Aggregated Aggressiveness Control on Groups of
TCP Flows

Soohyun Cho and Riccardo Bettati

Computer Science Department,
Texas A&M University,
College Station, TX 77843 USA
{s0c6496, bettati}@cs.tamu.edu

Abstract. The use of multiple concurrent parallel TCP flows is an easy
way to achieve higher speed reliable data transfers. However, parallel
TCP flows are inherently unfair with respect to single TCP flows. We
suggest a new scheme called TCP-P, which controls aggressiveness of
a group of parallel TCP flows by regulating their total aggressiveness
(or unfairness) to be comparable to a single TCP flow, or any multiple
thereof. TCP-P makes a group of N parallel TCP flows appear to other
flows like k separable TCP flows - i.e., have strength &k - through appro-
priate manipulations of increase and decrease behavior of the congestion
windows of the TCP flows in the group. We implemented our scheme as
part of Linux and experimental results show that the proposed scheme
effectively controls aggressiveness of parallel TCP flows.

1 Introduction

A widely used scheme to work around the limitations of TCP over high delay-
bandwidth product connections is to use multiple parallel TCP connections.
The use of parallel TCP flows has several benefits compared to a single TCP
flow [1]. If an end-host opens N parallel TCP flows to the same destination,
its congestion window recovery and increase are N times faster than a single
TCP flow [2]. As a result, the achievable throughput of parallel TCP flows is
significantly bigger than that of a single TCP flow given the same packet loss
probability. Unfortunately, this increase comes at the expense of the throughput
experienced by other, single TCP flows, as sender nodes who open multiple
parallel TCP flows will consume unfairly more bandwidth when they compete
for the same bottleneck links.

With the increased venues for bundling of TCP flows (e.g., overlay networks
with TCP splicing [3], large servers with topological aggregation of service deliv-
ery, dedicated connections between supercomputers or campuses, etc.,) flexible
schemes are needed for the controllable aggregation of large numbers of parallel
TCP flows. Naively limiting the number of parallel connections that applica-
tions in a node can open concurrently is not appropriate in many situations, as
it violates the separation of application design from network resource allocation:
Making the number of available connections visible to the application unduly

burdens the application design. On the other hand, hiding the varying numbers
of connection endpoints from the application through tunneling or multiplex-
ing schemes typically is costly. Also, statically limiting the maximum aggregate
sending rate of parallel TCP flows from sender nodes may leave network re-
sources under-utilized because it disables TCP’s available bandwidth probing
ability beyond the given sending rate. It is therefore preferable to allow for TCP
flows to aggregate, but do so in a controlled way.

Methods to control aggregation of TCP flows must have the following capa-
bilities:

— Transparency to applications (management of connections and expected dy-
namics of data transmission should maintain TCP characteristics,)

— Compatibility with existing TCP implementations (“TCP-friendliness”,)

— Controllability and flexibility of the service (the “control knob” offered by
the mechanism should be intuitive and have measurable effect on behavior,)

— Effective use of available bandwidth (the mechanism should not prevent TCP
from quickly making use of available bandwidth,)

— Flexible deployability (the mechanism should be deployable in single-sender
(server), or multi-sender (overlay) scenarios.)

In this paper we propose aggregate strength as means to control the fairness
of parallel TCP flows: The aggressiveness or unfairness of parallel TCP flows is
appropriately controlled to not exceed that of a configurable number of single
TCP flows, regardless of the number of TCP connections. With the term fairness
(unfairness) we mean how fairly (unfairly) a group of parallel TCP flows from
a node share network resources such as bandwidth with TCP flows from other
nodes. By setting the aggregate strength of a group to some value %, the group
of parallel TCP flows in a node behaves as if there were a group of k parallel
TCP flows regardless of the number of parallel flows applications in the node
open. By doing so we provide a flexible aggregate control of parallel TCP flows
while keeping the ability of parallel TCP flows to effectively utilize available
bandwidth.

