
Modeling Available Bandwidth for an Efficient

QoS Characterization of a Network Path ?

Alexander Chobanyan1, Matt W. Mutka1, V.S. Mandrekar2, and Ning Xi3

1 Department of Computer Science and Engineering, Michigan State University
chobany1@cse.msu.edu, mutka@cse.msu.edu

2 Department of Statistics and Probability, Michigan State University,
mandrekar@stt.msu.edu

3 Department of Electrical and Computer Engineering, Michigan State University,
xin@egr.msu.edu

Abstract. Estimating the reliability of an end-to-end network path is
critically important for applications that support remote real-time task
execution. Available bandwidth, which is defined as a minimum spare
capacity of links constituting a network path, is an important QoS char-
acteristic of the path. In this work we demonstrate a new approach
to modelling available bandwidth behavior from a time-series analysis
prospective. In particular, we introduce a notion of crossing probability
– the probability that available bandwidth drops below the QoS critical
threshold for the period of time required for a real-time task execution.
We estimate “crossing probability” by an application of the ARCH2 (Au-
toRegressive Conditional Heteroscedasticity) model to available band-
width behavior. We estimate model coefficients β0 and β1 to quickly
output “crossing probability” for arbitrary values of threshold and length
of the real-time task. The model was evaluated on real bandwidth mea-
surements across multiple network paths.

Index terms–Network measurements, Statistics, Stochastic processes . . .

1 Introduction

Over the past several years the importance of Internet-related technologies have
rapidly increased. The growth of the Internet has not only a quantitative nature
but also affects the type of information that may be transferred and conse-
quently the methods for real-time interaction between communicating parties.
Many rapidly emerging network applications may benefit not only by trans-
ferring traditional media-types, such as video and audio, but also by remotely
manipulating, touching and feeling a remote object. One may imagine the in-
fluence of new media types when new progressive technologies emerge, such as
tele-medicine that allows physician to remotely touch and feel a patient, tele-
education that opens wider possibilities to distant learning about various objects
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via sensing, and tele-commerce that allows a customer to feel and manipulate
an object before conducting a financial transaction.

Extending transferable media to new types, such as haptic and temperature
data, give rise to many challenges such as channel synchronization, increased
real-time requirements for tele-operated task execution, and others. In particu-
lar, the nature of real-time tasks related to new media types requires Quality-
of-Service (QoS) guarantees to communicating parties over the potentially un-
reliable and uncontrolled Internet. Available bandwidth is an important QoS
characteristic of the network path. It may be briefly defined as the maximum
rate that a sender may put bits on a medium without affecting existing cross-
traffic, or in other words, as a residual capacity of the network path. In this paper
we present a statistical model for a time-series that represents the available end-
to-end bandwidth. The proposed model provides an important probabilistic QoS
channel specification in terms of coefficients that allow the rapid computation of
crossing probability–the probability that the available bandwidth becomes less
than an arbitrary pre-defined critical value over an arbitrary pre-defined time-
frame. The aforementioned coefficients are evaluated based on observed available
bandwidth behavior over a reasonable period of time and are updated at run-
time reflecting the changing dynamics of a network environment. The critical
threshold and the time-frame should be defined by the QoS specifications of a
particular real-time task.

The available bandwidth time-series is directly related to the cross-traffic
that is present in the path. It has been shown [1] that network traffic has self-
similar properties, which imply a non-summable autocorrelation function and a
long-range dependence between observations. Therefore observations of available
bandwidth cannot be considered as independent, which makes statistical infer-
ence more challenging. All previous work [2] concentrated on obtaining the value
of available bandwidth averaged over a reasonably small time-window without an
attempt to provide a broader probabilistic picture that characterizes the network
path. Figure 1 shows an example of how the available bandwidth between two
nodes may behave over time. As depicted in the plot, the available bandwidth
may instantaneously drop far below its mean value, thus causing degradation of
service, such as distorted video or audio. Despite the fact that such “spikes” may
last only a few seconds, they may be fatal for many real-time remotely-operated
tasks. As illustrated in figure 1, the value of the available bandwidth averaged
over an arbitrary large (or small) time-window cannot characterize the network
path well in terms of its bandwidth QoS properties.

