LIPS: Lightweight Internet Permit System for
Stopping Unwanted Packets

Changho Choi!, Yingfei Dong?, and Zhi-Li Zhang! *

! Dept. of Computer Science, Univ. of Minnesota, Minneapolis, MN 55455
choi,zhzhang@cs.umn.edu
2 Dept. of Electrical Engineering, Univ. of Hawaii, 2540 Dole St., Honolulu, HI 96822
yingfei@hawaii.edu, TEL:01-808-956-3448, FAX: 01-808-956-3427

Abstract. In this paper, we propose a Lightweight Internet Permit Sys-
tem (LIPS) that provides a lightweight, scalable packet authentication
mechanism for ensuring traffic-origin accountability. LIPS is a simple ex-
tension of IP, in which each packet carries an access permit issued by its
destination host or gateway, and the destination verifies the access per-
mit to determine if a packet is accepted or dropped. We will first present
the design and the prototype implementation of LIPS on Linux 2.4 ker-
nel. We then use analysis, simulations, and experiments to show how
LIPS can effectively prevent protected critical servers and links from be-
ing flooded by unwanted packets with negligible overheads. We propose
LIPS as an domain-to-domain approach to stop unwanted attacks, with-
out requiring broad changes in backbone networks as other approaches.
Therefore, LIPS is incrementally deployable in a large scale on common
platforms with minor software patches.

Keywords: Network Security, IP Spoofing, Denial of Service, Unwanted Packets

1 Introduction

One of the key security issues in the current Internet is that a source IP address
can be easily spoofed and manipulated, and unwanted packets can intrude an
unwary host with ease (despite firewalls), which is often tricked into uninten-
tional “accomplice” (e.g., in the case of viruses and worms), spreading attacks
to many other vulnerable hosts. To combat this problem, many organizations
choose to “close off” their networks via mechanisms such as VPNs or employ
firewalls to block certain types of packets (e.g., based on IP addresses, ports,
or packet payload), regardless of senders and their intent. Clearly, such solu-
tions are fairly limited in their scope or effectiveness as email viruses and worms
can routinely penetrate firewalls. Furthermore, they are rather rigid, sometimes
breaking existing applications and potentially impeding creation and deployment
of new services and applications. There is still much debate in the networking re-
search community regarding how to secure and fortify the current Internet while
without jeopardizing its open architecture and end-to-end design principle.

In this paper, we propose a novel lightweight Internet permit system (LIPS)
to provide traffic accountability through fast packet authentication for stop-
ping unwanted packets. By unwanted packets, we mean packets not intended

* This work was supported in part by the National Science Foundation (NSF)under
the grants ITR-0085824 and CNS-0435444.

for “normal” communications between hosts, such as packets with spoofed IP
addresses, generated in port scanning or worm spreading. Such packets account
for, or are forerunners of, most of unauthorized accesses, intrusion, disruption,
denial-of-service (DoS) attacks and other cyber threats in today’s Internet. LIPS
is designed as an efficient traffic authentication mechanism to filter out most of
these illegitimate packets, with minor changes to current systems and negligible
overheads. We implement LIPS as a small patch to the IP layer at a LIPS-aware
host. When a source wants to communicate with a destination, it first requests
and obtains (if granted) an access permit from the destination. It then inserts a
destination access permit into each packet sent to the destination. Only pack-
ets with proper access permits will be accepted at the destination. This simple
architecture provides a scalable and flexible framework for establishing traffic
accountability among networks and hosts, and for securing Internet resources
without sacrificing their open and dynamic nature. Furthermore, LIPS also sim-
plifies and facilitates the early detection of, and timely protection from, network
intrusion and attacks by requiring valid access permits before any data packets
can be accepted and processed. Hence by incorporating active monitoring and
rapid response mechanisms into LIPS, we can build an effective and scalable
“first-line” defense to protect Internet resources from unwanted traffic.