We implement strength control within TCP-P, which is an extension to TCP.
TCP-P controls the aggressiveness of a group of N parallel TCP flows from a
node against single TCP flows from other nodes by controlling the strength of
the group of flows. The “strength” in this context is a scalar value k of the TCP
group and describes how big (in terms of number of flows) the group is perceived
by other TCP flows from other nodes sharing network resources with the group.
We will show in the following how this parameter provides a simple and intuitive
means to control aggressiveness of parallel TCP flows.

There have been several efforts to improve TCP performance using paral-
lel flows while constraining the unfairness of parallel TCP flows comparable to
that of a single TCP flow. The Congestion Management (CM) architecture [4],
Fractional /Combined TCP flows [5] and COCOON [6] are some examples. In
contrast to these schemes, MulTCP [7] was proposed to claim k times more
bandwidth for a single TCP connection. A MulTCP flow with parameter & in-
creases and decreases its congestion window size as if there were k¥ multiple TCP

flows. However, as far as we know, there has been no scheme to controllably
constrain the aggressiveness of parallel TCP flows.

The remainder of this paper is organized as follows: Section 2 presents the
methodology we used to control parallel TCP flows’ total strength. Section 3
describes our implementation in the Linux kernel. Section 4 presents experimen-
tal results that demonstrate how this implementation effectively controls the
aggressiveness of parallel TCP flows. Section 5 concludes this paper.

2 Aggregate Control

Aggregate control of parallel TCP flows is achieved through modifications to
TCP’s congestion window increase and decrease behavior. During the increase
phase, a normal TCP has two modes: exponential increase during slow-start,
linear increase during congestion avoidance. Within the decrease phase, normal
TCP responds to congestion events, such as three duplicate acknowledgement
packets (ACKs,) by halving its congestion window size. With a given strength
parameter k, we want to match the total amount of increase and decrease of
congestion windows of a group of N parallel TCP-P flows to those of k single
TCP flows.

We denote the amount of increase of congestion window of a single TCP flow i
in increase phase as A} and the amount of decrease in decrease phase as A, re-
spectively. Let the amount of increase and decrease of a TCP-P flow j in a group
of size N be A;’Jr and A7 respectively. To make N parallel TCP-P flows be-

come like k single TCP flows, we need to make sure that Zle Af = Ejvzl A;’Jr

for the given number of non-duplicate ACKs, and Zle A = Zjvzl AL for a
congestion event.

2.1 Controlling Increase

In slow-start mode, TCP increases its congestion window by one per non-duplicate
ACK until it detects congestion events or the congestion window size reaches its

slow-start threshold value. When a TCP is in slow-start mode, the congestion

window size of a TCP, W, after a non-duplicate ACK arriving at time ¢ is shown

in the following equation:

W(t+) =W(t) + 1. (1)

When all TCP flows in a group of N unmodified parallel TCP flows are in
slow-start mode, the total congestion window increase will be N times faster that
a single TCP flow. For the same group size of TCP-P flows to have strength £,
the congestion window of each TCP-P flow, W}, should increase by % per non-
duplicate ACK as shown in the following equation:

Wy(t4) = Wj(0) + o @

In congestion avoidance mode, we want to make the aggregate congestion
window size increase of N parallel TCP-P flows with strength &k be equal to that
of k£ TCP flows for the same amount of non-duplicate ACKs. We describe the
special case of k = 1 first, and generalize it later. Let W (t) be the congestion
window size of a single TCP at time t, and we assume the sum of congestion
window size of each TCP-P flow in the group is equal to W (¢), i.e., Z;VZI W;(t) =
W (t). The amount of congestion window increase of a single TCP per non-
duplicate ACK in this mode is 7 as shown in the following equation:

1

W(t+) = W(t) + W

3)

If each TCP-P flow in a group size N increases its congestion window by
one, the total increase will be N. For a single TCP flow to increase its congestion
window size W by N, it needs W+ (W +1)+ (W+2)+---+(W+N—-1) =
Zﬁi_ol(W + 4) non-duplicate ACKs. Hence, to match the congestion window
increase speed of N parallel TCP-P flows to that of a single TCP flow, we
should require the group of TCP-P flows with size N to receive Zii_ol(W +1)
non-duplicate ACKs before each TCP-P flow in the group increases its congestion
window by one.