The key difference between our approach and recent work is that we apply
random time-series statistical techniques to available bandwidth behavior. We
create a probabilistic framework for network path QoS characterization. A num-
ber of various statistical models that consider dependence between observations
may describe instantaneous spikes and reasonably predict the “crossing probabil-
ity” based on the chosen model. Many successful time-series analysis techniques
have been applied to similar applications in econometrics and natural sciences.
We note, in particular, that the ARCH model used in econometrics is able to de-



scribe spikes and possesses self-similar properties, which is important for making
inferences about the “crossing” probability.

The notion of “crossing probability” on its own gives rise to conceptually
novel approach to available bandwidth estimation. Real time applications may
benefit from this approach by reallocating part of their QoS-sensitive channels
over different network paths when the crossing probability exceeds an acceptable
threshold. Channel reallocation may happen before something fatal occurs for a
real-time task but after the probability for this fatal event happens to exceed a
reasonable threshold.

2 Background

A network path may be viewed as a set of store-and-forward links Li, i =
1, 2, ..., k. The capacity of the i-th link Ci may be defined as the maximum bit
rate that the sender may transfer information through this link when no other
traffic is present. Assume that the link is partially used by a separate communi-
cation. Let Ti(t) be defined as the number of bits transferred through this link
by time t. The spare capacity of link i, or in other words, its available bandwidth
Ai(t) at time t may be defined as Ai(t) ≡ Ci−

dTi

dt
(t). The bandwidth A(t) avail-

able at time t of a path may be defined as A(t) ≡ mini=1,...,k Ai(t). From this
definition it follows that the available bandwidth cannot be measured precisely
and therefore needs to be approximated by the mean available bandwidth at

time t for the interval τ : Aτ (t) = mini=1,...,l{Ci −
Ti(t+τ)�Ti(t)

τ
}. With smaller

τ , one may achieve better flexibility in describing the available bandwidth be-
havior. In general, the approximation of available bandwidth is QoS relevant if
τ is less than the time that receiver needs to empty its buffer. Fluctuations of
the available bandwidth should not cause degradation of quality at the receiver
as long as those fluctuations do not affect the number of bits that the receiver
needs to keep its buffer non-empty.
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Fig. 1. Estimated available end-to-end bandwidth (Mbps) across different network
paths. The time-series are sampled at a rate of one observation per minute.



Significant work conducted regarding mean available bandwidth estimation
is well reflected by Strauss, et al. [3] and Hu, et al. [4]. Probe gap models used in
Spruce [3] and Delphi [5] measure delay between probe packets and make further
inference about available bandwidth based on that delay. As it was shown by
Prasad et al. [6] context switches and enabled “interrupt coalescence” feature
at receiver’s side may distort measurements of a gap between packet pairs and
therefore significantly influence probe-gap based available bandwidth measure-
ments.

The probe rate model used in Pathload [2] use sequences or “trains” of pack-
ets sent at different rates. By detecting a trend in packet transmission times sent
at a given rate Pathload decides whether the specified rate is higher or lower
than the available bandwidth. Then the available bandwidth can be found by a
simple binary search. Pathload is believed to be more intrusive than tools us-
ing the probe gap model. To our knowledge Pathload is, however, the only tool
that considers effect of context switches and interrupt coalescence at the receiver
side and is therefore the most stable and accurate among available bandwidth
measurement tools to date.

From the definition of available bandwidth, it follows that it is closely related
to cross-traffic in the network path. Cross-traffic, defined as dT

dt
(t), represents a

random time-series that has been extensively analyzed by both statisticians and
network engineers for its statistical properties. If the most tight link remains un-
changed throughout measurements (which is usually the case), then the available
bandwidth time-series may be evaluated by subtracting the cross-traffic from a
tight link’s unchanged capacity. It follows that in the aforementioned case the
available bandwidth and cross-traffic are exactly the same time-series in terms
of their statistical characteristics. Therefore we believe that the model chosen
for available bandwidth characterization should incorporate at least basic prop-
erties of models that are presently used for Internet traffic modelling. Below we
provide some background of such models.

All parametric traffic models assume weak stationarity of the traffic time-
series, which means that the correlation between time-series observations re-
mains the same under any shift in the time domain. Leland, et al. [1] showed
in 1994 that network traffic possesses an important characteristic called self-
similarity. Most important implication of self-similarity is “slowly” (slower than
1/h) decreasing correlation between observations located at lag h apart implying
long-range dependence.