Related Works. Many security mechanisms have been proposed to control the
damage of (DDoS) attacks and trace back attacking sources. Pushback [7] treats
DDoS as a congestion-control problem and requires each router to detect and
preferentially drop packets that probably belong to an attack. Upstream routers
are also notified to drop such packets in order that the routers resources are
used to route legitimate traffic. The network capability scheme [1] inserts spe-
cial tokens into packets and use routers to check these tokens along forwarding
paths for restricting unwanted packets. While these routers authenticate pack-
ets and maintain per-flow states, destination hosts also keep per-flow states for
authentication using hash chains. Furthermore, overlay approaches (SOS and
Mayday) [5] use a wide-area overlay infrastructure with a large number of in-
termediate nodes to filter out attacking traffic. IP Easy-Pass [8] aims to protect
real-time priority traffic Denial-of-QoS attacks at an ISP edge router by main-
taining per-flow states. In addition, the visa protocols [3] use encryption and
data signatures to authenticate a flow of packets. They require a shared key to
be established between access control servers on a per-source-destination basis.
Similarly, IPsec and VPNs establish shared keys to secure end-to-end commu-
nications with known overheads [4]. Several traceback schemes were proposed
to track down attacking sources, such as IP traceback. These schemes usually
require to modify intermediate routers along packet forwarding paths and are
mostly for post-attack analysis. To deal with IP-spoofing, ingress filters can not
stop attackers to spoof in valid address space. However, the computational over-
head of public key schemes limits host performance and makes them difficult to
scale to large systems.

In summary, these approaches generally either incur high computational over-
heads and/or heavy key management costs, or require modification to intermedi-

ate routers or broad infrastructure support. On the contrary, the proposed LIPS
does not use encryption or digital signatures, hence the overheads of encryption
and key management are minimized. Furthermore, LIPS is an end-to-end/edge-
to-edge approach that does not require any support from intermediate networks.
Therefore, it is easier to be deployed incrementally to a large scale.

The remainder of this paper is organized as follows. In Section 2, we present
the basic concepts and constructs of LIPS, illustrate how it works and why it
is useful, and discuss the related work. In Section 3, we present the design and
implementation of LIPS. In Section 4, we evaluate the performance of LIPS via
simulations and experiments. We conclude this paper in Section 5.

2 Basics of LIPS Architecture

The idea of LIPS is simple: every LIPS packet carries an access permit issued
by its destination, and this permit is verified at the destination to determine
whether the packet is accepted or dropped. Hence for a source to send packets
to a destination, it must obtain a valid access permit first. This simple mecha-
nism enables the destination to easily eliminate illegitimate/spoofed packets and
control who has access to it. As only data packets with valid access permits will
be accepted and processed by applications running on a destination host. Thus a
malicious host cannot simply inject unwanted traffic to harm a destination host
without first requesting an access permit and identifying itself to the destina-
tion. In the following, we first introduce the basic components and operations of
LIPS, and illustrate how access permits are generated, exchanged, and verified.
We then discuss the advantages and limitations of LIPS at the end.

LIPS Packet. LIPS is a simple extension of [P heater [LPS Patl et | P Payload
the IP protocol. We convert an IP packet into

a LIPS packet by inserting a LIPS header into

the payload field of the IP packet and chang-

ing the protocol type to 138 in the IP header?, Fig. 1. A LIPS Packet.
as shown in Fig.1. (We choose 138 as the pro-

tocol type of LIPS in our prototype implementation.) The format of a LIPS
packet header is given in Fig.2, which includes four control fields, a destination
access permit (DAP), and a source access permit (SAP). A DAP is issued by
a destination to a source. It is carried in packets from the source to the desti-
nation and is verified at the destination. A SAP is issued by the source to the
destination for packets on the return path. The Ver field holds a LIPS version
number. The Type field specifies the type of a LIPS packet, such as a permit
request, a permit reply, or a LIPS data packet. Since we replace the IP protocol
type in the IP header to 138 when we translate an IP packet into a LIPS packet,
we use the Protocol field to hold the protocol type in an original IP packet such
that we can restore it after the LIPS packet is accepted at a destination. The
Hdr_CRC field is a simple CRC for a LIPS packet header.

Access Permit. An access permit is constructed using keyed message authenti-
cation code (MAC) [6] at a LIPS-aware host. This MAC is generated through a

3 To avoid the potential segmentation issue, we first perform a path MTU discovery
and then set a proper MTU for the connection.

Ver Protocol

Permit
Type Hdr_CRC Key ID ‘ Hash Len PET } Header

Destination
info

Permit Issuer ID
Destination Access Permit

(DAP) Permit Requester ID }

Source info

Other Parameters, e.g., random bits or (Hash Inputs)
time stamp (Optional)
Source Access Permit
(SAP) Secure Hash Value
CRC
Fig. 2. LIPS Packet Header. Fig. 3. LIPS Permit.

secure hash function with two inputs: a plain hash message (chosen by a permit
issuer and carried in an access permit in plain text) and a secret hash key held
by the issuer.

