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Abstract. We study distributed choice of retransmission probabilities
in slotted Aloha under power di�erentiation. We consider random trans-
mission powers and further study the role of priorities (through power
control) given either to new arriving packets or to backlogged ones. We
study both the cooperative team problem in which a common objec-
tive is jointly optimized as well as the noncooperative game problem.We
show that the new proposed schemes not only improve the average per-
formances considerably but are also able in some cases to eliminate the
bi-stable nature of the slotted Aloha.

1 Introduction and Problem Formulation

Aloha [1] and slotted Aloha [11] have long been used as random distributed
medium access protocols for radio channels. They are used in satellite networks
and cellular telephone networks for the sporadic transfer of data packets. In these
protocols, packets are transmitted sporadically by various users. If packets are
sent simultaneously by more than one user then they collide. After a packet is
transmitted, the transmitter receives the information on whether there has been
a collision (and retransmission is needed) or whether it has been well received.
All colliding packets are assumed to be corrupted which get backlogged and are
retransmitted after some random time. We focus on the slotted Aloha [5]) in
which time is divided into units. At each time unit a packet may be transmitted,
and at the end of the time interval, the sources get the feedback on whether
there was zero, one or more transmissions (collision) during the time slot. A
packet that arrives at a source is immediately transmitted. We introduce three
new schemes in which multiple power levels are used for transmission. When
several packets are sent simultaneously, one of them can often be successfully
received due to the power capture e�ect. We assume that the packet with the
largest received power captures the channel [7, 10, 12, 13]; if two or more packets
are transmitted simultaneously with the same power, we assume that neither one
can be captured. In addition to the power diversity, already proposed in [7, 10,
12, 13], we consider di�erentiation between new packets and backlogged packets
allowing prioritization of one or the other in terms of transmitted power. We
study and compare (1) a scheme with power diversity and without prioritiza-
tion in transmission or retransmission; (2) a scheme in which a new packet is
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transmitted with the lowest power, and backlogged packets are transmitted at
a random power selected among N larger distinct levels; (3) a scheme in which
a new packet is transmitted with the highest power, and backlogged packets are
transmitted at a random power selected among N lower distinct levels; and (4)
standard slotted Aloha.

We �rst consider the optimal selection of transmission probabilities for the
various schemes so as to maximize the throughput or minimize the expected
delay. We discover that in heavy load, the optimality is obtained at the expense
of huge expected delay of backlogged packets (EDBP). We therefore consider
also the alternative objective of minimizing the EDBP. We also solve the multi-
criteria problem. We show that the new schemes not only improve the average
performances considerably but also improve the stability performance.

In addition to the global optimization, we study the game problem in which
each mobile chooses its transmission probability sel�shly so as to optimize its
individual objective. We show that the power diversity and the prioritization
pro�t to mobiles also in this competitive scenario.

Various game formulations of slotted aloha with a single power have been
derived and studied in [3, 4, 6, 8, 9] for the non-cooperative choice of transmis-
sion probabilities. Several papers study slotted aloha with power diversities but
without di�erentiating between transmitted and backlogged packets, and with-
out the game formulation [7, 10, 12, 13]. We consider a central receiver and m
sources without bu�er. We assume a perfect capture model where a successful
capture of a packet at the receiver occurs when the power level (among N dif-
ferent levels) selected for this packet is greater than those of all other packets
transmitted in the same slot.

We use a Markovian model extending [5, Sec. 4.2.2]. Packet arrivals to sources,
independently of each other, follow Bernoulli process with parameter qa. As long
as there is a packet at a source (i.e. it has not been successfully transmitted) new
packets to that source are blocked and lost.1 A backlogged packet at source i is
retransmitted with probability qir that does not change with time. Since sources
are symmetric, we shall further restrict to �nding a symmetric optimal solution
(i.e., qir = q; 8i).

We shall use as the state of the system the number of backlogged nodes (or
equivalently, of backlogged packets) at the beginning of a slot, and denote it
frequently with n. For any choice of qir 2 (0; 1], the state process is a Markov
chain that contains a single ergodic chain. Let qr be the vector of retransmission
probabilities for all users (whose jth entry is qjr). Let �(qr) be the corresponding
vector of steady state probabilities where its nth entry, �n(qr), denotes the
probability of n backlogged nodes. When all entries of qr are the same, say q,
we shall write �(q) instead of �(qr).