Many recent works in internet traffic modelling [7–9] confirmed that self-
similarity is one of key-importance properties of a present Internet traffic. Re-
searchers tried to build models that visually look similar to observed time-
series and have an autocorrelation structure similar to what has been observed.
Model parameter estimation based on observed data should remain unchanged
or vary slowly over time. Furthermore, the model should be relatively simple
and amenable for the further statistical analysis. We follow the same strategy
to unify recent work in Internet traffic analysis, available bandwidth estimation



tools, and time-series studies with respect to the analysis of QoS characteristics
of a network path.

3 Data collection and preprocessing

For this work we made continuous measurements of available bandwidth be-
tween a number of machines located in Michigan State, Berkeley, MIT, Univer-
sity of Sydney, and Uupsala University (Sweden), thus covering a broad range
of geographical locations. All machines chosen for the experiment had very low
processor utilization factor since the Pathload measurements are very sensitive
to processor load of a machine responsible for receiving trains of measurement
packets (context switch / interrupt coalescence effect). Figure 1 depicts the avail-
able bandwidth behavior for the period of 800 minutes of a few network paths.
The distance between nodes varies from 4 to 20 hops. In each example in figure 1
we observe a small trend that is 2 Mbps around the mean value. Each exam-
ple has bursts reflecting the heavy-tailed self-similar nature of Internet traffic-
related series. For further fitting of stationary self-similar models we preprocess
time-series of interest by subtracting the trend. For all examples considered in
figure 1, trend-subtraction changes each observation for less than 2 Mbps, which
is negligible with respect to spikes that are the primary cause for instantaneous
unexpected degradation of service. Predicting the probability of such a spike
to occur over a certain a QoS sensitive time-slice is our primary goal. For the
aforementioned purpose we can neglect 2-3 Mbps trends and further consider
the “adjusted” time-series. Figure 2 shows the original time-series representing
available bandwidth between nodes located in MSU and Berkeley along with
the corresponding “adjusted” time-series. Figure 2 shows that trend-removal,
inversion and “lining-up” to zero level do not significantly change the behavior
pattern of the original time-series of interest. For trend-removal, we used the
Spencer 15-point moving average filter described by Brockwell, et al. [10], which
skips polynomials of degree three and smoothes everything that has a larger
degree.

It is also undesirable to have instantaneous spikes affecting trend estima-
tion. Therefore a “trimming” procedure is applied before passing data through
a Spencer filter. The whole procedure may be done at run-time. The size of the
window that slides across the time-series observations is 19. We delete two max-
imal and two minimal observations, and pass the remaining 15 observations to a
Spencer filter that outputs the estimated trend. Then trend is subtracted from
the original time-series, the result is inverted, lined-up to zero, and thus finally
the “adjusted” time series is obtained.

The following discussion will be related to analysis of the “adjusted” time-
series. Note that in most cases the “adjustment” procedure does not significantly
distort data. Even if it does, we may detect a bad on-going trend, report the
potential QoS problem to the communicating parties, and still learn at the same
time about the pattern of spikes.



0 100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

90

100

minutes 

Mbps 

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

minutes 

Mbps 

Fig. 2. Estimated available end-to-end bandwidth (Mbps). Trend and inversion effect.

To our knowledge rare cases fall beyond the scope of this work, such as when
there exists long-lasting constantly present trend exceeding 5 Mbps or when
routers on the network path frequently change routes for packets thus making
available bandwidth oscillating around multiple different levels.

4 Modeling Available Bandwidth

4.1 “Crossing Probability”

Assume that an operator is about to decide whether to perform a real-time QoS
critical task over a potentially unreliable network path. The most important
question may be stated as follows. What is the probability of experiencing QoS
critical degradation of service during the time required for a given real-time
task execution? An example is the probability that a picture transferred to the
operator from a remotely-controlled walking robot distorts to a point that the
operator is not able to understand where the robot is located with respect to an
approaching wall.