As shown in Fig.3, an access permit includes five parts: a permit header, a
permit issuer’s ID, a permit requester’s ID (plus optional parameters), a secure
hash value, and a CRC checksum of the secure hash value. The permit header
contains an index (Key ID) of a secret key used for this permit at its issuer, a
hash length (Hash Len) that specifies the length of the secure hash value in this
permit, and a permit expire time (PET) that defines the effective duration of this
permit. The length of secure hash value can be adjusted from 64 bits to 128 bits
depending on the permit issuer’s security requirements. The source information
(denoted as M) includes, e.g., the source IP address and several optional security
parameters (e.g., a random number used to deal with permit-replay attacks). It
is used by the issuer as the input plain hash message to a secure hash function
to compute a message digest, H(M, K;), where H() is a secure hash function,
e.g., HMAC-MD5, and K, is a secret key of the permit issuer at time t. For ease
of exposition, we use the source IP address as M in the following presentation.
Given that the hash length in the permit header is [, the secure hash value of a
permit is the first [bits of the message digest. For example, we can choose the
first 64 bits of a 128-bit HMAC-MD5 digest as a secure hash value. This hash
value will be used for validating the permit. Note that the hash value is specific
to the requester and valid only for a certain period of time, as K; is changed
over time. Without knowing the secret key, it is very difficult to forge a permit.
Exchange of Access Permits between a Source and a Destination. We
use a simple example to illustrate how access permits are set up between two
LIPS-aware hosts. As shown in Fig.4, when a source host H; wants to commu-
nicate with a destination host Hy, H; first sends a permit request to Hy. This
request carries H1’s SAP in the request. The SAP contains a secure hash value
generated based on a secret hash key of H; and a plain hash message about Hs
(e.g., Hy's IP address). Note that not all hosts will be allowed to access Hy. A
security policy at Hy is checked to determine if Hy accepts this permit request?.
If it does, it generates an access permit (Hs’s DAP for H;), containing a secure

4 An example policy may be only accepting permit requests from a local domain, e.g.,
accepting packets from (secure) proxy servers when communicating with hosts in
other domains. This will automatically eliminate port scanning and worm spread-
ing packets from other domains, i.e., an attacker outside a domain cannot discover
vulnerabilities via scanning and a worm cannot propagate across domains through
random probing. Damages are localized.

Host H, Host H,
[(HI's SAP] 1P

P [[H1's SAP [H2's DAP]

Permit Request

Permit Reply

Send packets
with permits
Accept if
valid permit

Data [Hi's SAP [H2's DAP [[TP]
LIPS Data Packet

Legend H, ‘s Source Access Permit
H,‘s Destination Access Permit
[TP] IP Header
H2's DAP] H1s SAP LIPS Packet Header

Fig. 4. Message Exchanges in Setting up an Access Permit.

hash value generated based on a secret hash key of Hs and a plain hash message
about H; (e.g., Hy’s IP address). Then Hs sends the permit (as the SAP) in
a permit reply message back to Hi, using Hy’s SAP (attached in the permit
request from H;p) as the DAP.

H; will only accept a permit reply that carries a valid DAP, namely, a SAP
that it issues in an earlier permit request. This is done by computing a secure
hash value using the plain hash message carried in the DAP and a secret key
pointed by the key index. If this hash value matches the secure hash value carried
in the DAP, H; accepts this reply and caches the SAP of the packet (i.e., Ha’s
DAP) into a permit cache. For the subsequent data packets sent to Ha, Hy puts
Hy’s DAP and its own SAP into the LIPS headers of these packets. When H
receives a LIPS packet from Hi, it verifies the DAP of the packet and accepts
it only if the DAP is valid.