To ensure fairness among TCP-P flows within the group, we evenly distribute
the total amount of non-duplicate ACKs required for a group to each TCP-P flow

in the group, so that each TCP-P flow in a group needs to receive Z—i\;(’w
non-duplicate ACKs before it can increase its window size by one. In this way,
with the same amount of non-duplicate ACKs, i.e., EﬁBI(W—l—i), the N parallel
TCP-P flows will increase their total congestion window size by the same amount,
N, just as the single TCP flow.

For the case of k > 1, we generalize the previous case: parallel TCP-P flows
need to increase their total window size of the group by % after the group received
SN (kW + i) non-duplicate ACKs. Here, W is the average of the congestion
window sizes of k TCP flows, and we assume that S35, W; = kW = Z;Vﬂ W;,
i.e., the sum of congestion window W; of k single TCP flows is equal to the sum
of congestion window W; of N parallel TCP-P flows at time ¢t. We use the fact
that the increase of the total congestion window size of k parallel TCP flows
with a given number of non-duplicate ACKs is k times larger than the increase
of the congestion window of a single TCP flow with the same window size (i.e.,
kEW). For this, each TCP-P flow in a parallel TCP-P group of size N should
increase its congestion window by one after receiving the following amount of
non-duplicate ACKs:

YT, W+ i)
° kxN ’ (4)

As a result, the increase behavior of a group of N TCP flows can be made
to closely reflect that of & TCP flows.

2.2 Controlling Decrease

A single TCP flow reduces its congestion window size W by half when it detects
a congestion event, such as three duplicate ACKs at time ¢:

W) = 0,)

In unmodified parallel TCP flows, only single TCP flow in the group halves
the congestion window size for each congestion event to the group. This behavior
primarily contributes to the observed throughput advantage (and the unfairness)
of parallel TCP flows over a single flow. In contrast, we let each TCP-P flow in
a group responds to its own congestion event by reducing its own congestion
window. In addition, TCP-P adjusts congestion windows of other TCP-P flows
in the group as well based on the group size N and strength parameter k.

For k = 1, we halve all parallel TCP-P flows’ congestion window sizes when-
ever any member flow detects a congestion event. For k& > 1, we let the total
congestion window size after a congestion event be % of the previous total
congestion window size of N parallel TCP-P flows. Hence, for a group of N
TCP-P flows with strength k, the total amount of congestion window decreases

according to the following equation:

N N 2% —1
> Wy(t+) zsz(t)*(T)- (6)
j=1

Jj=1

For k = N, N parallel TCP-P flows becomes unmodified N parallel TCP, and

the total decrease amount of N TCP-P flows become 2]2\[1\’, L of the previous total

window size. This is the same as that of unmodified parallel TCP flows’ [2].

2.3 Avoiding Unnecessary Decreases

Since packet drops in the network are typically bursty [8], multiple TCP flows in a
parallel TCP group may simultaneously experience packet losses. If bursty packet
drops occur, they may result in too much congestion window reduction to parallel
TCP-P flows: Every TCP-P flow that experiences a congestion event might in
turn trigger a congestion window reduction in other flows, which already may
have responded to the congestion event. This results in a congestion response
cascade. In traditional TCP a flow responds to congestion events only once within
a congestion window, regardless of the number of lost packets. In comparison,
TCP-P flows may end up with a lower throughput than that of a single TCP
flow.

To avoid this unnecessary reduction of congestion windows, a TCP-P flow
skips adjusting congestion windows of all member TCP-P flows if the elapsed
time since its last adjustment by other flows is less than the minimum of the
moving average of its round-trip times! (i.e., minimum srtt.) In doing so, we

! This is also called smoothed round-trip time, srtt(t+) = (1 — w) * srtt(t) + w * rtt(t)

where rtt(t) is round-trip time at time ¢ and w = L.