Let us slightly formalize the problem. The natural assumption is that the
operator should be aware of the real-time task duration, minimal allowed trans-
mission rate and the receiver’s buffer size. These three metrics may be considered
as basic QoS characteristics of a given task. QoS requirements are violated if

the available bandwidth averaged over time τ = receiver′s buffer size

minimal allowed trasmission rate

drops below the threshold of minimal allowed transmission rate during the task’s
execution time. Note that the task’s execution time T corresponds to a sequence
of observations of mean available bandwidth time-series of a length N = T

τ
.

Now rephrase the main QoS question as follows: What is the probability that
the minimal value over the next N consecutive observations of available band-
width time-series drops below a given threshold where both threshold and N
are specified by real-time task constraints? For the “adjusted” and inverted
mean available bandwidth time-series, the aforementioned probability may be



re-defined as the probability that the maximum over the next consecutive N ob-

servations of the time-series crosses the pre-defined QoS critical threshold. We
believe that finding this probability should be an ultimate goal and statistically
correct problem statement for the QoS characteristics of a network path. We
here-and-after refer to this probability as to a “crossing probability”. Even find-
ing a reasonable upper bounds for such probability is a worthwhile contribution
to the QoS characterization of a network path. Below we build a model that
describes the observed available bandwidth data. The model is self-similar and
amenable to analysis with respect to the aforementioned “crossing probability.”

4.2 ARCH model

We propose a parametric model that allows efficient computation of the “crossing
probability” for any given number of future observations N and the threshold M
based on the estimated model parameters. We used the “ARCH2(1)” model [11]
for description of the mean available bandwidth data. Therefore we first provide
background on ARCH models and describe reasons why this model has been
chosen as a candidate for the mean available bandwidth behavior description.

The ARCH(p) (Auto-Regressive Conditional Heteroscedasticity) time-series
model was introduced by Engle [11] for applications of financial events. The
ARCH(p) model may be defined as an autocorrelated Gaussian noise with depen-

dency between observations described as follows. Xt =
√

β0 +
∑p

i=1 βiX2
t�iZt

where Zt are independent observations following a standard normal distribu-
tion. The simplest partial case is the ARCH(1) time-series defined respectively

as Xt =
√

β0 + β1X2
t�1Zt. Finally, the ARCH2(1) time-series will be defined

as Yt = (β0 + β1Yt�1)Z
2
t . From the definition of ARCH2(1), it follows that the

model is completely defined by a pair of coefficients [β0, β1]. Both ARCH(1)
and ARCH2(1) models were extensively applied to finance-related time-series
that at least visually have the similarity to the “adjusted” mean available band-
width time-series pattern. Before going any further, we provide a picture with
“adjusted” mean available bandwidth on the left and a simulated ARCH2(1)
time-series on the right. As shown in figure 3, the patterns of both time-series are
the same. Another encouraging factor is that it has been shown by Embrechts,
et al. [12], that the ARCH2(1) time-series possesses self-similar characteristics.

In order to apply a parametric model to “crossing probability” estimation,
one needs to ensure that the model parameters may be efficiently estimated at
run-time. The model needs to be mathematically analyzed in order to find an
efficient method to compute the “crossing probability” based on the estimated
model parameters. In addition, one needs to build confidence intervals around
the estimated probability in order to be aware of the model’s accuracy. Then
the model needs to be empirically verified. We therefore provide below our work
on unification of the results in ARCH2(1) parameters estimation and “cross-
ing probability” computation together with the scheme of confidence interval
construction.
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(a) Measured available end-to-end band-
width (Mbps)
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(b) Simulated ARCH2(1) observations
with β0 = β1 = 0.25

Fig. 3. Simulated versus observed series

The basic work in ARCH parameter estimation has been conducted by Weiss [13].
Weiss [13] proposes to estimate ARCH parameters by maximizing Quasi Log

Likelihood Function evaluated as: L(β0, β1) =
∑n�1

i=1 [log(β0 +β1X
2
i ) +

X2
i+1

β0+β1X2
i

]

Here n is the number of observations in the window that is used for parameters
estimation. The parameter n is very important. We discuss its proper adjustment
separately. The advantage of the QMLE (Quasi Maximum Likelihood) estima-
tor of [β0, β1] is that it is asymptotically unbiased. Also, it is known [14] that

[β̂0, β̂1] is normally distributed with mean [β0true, β1true] and the covariance ma-
trix is called Fisher Information. The normality of estimators gives background
for computing the confidence interval of any level around the estimated values
of model parameters.