Assume that there are n backlogged packets, and all use the same value qr
as retransmission probability. Let Qr(i; n) be the probability that i out of the
n backlogged packets retransmit at the slot. Let Qr(1; 0) = 0. Then Qr(i; n) =
(ni ) (1 � qr)

n�iqir: Let Qa(i; n) be the probability that i unbacklogged nodes
transmit packets in a given slot (i.e. that i arrivals occurred at nodes without
backlogged packets). Let Qa(1;m) = 0. Then Qa(i; n) =

�
m�n

i

�
(1�qa)

m�n�iqia:

1 This assumption is equivalent to saying that a source does not generate new packets
as long as a previous packet is not successfully transmitted.



2 Team problem

In this section we propose and analyze three di�erent schemes. We observe that
standard slotted Aloha is a special case of these proposed schemes.

Scheme 1 : Random power levels without priority: A mobile transmits a
packet (new or backlogged) using one of N distinct available power levels uni-
formly chosen and that does not depend on the type of packet. In case all nodes
use the same value q and qr, the transition probabilities of the Markov chain is
given in [2].
Scheme 2: Retransmission with more power: A backlogged packet retrans-
mits with a power from N di�erent distinct levels. A new arrival packet uses a
lower power than any one these N levels. The random power levels are chosen
uniformly. Successful capture occurs if one of the backlogged packet transmits
with a power level larger than that chosen by all others transmitters or if a sin-
gle new arrival occurs and there is no retransmission attempt of any backlogged
packet. The transition matrix is given in [2].
Scheme 3 : Retransmission with less power: A new transmitted packet has
the highest power. Backlogged packets attempt retransmissions with a random
power choice among N distinct lower power levels. The random power levels are
chosen uniformly. The transition matrix is given in [2].
Performance Metrics. Denote by �n(q) the equilibrium probability that the
network is in state n and P (q) the transition matrix of a scheme. Then we have
the equilibrium state equations:�

�(q) = �(q)P (q);
�n(q) � 0; n = 0; :::; mP

m
n=0 �n(q) = 1:

(1)

The average number of backlogged packets is

S(q) =
mX
n=0

�n(q)n: (2)

The system throughput (i.e. the sample time average of the number of packets
that are successfully transmitted) is given almost surely by the constant,

thp(q) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

mP
n=1

�n(q)
h
Qa(0; n)

nP
j=1

Qr(j; n)Aj +Qa(1; n)
P

n
j=0Qr(j; n)Aj+1+

m�nP
i=2

Qa(i; n)
P

n
j=0Qr(j; n)Ai+j

i
+ �0(q)Qa(1; 0) scheme 1

mP
n=1

�n(q)
h
Qa(1; n)Qr(0; n) +Qr(1; n)+

P
n
j=2Qr(j; n)Aj

i
+ �0(q)Qa(1; 0) scheme 2

mP
n=0

�n(q)
h
Qa(1; n) +Qr(0; n)

n
Qr(1; n) +

P
n
j=2Qr(j; n)Aj

o i
scheme 3

where Ak is the probability of successful transmission among k � 2 packets and

is given by Ak = k
N�1P
l=0

XN�l(1�
PN

i=N�lXi)
k�1; A0 = 0; A1 = 1 and Xi is the

probability that a packet (new arrival or backlogged) will choose power level i
for retransmission. The throughput satis�es

thp(q) = qa

mX
n=0

�n(q)(m� n) = qa(m� S(q)): (3)



Eq.(3) equals to the expected number of arrivals per slot (which actually enter
the system), and to the expected number of departures per slot. The expected
delay of transmitted packets D, is de�ned as the average time that a packet takes
from its source to the receiver. Applying Little's result, this is given by

D(q) = 1 +
S(q)

thp(q)
= 1 +

S(q)

qa(m� S(q))
(4)

The �rst term accounts for the �rst transmission from the source. Combining
the last equality in (3) with (4) it follows that maximizing the global throughput
is equivalent to minimizing the average delay of transmitted packets. We shall
therefore restrict in our numerical investigation to maximization the through-
put. However, we shall consider the delay of backlogged packets (EDBP) as yet
another objective to minimize.