Permit Cache. Each LIPS Table 1. Permit Cache.

host intai it h Destination IP address|Flag|Destination Access Permit
ost maintains a permit cache 5310101 T p——

with a format shown as Ta- 129.128.128.1 3 NULL

ble. 1. A cache entry contains

a destination IP address, a Flag, and a destination access permit. For incremen-
tal deployment, the cache not only holds permits for LIPS-aware hosts, but also
tracks non-LIPS hosts (allowed by security policies), using the destination IP
address as its primary index. The flag is used to distinguish the state of a cache
entry: flag = 0, indicating that the entry is in initialization, namely, a permit
request has been sent to the destination but the reply has not been received yet;
flag = 1, a valid permit for the destination is available; flag = 2, the destination
permit has expired; and flag = 3, the destination does not supports LIPS.
Key Management. Each LIPS host maintains a secret key pool of, say, 256
keys. Each key is uniquely identified by a key index. When a host generates an
access permit, it randomly chooses a key from its key pool and records the key
index in the Key ID field of a permit header. When a host verifies an access
permit, it retrieves a key using the Key ID of the permit header. Note that in
LIPS a key pool is not shared with any other hosts, and no key exchange among
hosts is required, contrary to the complex key establishment procedures in other
approaches. Hence the overhead of LIPS key management is minimized.

Why LIPS. We conclude this section by illustrating how LIPS can be used as
a first-line defensive and preventive mechanism to protect hosts from unwanted
traffic. First, LIPS introduces traffic-origin accountability into the Internet and
enables destinations with the ability to deny access and stop unwanted traf-

fic from untrusted hosts. Second and perhaps more importantly, LIPS facilitates
and simplifies the tasks of detecting unauthorized intrusion and attacks by forcing
malicious hosts to first requesting access permits and identifying themselves to
the intended targets before launching an offense, as we illustrate below. Clearly,
since a source must obtain a valid access permit before it can send a packet to a
destination, illegitimate/spoofed packets will be automatically filtered out. Cy-
ber attacks such as worms generally rely on port-scanning to identify vulnerable
hosts, tricking them to execute the malcode carried in the payload, and thereby
compromising them as stepping stones or unintentional accomplices to further
spread attacks. Similarly, DoS attacks rely on target hosts to expend valuable
resources by unnecessarily processing bogus service requests. Since a malicious
host cannot simply inject unwanted traffic to harm a LIPS-protected destination
without first requesting a permit and identifying itself to the destination®, we can
better defend such attacks by simply detecting anomalies in permit request traf-
fic. For example, a sudden/unusual surge of permit requests to one or more hosts
in a protected network signifies suspicious activities. In particular, when imple-
mented in the gateway mode (introduced in the next section), a source zone can
detect attacks originating from malicious or worm/virus-affected hosts within its
zone and quarantine them by denying (host-specific) request permits to their tar-
get destinations. Hence combined with network intrusion mechanisms, LIPS can
form an effective first line of defense against cyber attacks by stopping unwanted
traffic. In summary, LIPS is designed to localize spoofing and associated attacks,
restrict worm spreading, stop random probing and reflection attacks, assist IDSs
in significantly reducing their load and providing cross-domain feedbacks, and
protect important servers and their incoming links.

3 LIPS Design and Implementation

For incremental deployment and scalability, we design LIPS operating in two
modes. The basic LIPS works in a host mode, in which a LIPS-aware host di-
rectly communicates with another LIPS-aware host as introduced in the previous
section. The LIPS host mode is used as an incremental approach to deploy LIPS
when a few LIPS-aware hosts directly communicate with each other in a small
scale, and it is also used for communications within a zone under the gateway
mode when LIPS is deployed in a large scale. We refer readers to [2] for the
details of LISP host mode. Here we mostly introduce the LISP gateway mode.
We organize LIPS-aware hosts into secure zones based on their network ad-
ministrative domains or zones. We use zone access permits to authenticate inter-
zone packets, and use host access permits (as in the host mode) to authenticate
intra-zone packets. Each zone has a permit server (PS) to manage inter-zone
permits and a security gateway (SG) to validate inter-zone packets based on
inter-zone permits. Once an inter-zone permit is established between a pair of
zones, the subsequent communications between them will take advantage of this

5 An attack may flood a destination, but its packets will be simply dropped and can
not harm applications as today’s worms. We will discuss the prevention of flooding
attack in Section 4.

HostH »

Fig. 5. Illustration of LIPS Gateway Mode

permit and avoid repeatedly setting up inter-zone permits. As a result, we not
only reduce permit setup delays but also significantly reduce inter-zone permit
exchange traffic. Furthermore, we propose a unique and simple permit-mutation
method to transform zone permits and host permits back and forth such that not
only security gateways do not need to keep per-flow states but also zone permits
are not revealed to hosts. Another advantage of permit-mutation is to localize
damage caused by potential attacks as discussed later. In each zone, LIPS-aware
hosts still directly communicate with each other as in the LIPS host mode.