Since estimators of [β0, β1] depend on past observations and therefore have
a random nature, we also provide a way for rapid run-time computation of
the confidence region of any level (by default 95% CR). The 95% confidence
region for [β0, β1] is defined as a random region in R2 that contains the point
[β0, β1] with probability ≥ 0.95. This region for the QMLE estimator has an
elliptical form defined by the equation obtained by Hotelling [15] (β−β̂)0Σ̂�1(β−
β̂)(n − 2)/2 = F2,n�2(0.95) where F2,n�2(0.95) is the 95% quantile of the F-

distribution with 2 and n− 2 degrees of freedom, and Σ̂ is the estimated Fisher
information. In order to compute a confidence region quickly at run-time, we
tabulated Σ̂ for a fixed n = 720 and a grid of β0 and β1. Fisher information was
calculated by simulating 1000 independent ARCH2(1) time-series for each fixed
pair of β0, β1 and finding the difference between estimated and true values of the
aforementioned vector. β0 and β1 then were varied within the region (0.5, 3.5)
and (0, 0.6), respectively. This region covers all potentially acceptable values



that β0 and β1 might take while describing the available bandwidth behavior
within the range of 200 Mbps. It is known that the estimated covariance matrix
is proportional to n�1. Therefore, when having available tables for n = 720, one
can recompute Σ̂ for an arbitrary n in less than a second.

4.3 Results from extremal values theory

Below we show mathematical results that allow computation of “crossing prob-
ability” for any specified threshold M , number of observations N , and esti-
mated model parameters β0, β1. These results allow us to construct a 95% con-
fidence interval for a “crossing probability” by considering the fact that the
“crossing probability” is a monotonically increasing function of both β0 and
β1 and that we find sufficiently many “crossing probability” points related to
the 95% ellipse in the β0, β1 space. Embrechts, et al. [12] summarize recent
work in extreme values by providing formulas for finding “crossing probability”
for various time-series models. In particular, for ARCH2(1) model Embrechts,

et al. have limN!1 P (N� 1
κ max{Y1, ..., YN} ≤ M) = exp�C1M−κ

that allows
us to rewrite this result for “crossing probability” P and large N as follows

P = 1−exp�C1M−κN where κ is a unique root of the equation (2β1)
u

p
π

Γ (u+ 1
2 ) = 1.

Although Embrechts et al. [12] give an expression for C1, it is more efficient to
estimate it empirically off-line for different β0 and β1. For that purpose we sim-
ulated 800,000 observations for each pair of β0 and β1 coming from a grid with
range (0.5, 3.5) and (0, 0.6), respectively. Then, based on the probability expres-
sion above, this tabulated result may be quickly generalized on-line to arbitrary
N and M .

Calculating the estimated probability together with its confidence interval
gives an opportunity to judge the size of the window n used for prediction of β0

and β1 coefficients. On one hand we want n to be as small as possible because
we assume that model parameters remain unchanged for the time-period related
to n. On the other hand, with larger n, accuracy of the prediction increases
with corresponding shrinking of the 95% confidence region. In our experiments,
for example, we put the following condition to the 95% confidence interval for
the probability: the difference between the 95% upper bound and the predicted
value should not exceed 0.2 for an arbitrary predicted probability value from the
range [0;0.5]. Then for N ∈ {1, ..., 100} and M ∈ [60; 90] the lower boundary
for n will be evaluated to 120. Note that dependence on N is natural: with
increasing the period of time for which the prediction is made (duration of real-
time task execution), the period of time used for prediction also needs to be
correspondingly increased.

5 Experimental evaluation

In this section we describe our method for testing the accuracy of our approach.
The final target of modelling is prediction of a probability. The only way, there-
fore, to empirically verify the model is to apply the ergodic theorem, i.e., to



have B groups with N observations in each and then count the number L of
groups where the maximum over N observations within the group crosses a
pre-defined threshold. Then the ratio L/B may be considered as an empirically
computed value of a “crossing probability.” We considered as our design accu-
racy the following criteria: within the frames of the model the difference between
the predicted probability and its 95% upper confidence limit should not exceed
0.2 at any circumstances. Our simulations of ARCH2(1) series show that such
“within-the-model” accuracy on a probability scale for N ≤ 90 dictates the lower
bound on the number of observations needed for model parameters estimation
as n = 120. Higher accuracy leads to higher values of a lower bound for n.