Performance measures for backlogged packets. The throughput of the
backlogged packets for each scheme is given by, thpc = thp(q) � � where � is
given by:

� =

8>>>><
>>>>:

mP
n=0

m�nP
i=1

nP
j=0

n
i

i+j
Qa(i; n)Qr(j; n)Ai+j

o
�n(q) scheme 1

mP
n=0

Qa(1; n)Qr(0; n)�n(q); scheme 2

mP
n=0

Qa(1; n)�n(q) scheme 3

The EDBP Dc is the average time, in slots, that a backlogged packet takes to
go from the source to receiver. Applying Little's Theorem, the expected delay
of packets that arrive and become backlogged is given by:

Dc(q) = 1 + S(q)=thpc(q) (5)

The team problem is therefore given as the solution of

max
q

objective(q) s:t:

8<
:

�(q) = �(q)P (q);
�n(q) � 0; n = 0; :::;mPm

n=0 �n(q) = 1:

The solution can be obtained by computing recursively the steady state proba-
bilities, as in Problem 4.1 in [5], and thus obtain an explicit expression for thp(q)
as a function of q.

Stability. Slotted aloha is known to have a bi-stable behavior, and we shall
check whether this is also the case in our new schemes. We try to �nd the drift,
Dn in state n which is the di�erence between the expected number of new arrivals
and new successful departures over a slot time, starting in state n [5].

Dn = (m� n)qa � Psucc (6)

where the probability of a successful transmission, Psucc for each scheme is given
in [2]. For standard slotted aloha it has been observed (see [5]) that there are
three equilibria, where an equilibrium is de�ned as a state n in which the arrival
rate (m � n)qa equals the departure rate Psucc. Moreover, among those three,



the two extreme ones (the one corresponding to the smallest and to the largest
state) are stable.2 A bi-stable situation is undesirable since it could mean that
the system spends long time in each of the stable equilibria including in the one
with large n (low throughput and large delays).

3 Game Problem

This formulation is of interest in decentralized scenarios where mobiles may not
be controlled by a centralized entity. The equilibrium concept then replaces the
optimality concept from the team problem. It possesses a robustness property:
at equilibrium, no mobile has incentive to deviate.

For a given policy vector qr of retransmission probabilities for all users (whose
jth entry is qjr), de�ne ([qr]

�i; qir) to be a retransmission policy where user j
retransmits at a slot with probability qjr for all j 6= i and where user i retransmits
with probability qir and [qr]

�i represents the policy vector without user i. Each
user i seeks to maximize his own objectivei(q). We then seek for a symmetric
equilibrium policy q�r = (qr; qr; ::; qr) such that for any i and any retransmission
probability qir,

objectivei(q
�
r) � objectivei([q

�
r ]
�i; qir) (7)

where the objective function is the throughput or minus the expected delay. Since
we restrict to symmetric q�r , we shall also identify it with the actual transmission
probability (which is the same for all users). Next we show how to obtain an
equilibrium. We note that due to symmetry, to see whether q�

r
is an equilibrium

it suÆces to check (7) for a single player. We shall thus assume that there are
m + 1 users all together, and that the �rst m users retransmit with a given
probability qr

�(m+1) = (qo; ::; qo) and user m + 1 retransmits with probability

q
(m+1)
r . De�ne the set

Qm+1(qr) = arg max
q
(m+1)
r 2[�;1]

�
objectivem+1([qr]

�(m+1); q(m+1)
r )

�

where qr denotes the policy where all users retransmit with probability qor , and

where the maximization is taken with respect to q
(m+1)
r . Then q�r is a sym-

metric equilibrium if q�r 2 Q
m+1
r (q�r ). To compute the performance measures of

interest objectivem+1([qr]
�i; qir), we introduce again a Markov chain with a two

dimensional state. The �rst component corresponds to the number of backlogged
packets among users 1,...,m, and the second is the number of backlogged packets
(either 1 or 0) of user m+1. The various schemes considered are the same as in
the team problem.