Permit Server, Intra-zone and Inter-zone Permit Setup Protocol. As
show in Fig.5, host H; in zone Z; wants to access host Hs (e.g., a protected
application server) in zone Zs. PS; is the permit server of zone Z7, and PSs
is the permit server of zone Zs. Zone Z; and zone Z5 are protected by security
gateways SG1 and SGaq, respectively, which authenticate both ingress and egress
traffic originating from and destining to trusted hosts in these zones. To obtain a
permit to access remote host Ho, Hy authenticates itself to its local permit server
PS; (e.g., a local authentication scheme such as Kerberos). PS; assists H; to
obtain an access permit to Hs. Under a two-tiered model, we divide the packet
forwarding path from a local host H; to a remote host Ha into three segments:
from H; to SGy, from SG; to SGa, and from SGo to Hs. Correspondingly, we
use three access permits at each of these segments for packet authentication:

3 3 host 3 ; zone
an intra-zone host access permit Pp* ;. an inter-zone permit PZ°"¢, | and

another intra-zone host access permit ngﬁ H,- We introduce the setup protocols
for these permits in the following.

Each PS is assigned a zone ID. In this prototype design, we simply choose
the IP address of a PS as its zone ID since inter-zone permit requests and replies
will be exchanged between PSs. We use this zone ID to generate a zone access
permit as follows. In response to a permit request from a trusted host, the local
PS passes the request to the corresponding (authoritative) PS in the remote
secure zoneS, together with its zone ID and other necessary credentials. If the
access is allowed, the remote PS will generate a zone access permit (or zone
permit in short) based on the local PS’s zone ID. Hence the access permit is

S For a PS to find an authoritative PS of a domain, we add a simple resource record
at the DNS of a domain such that a PS can find another PS through a simple
DNS query, based on a simple name convention. We assume that DNSsec will solve
security issues related to current DNS and so we will not discuss DNS security in
this paper.

source-zone specific. The remote PS returns the zone permit to the local PS
together with its own zone ID. Instead of directly passing the zone permit to the
requesting host, the local PS creates a new host access permit (or host permit
in short) by adding some “random” value generated based on the source and
destination IP addresses as explained in the following. This mutation of a zone
permit into a host permit makes the host permit specific to both source host and
destination host, thereby rendering it difficult to be spoofed by other hosts.
Zone Access Permits. Zone access permits are generated in the same fashion
as host access permits but use a zone ID as a plain hash message. For a packet,
let use I P; to denote its source IP address of host H; in zone Z1, and use I P
to denote its destination IP address of host Hs in zone Zs. Let I Ppg, be the IP
address of a requesting PS (as a zone ID), and KtZ2 be a secret key maintained
by the queried PS> at time ¢. Then the secure hash value of the zone permit is
pzne, = H(IPpg,, K7?), where H() is a secure hash function, and the CRC
checksum of the permit is computed on PZ"¢, . As explained in the following,
the CRC checksum is used to verify the validity of the permit after the permit
de-mutation for outbound packets. Note that the generated permit is specific to
the requesting zone, and is valid only for a certain period of time, as K tZ2 changes
over time. Without knowing KtZ2, it is very difficult to forge a zone permit.
Mutation of a Zone Permit to a Host Permit. Given the zone permit PZ"¢, |
the requesting PS mutates it into a host permit P;}‘fi H, using the IP address of
the requesting (source) host, I Py, and the IP address of the queried (destination)
host I Ps. Let KtZ1 be a secret key maintained at the requesting PS at time ¢t. We
construct a host permit, PI’}fiHZ = Pzne, © H(IPy, 1Py, KtZl) Note that the
host permit P}}‘;i , 18 only valid for the source H; to access the destination Ha

for a certain period of time. Again, without knowing the secret key KtZ 1, it is
also very difficult to forge a host permit. The host permit is essentially the same
as the zone permit, with the secure hash value PZ"¢, replaced by P;}‘fi Hy-
Note that the CRC checksum is not re-computed.

Host and Gateway Operations. At both source and destination domains, we
establish lightweight packet authentication mechanisms for verifying and filtering
packets based on host and zone access permits.