Group List
Header

L]

Dest. IP
Group 1 -
Sock pointer|—m B
flow_num

v

Dest. IP
Group 2 | sock pointer|—p»
flow_num
\

Dest. IP
Group M |sock pointer|—
flow_num

Fig. 1. Manage groups and flows

assume that the length of packet drop bursts does not typically last longer than
the minimum of the moving average of round-trip times.

3 Implementation Issues

We implemented TCP-P scheme on Redhat Linux 9.0 kernel 2.4.20-8. The default
behavior of Linux TCP implementation is based on TCP-Sack [9], time-stamping
on each packet, and Quick-ACK [10]. Also, Linux uses the packet as the unit of
congestion window size, unlike BSD, which uses bytes.

3.1 Structure

Whenever a TCP connection is established, the system kernel looks up the group
list using the destination IP address as a key to know whether other flows already
exist to the same destination?. If no such group exists, a new group entry is added
in the list and the connection is registered as a member of the group using its
sock structure pointer. Otherwise, the connection is added as a member to the
group. When a connection closes, the connection is removed from the list of
members of the group. If the group has no more members it is also deleted.
Fig. 1 illustrates how the Linux data structures are extended to manage
TCP flow groups. The Linux TCP implementation has a structure named sock
to manage socket information for each connection and tcp_opt for TCP spe-
cific information. We added new variables to those structures for TCP-P: a
pointer that points flow num variable of its group is added to tcp_opt to get
the number of flows of its group without searching the group list, and a pointer
to the next sock structure in the same group is added in the sock structure.
Each group structure has a pointer to its first member’s structure sock and

% In this implementation, we use destination address as group classifier. Other classi-
fications could be used just as well.

has a integer variable flownum to count the number of member flows of the
group. Whenever a new member TCP is added or deleted in a group, this count
variable updates the number of member TCP flows. For a system-wide control
of strength we added a new system control parameter sysctl_tcp_strength
in net/ipv4/sysctlnet_ipv4.c. This parameter can be easily changed in the
run-time using the sysctl system call.

3.2 Implementing Increase

In slow-start mode, the congestion window of each TCP-P flow in a group is in-
creased by % per non-duplicate ACK, as described in Equation (2). The amount
of increase, %, is less than or equal to 1 when % is not bigger than N. Since
floating point arithmetic is not supported in the Linux kernel, we let each TCP-
P flow in our scheme increase its congestion window size by k after receiving N
non-duplicate ACKs.

In congestion avoidance mode, each TCP-P flow in a group of size N with

strength parameter k should increase its congestion window by 1 after receiving
N-1 .
i=0 (3 W —‘,—‘L)

non-duplicate ACKs as Equation (4). To implement this for
each TCP P flow independently, we use the following equation:

E E] 1I/I/_'—2:ZOZ
kxN

NZ] 1 W + Ez 0 Z (7)
kxN '
Therefore, each TCP-P flow should increase its congestion window size W;

N) N-1.
by 1 after NEj:lZZ’; Lizo ! non-duplicate ACKs. Alternatively, it can increase

the congestion window by NS ’I“;Ajr sv=T; ber non-duplicate ACK.
=1 Wi i=0

Looking up other TCP-P flows’ congestion window size at every non-duplicate
ACK arrival may result in serious overhead. To reduce operation cost we as-
sume that all TCP-P flows in a group have the same window size Wy, so that
Z;V:l W; = NW,. With this assumption, each flow does not need to know other
TCP-P flows’ congestion window sizes. Instead, it can use its own congestion
window W; to estimate the total window size for the group. Each TCP-P can
find the size of its group, NN, easily because each TCP-P structure has a pointer
to its group’s member count variable flow num as shown in Fig. 1.

Since floating point arithmetic is not supported in Linux kernel, we increase
N W+t
N

the congestion window size of each flow by k after it received
non-duplicate ACKs. This number can be further simplified as follows:

2 W+ Nt

N

(N -1)N
2N

N-1

=NW]'+

Therefore, each TCP-P flow in a group of size N and strength & should
increase its congestion window by k after receiving NW; + % non-duplicate
ACKs.