Performance Metrics. In the game problem, the average number of back-
logged packets of source m+ 1 is given by:

Sm+1([qr]
�(m+1)

qm+1
r ) =

mX
n=0

�n;1([qr]
�(m+1); q(m+1)

r ) (8)

2 Recall that an equilibrium is stable if the drift corresponding to a small deviation
(increasing or decreasing n) from the equilibrium is in the direction opposite to the
deviation.



and the average throughput of user m+ 1 is given by

thpm+1([qr]
�(m+1); q(m+1)

r ) = qa

mX
n=0

�n;0([qr]
�(m+1); q(m+1)

r ) (9)

Hence the expected delay of transmitted packets of user m+ 1 is given by

Dm+1(qr]
�(m+1)

; qm+1
r ) = 1 +

Sm+1([qr]
�(m+1)qm+1

r )

thpm+1([qr]
�(m+1); qm+1

r )
(10)

Let us denote by thpcm+1 the throughput of backlogged packets (i.e. of the
packets that arrive and become backlogged) at source m+ 1:

thpcm+1(qm+1) =
mX
n=0

mX
n0=0

P(n;0);(n0;1)(qm+1)�n;0(qm+1)

Thus, the expected delay of backlogged packets at source m+ 1, is given by

Dc
m+1(qm+1) = 1 + Sm+1(qm+1)=thp

c
m+1(qm+1) (11)

4 Numerical Investigation

In Figure 1 (a) and (b), we plot the throughput and EDBP for all schemes
under the objective of maximizing the global throughput for m = 20 and N =
5. A general observation is that all new schemes outperform standard Aloha
(Figure 1 (a)). The throughput of all the new schemes are comparable under all
values of load. The result of maximizing throughput on the EDBP is plotted in
Figure 1(b). All the schemes outperform standard Aloha but perform very bad
at heavy load. We observe in Fig 1(b) that under low and moderate load, scheme
2 performs the best in minimizing EDBP as scheme 2 prioritizes the backlogged
packets. Scheme 1 performs better than scheme 3 by prioritizing a fraction of
backlogged packets while scheme 3 gives no priority to backlogged packets. The
optimal retransmission probability in scheme 2 is higher than in scheme 1 and
standard aloha which explains the best performance scheme 2 in terms of EDBP
([3]) and higher EDBP in scheme 1 and standard aloha.

Inspite of higher optimal retransmission probability in scheme 3 (compared
to scheme 1 and standard aloha), scheme 3 experiences higher EDBP compared
to scheme 2. In scheme 3, the new transmitted packets have the highest power
and higher retransmission probability doesn't a�ect the successful transmission
of new packets implying insensitivity of system's throughput to retransmission
probabilities and resulting in dramatic increases in the EDBP and the best per-
formances in the throughput and expected delay of transmitted packets, EDTP.
Morever, in heavy traÆc or when the number of mobiles increases, the through-
put in scheme 3 is exactly the arrival probability: as the system is more congested,
and the new arrivals have more priority, the steady probability is then given by
�m�1 � 1. Hence, only the new packet arrived at free mobile, can be successfully
transmitted.
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Fig. 1. (a) and (b) show the throughput and EDBP. The objective under all the
schemes is to maximize the throughput. The number of mobiles is 20 and the number
of levels is 5.

Minimizing EDBP. On maximizing the global throughput we observed a huge
EDBP under all schemes in heavy load which may be detrimental to many ap-
plications. We thus investigate directly the problem of minimizing EDBP and its
impact on the throughput performance. We �nd in particular that throughput
performance in the new schemes improves considerably with respect to stan-
dard aloha even when standard aloha uses the previous objective of maximizing
throughput.