Host Operations. In the gateway mode, we install a host authentication layer
(HAL) at each host. During its initialization, a HAL authenticates itself to its
permit server and security gateways, e.g., via a local authentication scheme such
as Kerberos. This authentication only occurs once during its initialization. In
the meantime, it also issues host access permits to its PS and its SG for authen-
ticating permit replies and LIPS data packets from them, e.g., host H; issues
permit P}°% . to PS; and SG1.

The HAL layer at an end host x intercepts each outbound packet and then
looks up its permit cache based on the destination IP address of the packet. If
a destination access permit is found, it is attached the permit to the packet. In
addition, the host will attach its source access permit generated using its local
zone ID IPpg,, Pg"i‘fz = H(IPpsi,KtHz), where KtH”” is a secret key kept by
the host at time t. This source access permit is used for authenticating packets

from the security gateway to the host. For each incoming packet, the HAL checks
the validity of the destination permit using the destination zone ID (carried in
the permit) and its own secret key. (It is the reverse operation of generating the
source access permit in the above). The packet is accepted only if it passes the
verification. In this case, the source access permit is cached in the permit cache
(with a timer appropriately set, in a manner similar to the ARP table used for
IP and MAC translation).

Gateway Operations. The gateway authentication layer (GAL) is a LIPS real-
ization at a SG, which is a small patch to the IP layer. For outgoing packets, the
SG is responsible for ensuring that they are authorized to access the protected
remote zones and hosts. To verify this, it uses the source IP address 1P, the
destination IP address I P,, and the destination access permit Pfl‘;i Hy (carried
in the packet) to first compute X := PﬁfiHQ OHIP,IP,, Ktzl), where KtZ1 is
the secret key that the SG shares with the local PS. It then generates the check-
sum on X. If the computed checksum does not match the checksum carried in
the destination access permit, the authentication fails and the packet is dropped.
Otherwise, the secure hash value in the destination access permit is replaced by
X (note that X = PZ"¢,), and thus the destination access permit is de-mutated
back to the original zone access permit issued by the destination zone. Further-
more, the (host) source access permit of Hj, together with the source host IP
address, is cached in the LIPS permit cache at the gateway. In addition, the
gateway will replace the (host) source access permit in the packet with a new
(zome) source access permit, PZo"¢, = H(IPps,, K7*), where IPpg, is the
IP address of PSs as the destination zone ID. PZ°"¢, is used to authenticate
packets from the destination zone Zs on the reverse path.

For packets entering a destination zone, the security gateway is responsible
for verifying that they carry proper zone access permits. This is done by checking
to see whether the destination permit carried in an incoming packet, PZ7"¢,
is valid. If this verification fails, the packet is discarded. Otherwise, the packet
is allowed to enter the destination zone. Using the destination IP address IPs,
the gateway looks up its permit cache and replaces the destination zone per-
mit with the corresponding destination host permit. Depending on whether the
destination host is a trusted host (e.g., a server) in a protected (e.g., secluded)
network, or a client host in a less secure environment, the gateway may replace
the source zone access permit, PZ9"¢, | with a mutated source host access per-
mit, P;}‘Z’S_ﬁHl =Py, & H(IP,IP,, KtZQ) In the former case, for scalability
this operation is optional so that trusted servers and other high-performance
hosts in protected networks only need to maintain zone-level access permits. In
the latter case, this operation would prevent other untrusted hosts to eavesdrop
and forge (zone) access permits. A detailed illustration of operations in LIPS
gateway mode can be found in [2].

Advantages of LIPS Design and Implementation The design and im-
plementation of LIPS have the following several salient advantages. As noted
earlier, a key feature of LIPS is that no secret is shared across network domains,
which makes the architecture more scalable and flexible. Packet authentication

Table 2. Comparison: with and without LIPS over a dedicated link.
I [[Effective Bandwidth[Loss Rate[Jitter ||