3.3 Implementing Decrease

TCP-P controls the decrease amount of total congestion window sizes of parallel
TCP-P flows according to Equation (6) to match with that of £ unmodified
parallel TCP flows. One possible method to implement this is to decrease every
TCP flow’s congestion window by the same proportion. However, in this paper,
when a TCP-P flow ¢ detects a congestion event at time ¢ and the elapsed time is
not less than its minimum srtt, it responds like a normal TCP: It enters recovery
mode and halves its own congestion window regardless of other parallel flows.
Therefore, other TCP-P flows in the group can reduce their congestion window
sizes less than the proportion shown in Equation (6) when the strength is k& > 1.

Hence, the amount of decreases of congestion window sizes of other member
TCP-P flows’ become as follows:

1, N(k-1

Wj(t+) = W;(t) * (5 m

), Vi # i (9)

This equation is derived from the following equation to distribute the remaining
amount of congestion window decrease among the other member TCP-P flows:

N

2% — 1
2 Wi 5
j=1

k-1

= W()N(% + W)
=Wo(1+ N — 1)(% + %)
= Lo s wov = 1) N(k=1))- (10)

2 2 " 2(N -1k

4 Evaluation

For the evaluation of TCP-P, we used the topology shown in Fig. 2. To emu-
late delays and packet losses in the Internet, we use NIST Net Emulator [12].
The NIST Net Emulator is implemented on a Linux machine and emulates the
Internet by appropriately delaying and dropping packets. Because the network
links in our experiments are fairly high-bandwidth (default 100Mbps) and the
NIST Net delay parameters are large (50msec round-trip propagation delay,)
we set the TCP parameters of the Linux end systems - such as tcp_wmem and
tcp_rmem sizes - appropriately, rather than using system defaults. We also dis-
abled the TCP time-stamping and TCP-Sack options to see the effects of our
modification more clearly. By disabling TCP-Sack, Linux TCP works based on
TCP-NewReno.

@ @ TCP

NParaliel™, Sinks

TCP 100Mbps, 0.3ms ‘ @
| T92:468.2,0/24 7
254 soms |osa Py
Single < [~ 10/100Mbps, 0.3ms”
W 192.168.1.0/24
- M il
100M : Y
@1 92.168.3.0/24 M

NIST Net Emulator

Fig. 2. Experiment Network

All the end-host nodes and the NIST Net Emulator are running on Linux
PCs. The PCs we use for experiments are Pentium 4 or 3 machines with 10/100
Mbps Fast Ethernet network interface cards. Each Fast Ethernet card has an
output queue of length 100 packets by default, and can be controlled if needed.
Two TCP sender nodes, Node 0 and Node 1, run both on Redhat 9.0 with kernel
2.4.20-8. In machine Node 0 we installed a modified Linux kernel that supports.
NIST Net Emulator and the TCP sink, Node 2, are running on Redhat Linux
7.2 with kernel 2.4.7-10.

For traffic generation and throughput measurements we use iperf [13], which
supports parallel TCP flows and offers great flexibility for measurements. In all
experiments in this section, every experiment was done for 100 sec to get an
average value and repeated 10 times with 5 sec waiting time after each exper-
iment unless told otherwise. Error bars in figures of this section represent 95%
Confidence Interval of the data.

4.1 TCP Flow Groups with Strength £k =1

We first show the performance of TCP-P with £ = 1. We open a group of parallel
TCP-P flows from modified Linux kernel at Node 0 to a TCP sink Node 2 for 100
seconds, and a single unmodified TCP flow from another sender Node 1 to Node
2 for the same time. Fig. 3 (a) shows the experimental results with a varying
number of parallel TCP-P flows from Node 0 with & = 1. This figure shows that
the average of aggregated throughput of a group of parallel TCP-P flowsof k = 1
with group size from 1 to 10 remains comparable to the average throughput of
the single TCP flow from Node 1. In order to investigate the robustness of the
TCP-P approach we repeated the experiments with a reduced bottleneck link
speed by limiting the link speed from NIST Net Emulator to TCP sink node
Node 2 from 100Mbps to 10Mbps. Fig. 3 (b) shows the experiment results with
10Mbps link. These results also show that TCP-P can regulate the aggressiveness
of parallel TCP-P flows not to steal bandwidth from the single TCP flow, so that
the throughput of the single TCP flow from Node 1 is comparable to that of total
parallel TCP-P flows from Node 0 regardless of the group size N.