In Figure 2, we plot the performance of the various schemes for m = 20.
Part (a) considers the impact on the throughput while minimizing the EDBP.
Furthermore, all three schemes outperform standard aloha even when the latter
uses throughput maximization as optimization objective. We observe that the
performance of scheme 3, in contrast to other schemes, is insensitive to the choice
of the objective optimization (throughput or EDBP), which explains the high
throughput and dramatic increases in the EDBP ( see previous paragraph). Thus
scheme 3 is very ineÆcient for many applications using the real time connections.
In part (b) of the �gure we see that scheme 2 outperforms others in terms of
EDBP under all load. Comparing the throughput in scheme 3 and scheme 2, we
observe little performance degradation in the throughput of scheme 2, only in
heavy traÆc. Part (c) provides the optimal retransmission probabilities for stan-
dard aloha when the throughput is maximized, which explains its corresponding
large EDBP. In contrast, when the EDBP is minimized Aloha has optimal re-
transmission probabilities of around 0.1 in heavy load whereas all other versions
have much higher retransmission probabilities. Part (d) shows the average delay,
(EDTP+EDBP)/2 of all the schemes.

An interesting observation that can be made by comparing scheme 2 and
other MAC protocols such as CSMA/CA. In contrast to aloha and slotted Aloha,
some other MAC protocols such as the CSMA/CA, used in IEEE 802.11, have
the feature that a new arriving packet has to wait some (random) amount of
time before attempting transmission, so as to avoid a possible collision. In our
scheme 2, the impact of new arrivals on the system is similar to have such a
random delay, since new arriving packets have less priority (power) and thus
on transmitting upon arrival, they cannot cause collisions with a transmitted
backlogged packet (if there is one). One can thus view this lower priority as



generating a random delay which is, however, more 
exible in our scheme since,
unlike CSMA/CA, not all arriving packets have to wait a random time. At light
load the arriving packets will wait less frequently than in heavy load since the
probability of having a competing transmission at the same slot by a backlogged
packet is smaller in light traÆc.
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Fig. 2. (a), (b), (c) and (d) show the throughput, EDBP, optimal retransmission and
the average delay respectively when the objective is to minimize EDBP, obj2. obj1
refers to the objective of maximizing the throughput. The number of mobiles is 20.

Stability. In Figure 3(a), we illustrate the stability behavior for qr = 0:15; qa =
0:01;m = 40; N = 5. The drift is the di�erence between the curves (representing
the departure rate or Psucc) and the straight line representing the arrival rate
(m� n)qa. The system, although 
uctuating, tends to move in the direction of
the drift and consequently tends to cluster around the two stable points with
rate excursions between the two (for scheme 1). Slotted Aloha is the only scheme
that su�ers from the bi-stability problem and the departure rate is at most 1=e
whereas for di�erent power schemes it is quite higher. By choosing a large value
of retransmission probabilities, we can obtain situations where schemes 1 and
2 acquire a bi-stable regime, and the scheme 3 remains stable for all values
of retransmission probability qr. For example, with 40 mobiles and qa = 0:15,
scheme 1 and 2 su�er from the bi-stable problem when qr = 0:8 (see Figure
3 (b)). Note that the bi-stability can occur in all schemes, which is the case
when the number of mobiles becomes large. For example, with 60 mobiles and
qa = 0:005, the standard slotted Aloha is bi-stable already for qr = 0:1, Scheme 1
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Fig. 3. Stability and instability of slotted Aloha schemes 1, 2, and 3: (a) qa = 0:01,
m = 40, N = 5 and qr = 0:15. (b) qa = 0:01, m = 40, N = 5 and qr = 0:8, (c)
qa = 0:005, m = 60, N = 5 and qr = 0:8 for all schemes.

and 2 are bi-stable with qr = 0:5 and Scheme 3 becomes bi-stable with qr = 0:95
(see Fig 3(c)). Here, as well as in all other examples (not reported here) scheme
3 always turned out to have the largest region of parameters for which a unique
stable point is obtained.

The average number of backlogged packets for (ABP) di�erent schemes which
correspond to their equilibrium points are given in Table 1 with m = 60, qa =
0:005 and N = 5. In the case of a single equilibrium, a good match is seen
for schemes 1, 2 and 3, which means that the simple computation of the stable
equilibrium can be used to approximate the expected number of backlogged
packets. In standard Aloha we see that the congested stable equilibrium provides
a very good approximation for the expected number of backlogged packets, which
suggests that the system spends most of the time at that equilibrium.