[With LIPS[| _ 90.7 Mbps _ | 0.005% [0.025ms]|
[[W/O LIPS]| 93.7 Mbps | 0.005%]0.022ms]]|

is performed using only information carried in (the LIPS header of) a packet and
secret keys held locally by security gateways and hosts. Thus packet operations
can be done efficiently. Furthermore, our architecture is purely edge-to-edge (or
“end-domain-to-end-domain”), as it does not require any intermediate networks
for assistance. It is also incrementally deployable: only those hosts that need
to be secured have to be patched with simple protocol enhancement, and to be
placed “behind” security gateways for authentication and protection. In addi-
tion, no modification to applications is required. Through separate zone-level
and host-level access permits, we isolate “bad” packets originating in one’s own
zone from those outside, and limit the abilities of attacks to mostly “man-in-the-
middle” replay attacks by “sniffing” permits. Permit- or Packet-Replay attacks
can be mitigated by including, e.g., sequence no. or random bits, in access per-
mits. By augmenting LIPS with active monitoring and rapid response defense
mechanisms, we can quickly detect and throttle such attacks (e.g., by detecting
duplicate access permits, and adjusting timed keys). With such mechanisms,
replay attacks will have very localized effect, with only “sniffed” hosts/domains
being affected, due to the host-specific/domain-specific feature of access permits.

4 Performance Evaluation

We have evaluated the basic overhead of the LIPS itself, and examined the
effectiveness of LIPS in protecting server resources. In the following, we present
these results briefly. Readers can find more details and results in [2].

Overall Overhead of LIPS. We conducted experiments to examine the
overall overhead introduced by our LIPS implementation on Linux platforms in
data transmission, compared with IP. In these experiments, we used Iperf to send
an CBR UDP flow from a host to another via a dedicated 100Mbps link. When
the CBR rate is lower than 100Mbps, there are almost no differences between
the transmissions with or without LIPS. Table 2 shows the Iperf measurements
when the CBR rate is 100Mbps. Even in this stress test, the difference between
the transmission bandwidth with LIPS and that with IP is negligible small (3%).
In our experiments, we also measured the delays of key LIPS operations includ-
ing HMAC computation, permit lookup, and mutation. On a common Linux
platform with 2.8MHz Pentium, we can authenticate around 640 Mbps [2], far
beyond a common user’s requirement.

Effective LIPS Protection. We further use analytical models to show how
LIPS helps stop DoS attacks from two aspects: the chances for zombies to start
DoS floods and the probabilities of successful attacks. We focus on the replay
of host permits in LIPS domains because it is rather difficult to gain access
to inter-domain links to sniff a domain permit. The real time and host-specific
nature of LIPS permits dramatically increases the difficulty to generate attacking
traffic. Furthermore, we design a fast response mechanism to quickly stop floods.
Therefore, it is extremely difficult to bring down a LIPS-protected target.

0.0 @ 10°

0.04

B
o

= 0.035

o003 - "z

-
Gu

Probabilit

S 0.025

B
o
o

= o0.02

0.015|

Spoofin
’aw

0.01

0.005} - -

81 o2 03 04 05 06 _ 08 0.9 01 02 _ 03 04 05 06 07 08 09
Avg. Sniffing Probability Ps in a domain Avg. Sniffing Probability Ps in a domain

o
Ow

Flooding BW from a domain (Mbp:

(a) Spoofing Probabilities in LIPS for a (b) Comparison of Aggregate Spoofing
zombie. Bandwidth from a domain: IP vs. LIPS.

Fig. 6. LIPS significantly reduces spoofing chances and restricts flooding capability.

We first examine the spoofing chances for a zombie in a LIPS domain. Under
LIPS, to sniff host permits for spoofing, a zombie must have access to the path
to a destination in real time. We define p, as the probability that a host is
compromised as a zombie in a domain, and ps as the probability that a zombie
can sniff a valid permit to a target in the domain. Assume that a legitimate host
communicates with a target server as a Poisson process. As shown in Fig.6(a),
given different p, and ps, the spoofing probabilities for zombies under LIPS are
far lower than 1, the chance under IP.

Consequently, LIPS dramatically suppresses zombies’ capabilities to launch
flooding attacks to a target. Assume we have a domain of 100 hosts; those hosts
communicate with a remote server as Poisson processes; the mean flow rate
of a legitimate session is 128Kbps. Fig.6(b) shows that the aggregate flooding
bandwidth to the server, which can be generated by zombies in the domain. The
top four lines are flooding rates under IP with various p,, while the bottom four
lines are flooding rates under LIPS with the same conditions. Note that the Y-
axis is in a log scale. Clearly, it is very difficult for zombies to generate sufficient
traffic to flood the server under LIPS; while it is fairly easy under IP. In addition,
our study also shows that an attacker needs about 104 to 10° domains as the
above to flood a LIPS-protected 1 Gbps link with over 100% unwanted packets.
It is extremely difficult for an attacker to collect such huge amount of resources.