Figures in Fig. 4 illustrates some of the details of the operation of TCP-P.
These figures are generated by tcptrace using tcpdump data on the sender Node
0 and Node 1. For the simplicity of comparison of the time-dependent behaviors

®

o
7
N
[S)

e i S S S B SV N
i .

- a- Total
\ —o— Parallel TCP—P Total
- -single TCP

Y -4~ Total
—o—Parallel TCP-P Total
-v -Single TCP

Throughput [Mbps]
Throughput [Mbps]

o kP N W N OO N O ©
— T T T T T T 1T

3 4 5 6 7 8 9 10
Number of Parallel TCP—P Flows

(a) 100Mbps Link (b) 10Mbps Link

Fig. 3. Effect of N TCP-P Flows with k£ =1 on a Single TCP Flow

192.168.2.1:33796 ==> 192.168.1.1:5001 192.168.2.1:33797 ==> 192.168.1.1:5001 192.168.3.1:1295 ==> 192.168.1.1:5001
140000 — __ 140000 250000
& 120000 & 120000 $
2 2 2 200000
= 100000 < 100000 <
g g £ 150000
& 80000] 8 80000 y, 8
jo)} o o
£ 60000 11 £ 60000 / £ 100000
s A/ AVAe: Azl LV /1) 2
£ 40000 40000
g 4 4 s VY f & s0000
S 20000 £ 20000 E
o 0 n n n n n o 0 n n n n n o 0 n n n n n
00:00 00:20 00:40 01:00 01:20 01:40 00:00 00:20 00:40 01:00 01:20 01:40 00:00 00:20 00:40 01:00 01:20 01:40
Relative Time [min:sec] Relative Time [min:sec] Relative Time [min:sec]
(a) Flow 0 (b) Flow 1 (c) Flow 2

Fig. 4. Observed Outstanding Packets of Flows

we open two parallel TCP-P flows with £ = 1, Flow 0 and Flow 1, from Node 0 to
Node 2, and one TCP flow, Flow 2, from Node 1 to Node 2. Other conditions are
the same to the previous experiment, and all connections start at the same time
and finish after 100 seconds. Average throughput achieved by the two TCP-P
flows from Node 0 and the single TCP flow from Node 1 were 4.73Mbps and
4.78Mbps, respectively.

The figures show the amount of outstanding data of each TCP flow, from
which we can infer the changes of congestion windows of TCP flows. The spikes
in the figures represent Fast-Retransmission behaviors of TCP flows. Fig. 4 (a)
and Fig. 4 (b) are for two TCP-P flows from Node 0. We can see in these figures
that there are congestion window decreases without spikes, which indicates ad-
justments of the congestion window by the other TCP-P in the group. Compared
to these two figures, the change in the congestion window of Flow 2 in Fig. 4 (c)
always have a spike before a reduction.

- 2- Total
—o— Parallel TCP Total
-v -Single TCP

- 4= Total
—o— Parallel TCP-P Total
-v -Single TCP

Throughput [Mbps]
B
[=]

e e TRy

3 4 5 6 8 é 1‘0 0 1 2 3 4 5 6 7 8 9 10
Number of Parallel TCP Flows Strength k of 10 Parallel TCP-P Flows

(a) Unmodified k Parallel TCP (b) 10 Parallel TCP-P for different k

Fig. 5. Effects of Unmodified ¥ TCP Flows and 10 TCP-P Flows with varying Strength
k

4.2 TCP Flow Groups with strength & > 1

In the following, we illustrate how TCP-P effectively controls the magnitude of
aggressiveness of parallel TCP flows according to the strength parameter k. We
first present experiment results with unmodified parallel TCP flows in Fig. 5
(a). Node 0 opens k unmodified parallel TCP flows to Node 2 for 100 seconds,
while Node 1 opens a single TCP flow to Node 2 for the same time. Fig. 5
(a) shows the average throughput of TCP flows from Node 0 and Node 1 for
a varying number of unmodified TCP flows from Node 0. The single TCP flow
from Node 1 achieves increasingly smaller throughput with increasing numbers
of unmodified parallel TCP flows from Node 0. It illustrates the unfairness of
parallel TCP flows mentioned in Sec. 1.