We also observe same behavior in scheme 1 and 2 when the retransmission
probability increases (around 0:5). Scheme 1 and 2 acquire bi-stable equilibrium
with qr = 0:5. But contrary to standard aloha, we see from Table 1 that the ex-
pected number of backlogged packets for scheme 1 and 2 can be approximated by
the desired stable equilibrium. Now if the mobiles become aggressive (qr around
0:9), we see that the congested stable equilibrium provides a very good approx-
imation for the expected number of backlogged packets in all schemes.

schemes same-power no-prior more-power less-power
ABP qr = 0:1 56.8 0.71 1.04 1.09
(un)stable eq. 1.51, 25.47 0.67 1.449 1
qr = 0:1 56.88
ABP qr = 0:5 60 0.28 0.28 0.287
(un)stable eq. 1.51, 25.47 0.136, 28.85 0.10, 24.33 0.208
qr = 0:5 56.88 56.83 56.89
ABP qr = 0:9 60 59.98 59.98 57.58
(un)stable eq. 0.16, 1.72 0.07, 12.43 0.16, 10.46 0.11, 26.70
qr = 0:9 60 59.98 59.98 56.99

Table 1. Average number of backlogged packets (ABP) and equilibrium point (s)

Multi-criteria Objective Consider the objective given by �thp(q) + (1 �
�) 1

Dc ; 0 � � � 1. This allows to handle QoS constraints: By varying � one
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1 (except for low values of qa) whereas the new schemes do bene�t from that.
Finally, we note that schemes 1-3 all avoid the throughput collapse of standard
Aloha (for which we see in Fig. 5 (a) that the equilibrium throughput vanishes
for both m = 10 at qa > 0:3 and for m = 10 at qa > 0).
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Fig. 5. (a), (b) and (c) show the throughput, EDBP and retransmission probability
when the objective is to maximize the throughput for all the schemes for 4 and 10
mobiles and the number of power levels is 5.

Game problem: Minimizing individual EDBP. Next, we evaluate the per-
formance of the distributed game problems of minimizing EDBP. We notice
again from Figures 6(a) that the equilibrium throughput decreases with qa for
scheme 1 (for arrival probabilities larger than 0.2) and for standard aloha (for
qa > 0). In both schemes 2 and 3 it increases yet the increase is much larger
in scheme 3. This scheme outperforms all others for any qa. Schemes 1-3 all
avoid the throughput collapse of standard Aloha. We observe a non-monotonic
behavior of the equilibrium EDBP for scheme 3 in Figs 6(b). According to Eq.
(11), this means that as the arrival rate increases, the throughput grows faster
than the expected number of backlogged packets. Scheme 2 and 3 have very
close EDBP which is better than scheme 1 and standard aloha for all qa. we see
that schemes 1-3 are very aggressive in terms of retransmission probabilities in
Figs 6(c). An interesting feature to note is that the throughput obtained when
maximizing the individual throughput is less than that obtained when minimiz-
ing the EDBP. This is due to the fact that we are in a non-cooperative game
setting, for which the equilibria are known not to be eÆcient (as is the case in
the famous prisoner's dilemma paradox).

5 Conclusions

We have studied two schemes that involve both prioritization as well as power
diversity for increasing the throughput and decreasing the EDBP. We studied
optimal choices of transmission probabilities both in a cooperative as well as in
a non-cooperative setting. Scheme 3 has the best stability properties and the
best throughput performance in the game setting. The throughput performance
of schemes 2 and 3 bene�t from increasing the arrival rate in the game scenario,
in contrast with standard Aloha which su�ers a throughput collapse, and with
the power diversity scheme 1 (without priorities) whose equilibrium throughput
decreases in high load. A remarkable feature of scheme 3 is that it performs very
well in the game setting as compared to the team problem. In particular, when
maximizing the throughput, we see that in heavy traÆc it attains the maximum
achievable throughput as is the case for the team formulation.
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Fig. 6. (a), (b), and (c) show the throughput, EDBP and retransmission probability
when the objective is to minimize the delay of backlogged packets for all the schemes
for 4 and 10 mobiles and the number of levels is 5.
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