Furthermore, we use a simple Stochastic Knapsack framework [5] to model a
DoS attack to a protect incoming link of a target. We use C' to denote the total
amount of incoming bandwidth available. Assume legitimate flows (or attacking
flows) have an exponential arrival rate with a mean of A\; (or A,), a bandwidth
requirement b; (or b,), and an exponential service time with a mean of p; (or 11,).
The system admits an arrival whenever bandwidth available. In this model, the
probability of a successful DoS attack is the blocking probability corresponding

to the legitimate traffic, defined as P, = 1 — % SS/((’Z;:L//Z!!))'_((Z %Z//Z‘;!!)), where S is the

set of cases that an arriving legitimate flow can be admitted, and S’ is the set
of cases that either a legitimate flow or an attacking flow is admitted; in each
case, n; is the number of legitimate flows admitted, and n, is the number of
attacking flows admitted; and offered load p; = A\;/ui, pa = Aa/pla- Fig.7 shows
the blocking probability of legitimate flows as we increase the load of attacking
traffic. To block 90% of legitimate traffic, the attacking load has to be 1000 times
heavier than the legitimate traffic.

° S o
by > @

Blocking Prob. of Legitimate Traffic
S
I

0

200 400 600, 800
Load of Flooding Traffic

1000

Percentage of Unwanted Packets

3

“+- Ry, =100 Mbps
—— R, =1Gbps
R, =10Gbps

]

I
&

8

Percentage of Unwanted Packets

8

“e- R, =100 Mbps
— Ry, =1Gbps
. R, =10Gbps

2

&

o

2 4 6 8
Time (in seconds)

2 4 6 8
Time (in seconds)

. (a) 1,000 replaying sources: (b) 10,000 relaying sources:
Fig. 7. Blocking Probability of
legitimate flows as the attacking
traffic load increases.

100 sources in each of 10 do- 100 sources in each of 100 do-

mains. mains.

Fig. 8. Static Attacks: Delays to shut off all replaying sources.

We also design an inter-domain collaboration scheme to stop permit-replay
flooding in LIPS domains and take care of zombies across domain [2]. Since
zombies have to generate high attacking load to launch successful attacks, it is
easy to identify them and then isolate these zombies through a local defense
mechanism. Furthermore, we can also identify and deal with zombies through
automatic inter-domain collaborations. Fig. 8(a) and Fig. 8(b) show the effec-
tiveness of our fast response scheme: to protect incoming links with various
capacities, we can quickly shut off these replaying source in 10 seconds for a
large number of replaying sources.

5 Conclusions

LIPS is a simple packet authentication mechanism which provides traffic origin
accountability for stopping unwanted traffic. We presented the basic design of
LIPS and a prototype implementation on Linux platform. Our analytical, simu-
lation and experimental results show that LIPS is capable of stopping unwanted
packets with negligible overheads. Currently, we are incorporating active moni-
toring and rapid-response defense mechanisms into LIPS for further improving
its security and performance.

References

1. T. Anderson, T. Roscoe, and D. Wetherall. Preventing internet denial-of-service
with capabilities. Hotnets 2003, Nov. 2003.

2. Y. Dong, C. Choi, and Z. 1 Zhang. A lightweight
mit system for stopping unwanted packets. Technical
http: / /www. ee.hawaii. edu/~ dong/papers /LIPS _report.pdf, July, 2004.

3. D. Estrin and et. al. Visa protocols for controlling inter-organization datagram flow.
In IEEE Journal on Selected Areas in Communication, May 1989.

4. G. Hadjichristo, N. Davis IV, and C. Midki. Ipsec overhead in wireline and wireless
networks for web and email applications. In Proc. of IEEE IPCCC, Apr. 2003.

5. A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay services. In Proc.
of ACM SIGCOMM, Aug. 2002.

6. A. Menezes, P. Oorschot, and S. Vanstone. Handbook of applied cryptography. CRC
Press, ISBN: 0-8493-8523-7, 1996.

7. K. Park and H. Lee. On the effectiveness of route-based packet filtering for dis-
tributed DoS attack prevention in power-law Internets. Proc. of ACM SIGCOMM
2001, San Diago, CA.

8. H. Wang, A.Bose, M.Gendy, and K.Shin.
Control. In Proc. of IEEE INFOCOM, 2004.

per-
Report,

IP Easy-pass: Edge Resource Access

