2001)

9. Lee, P., Lui, J., Yau, D.: Distributed collaborative key agreement protcols for
dynamic peer groups. In: Proceedings of the ICNP’02. (2002)

10. Lee, P., Lui, J., Yau, D.: Distributed collaborative key agreement protcols for dy-
namic peer groups. Technical report, Dept. of Computer Science and Engineering,
Chinese University of Hong Kong (2002)

11. Kong, J., Zerfos, P., Luo, H., Zhang, L.: Providing robust and ubiquitous security
support for mobile ad-hoc networks. In: Proceedings of the ICNP’01. (2001)

12. Zhou, L., C.V.Ravishankar: Efficient, authenticated, and fault-tolerant key agree-
ment for dynamic peer groups. Technical Report 88, Dept. of Computer Science
and Engineering, University of California, Riverside (2003)

13. Narasimha, M., Tsudik, G., Yi, J.H.: On the utility of distributed cryptography in
p2p and manets: the case of membership control. In: Proceeding of the ICNP’03.
(2003)

14. Amir, Y., Kim, Y., Nita-Rotaru, C., Tsudik, G.: On the performance of group key
agreement protocols. In: Proceedings of the ICDCS’02. (2002)

15. Amir, Y., Nita-Rotaru, C., Stanton, J., Tsudik, G.: Scaling secure group com-
munication systems: Beyong peer-to-peer. In: Proceedings of the DISCEX’03,
Washington DC (2003)

16. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979)
17. M.G.Gouda, Huang, C., E.N.Elnozahy: Key trees and the security of interval

multicast. In: Proceedings of the ICDCS’02, Vienna, Austria (2002)
18. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or:

How to cope with perpetual leakage. extened abstract, IBM T.J. (1995)

	Introduction
	Our Work

	Related Work
	Motivation and Attack Model
	Our Solution
	Overview
	Initialization Phase
	The Rekeying Phase
	Security of Trusted Authority
	The Number of Rekeying Messages Received

	Performance Analysis
	Communication Overheads
	Computation Overhead and Storage Requirements

	Conclusion