In comparison, Fig. 5 (b) shows the results of TCP-P in the same environ-
ment, except that we let Node 0 open a group of 10 parallel TCP-P flows to
Node 2 with varying strength k. Fig. 5 (b) shows average throughput of parallel
TCP-P flows and a single TCP flow when we control the aggressiveness of the
group of parallel TCP-P flows. In the figure, with ¥ = 0 we describe the case
of no parallel TCP-P flows sending any traffic to the destination, so that only
the single flow from Node 1 consumes all bandwidth. By comparing (a) and (b)
in Fig. 5 we see that TCP-P scheme accurately controls the overall aggressive-
ness of a group of 10 parallel TCP-P flows according to k. 10 TCP-P flows with
strength k show almost the same effect to a single TCP as k£ unmodified parallel
TCP flows.

The steady-state throughput models for N parallel TCP and TCP-P flows
with strength k& have been derived and interested readers can refer to them in
[14].

5

Conclusion

In this paper, we proposed TCP-P for aggregate control of parallel TCP flows.
TCP-P scheme uses strength as a single - easily tunable - parameter to accurately
control the aggressiveness of a group of TCP flows with respect to a single flow
sharing the same bottleneck link. We showed that by employing TCP-P we
can control the total aggressiveness or unfairness of parallel TCP flows against
TCP flows from other nodes in a easily parameterizable and controllable way
without requiring application modification. For future work, we are considering
an adaptive control of the strength of parallel TCP flows.

References

*®

10.

11.

12.

13.

14.

. Tom Dunigan: Net 100 Project (2004) URL: http://www.csm.ornl.gov/

“dunigan/netperf/parallel.html.

. S. Floyd and K. Fall: Promoting the Use of End-to-End Congestion Control in the

Internet. IEEE/ACM Transactions on Networking 7 (1999) 458-472
D. Maltz and P. Bhagwat: TCP Splicing for Application Layer Proxy Performance.
IBM Research Report RC 21139 (1998)

. H. Balakrishnan, H. Rahul, and S. Seshan: An Integrated Congestion Management

Architecture for Internet Hosts. In: ACM SIGCOMM. (1999)

Thomas Hacker, Brian Noble, and Brian Athey: Improving Throughput and Main-
taining Fairness using Parallel TCP. In: Infocom. (2004)

Y. Gao, G. He, C. Hou, and S. Paul: COCOON: an alternate approach to end-host
congestion management. submitted to IEEE Trans. on Computers (2002) URL:
stat.bell-labs.com/who/yuangao/papers/cocoon.pdf.

J. Crowcroft and P. Oechslin: Differentiated end-to-end Internet Services using a
Weighted Proportionally Fair Sharing TCP. ACM CCR 28 (1998) 53-69

V. Paxson: End-to-End Internet packet dynamics. In: ACM SIGCOMM. (1997)
M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow: TCP Selective Acknowledge-
ment Options. RFC-2018 (1996)

P. Sarolahti and A. Kuznetsov: Congestion Control in Linux TCP. In: Proceedings
of Usenix 2002/Freenix Track. (2002)

Matt Mathis, Jeff Semke, Jamshid Mahdavi, and Kevin Lahey: The Rate Halv-
ing Algorithm for TCP Congestion Control (1999) URL: http://www.psc.edu/
networking/rate_halving.html.

M. Carson and D. Santay: Tools: NIST Net: a Linux-based network emulation
tool. ACM CCR 33 (2003) 111-126

Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs: Iperf
Version 1.7.0 (2003) URL:http://www.noc.ucf.edu/Tools/Iperf/.

Soohyun Cho and Riccardo Bettati: Aggregate Control of Parallel TCP flows.
Technical Report TAMU-CS-2004-11-1 (2004)