In real-life, however, it is impossible to achieve such an ideal design of the
experiment because of the following factors. First, one obtains B groups of mea-
surements in a real scenario that belong to the same time-series (instead of having
multiple independently generated series in a simulation scenario) and therefore
are somehow dependent. Second, even if we assume that the model parameters
remain the same over the estimation window of length n (that is reasonable if
n correspond to 2 hours) it is too naive to assume that these parameters will
remain the same over the whole time-period needed for collection of B groups
of size N . Presently available bandwidth measurement tools allow consistently
stable measurements at a rate of 1 sample/minute. Therefore, B = 100 reason-
ably separated groups of N = 100 observations in a group correspond to time
needed for collection of 20,000 consecutive observations. With presently available
sampling rate this time is evaluated to 20,000 minutes or 2 weeks of consistent
measurements.

The efficiency of the upper bound on the “crossing probability” may be,
nevertheless, evaluated as follows. We considered a number of network paths that
have visually unchanged over time their daily behavior pattern. Below we show
as an example the analysis of one such path between nodes in MSU and Berkeley.
We consider first 1440 observations (1 day) as our training-validation dataset.
The rest 18,560 observations constitute testing dataset. Training observations
were used for evaluation of the width of the strip where the estimated probability
resides. The testing dataset was used for computation of the empirical probability
L/B. We expected an average probability estimated with the testing data to
reside in a 95% confidence strip defined by a first day training observations.

Figure 4 shows two surfaces where the upper surface represents the 95% upper
bound estimated by the model and the lower surface represents the empirically
computed probability. “Crossing probability” was computed for different values
of N and M varying within the range 15-100 observations and 60-90 Mbps,
respectively. History size n was taken as it was mentioned above equal to 120.
As was expected, for all thresholds M and sizes N the empirically computed
probability reside below the estimated bound. Figure 4 shows, in particular,
that two surfaces are nearly parallel to each other, i.e., the model reflects scales
of both N and M in reasonable agreement with what was empirically observed.
Also figure 4 shows that the estimation becomes less accurate when N approaches
to n, which is understandable.
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We conclude that the model produced verifiable and an accurate prediction.
We also note that such prediction is our suggested form of characterizing a
present state of the network path with respect to its QoS properties.

6 Results Assessment and Future Work

We presented a “probabilistic” approach to a description of the available band-
width behavior. We showed that the available bandwidth may be described by
ARCH2(1) parametric model. We have studied and unified known results in
ARCH2(1), tabulated relevant characteristics and provided an efficient method
for computation of a “crossing probability”. We tested the accuracy of our model
on a channel with a relatively stable long-term behavior and proved that the ap-
proach has a range of applicability.

When describing available bandwidth from a time-series analysis prospective,
it is important to have the time τ over which measurements are averaged as
small as possible. Presently we are modifying and testing Pathload to increase
its sampling rate to 10 samples/minute. With such a measurement tool, we may
significantly decrease the total measurement time necessary to obtain the number
of observations sufficient for the further statistical analysis. Recall that τ should
be of the order of the receiver’s buffer time in order to allow observations to
be relevant with respect to a particular real-time task execution. Therefore, the
real importance of the results provided in this work as well as the real range of
their applicability may be extended after Pathload’s proper modification.

Despite present challenges in available bandwidth measurement and deter-
mining the range of applicability of a particular parametric model, we see the
main contribution of our approach in the correct “probabilistic” context of the
problem statement. For real-time network applications, it is much more impor-
tant to have at least tentative knowledge about the “crossing probability” rather



than being aware of a single number representing the mean available bandwidth
averaged over an inexactly defined time.

The notion of “crossing probability” opens research directions to predictive
dynamic channel reallocation and resource planning for real-time network appli-
cations.

The aforementioned problems are subject of our future research. We, how-
ever, believe that this work is a significant step towards building a reliable QoS
infrastructure over potentially unreliable media in order to facilitate the perfor-
mance of many present real-time network applications.
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