
ECC Based Threshold Cryptography for Secure Data
Forwarding and Secure Key Exchange in MANET (I)

Levent Ertaul, Weimin Lu

Department of Math and Computer Science
California State University, Hayward

25800 Carlos Bee Blvd.
Hayward, CA 94542-3092 USA

lertaul@csuhayward.edu
wlu@horizon.csuhayward.edu

Abstract. This paper proposes a new approach to provide reliable data trans-
mission in MANET with strong adversaries. We combine Elliptic Curve Cryp-
tography and Threshold Cryptosystem to securely deliver messages in n shares.
As long as the destination receives at least k shares, it can recover the original
message. We explore seven ECC mechanisms, El-Gamal, Massey-Omura, Dif-
fie-Hellman, Menezes-Vanstone, Koyama-Maurer-Okamoto-Vanstone, Ertaul,
and Demytko. For secure data forwarding, we consider both splitting plaintext
before encryption, and splitting ciphertext after encryption. Also we suggest to
exchange keys between a pair of mobile nodes using Elliptic Curve Cryptogra-
phy Diffie-Hellman. We did performance comparison of ECC and RSA to show
ECC is more efficient than RSA.

1 Introduction

Mobile ad hoc networks are different from mobile wireless IP networks in that there
are no base stations, wireless switches, and infrastructure services like naming, rout-
ing, certificate authorities, etc. Because mobile nodes join and leave the network dy-
namically, sometimes even without a notice, and move dynamically, network topol-
ogy and administrative domain membership can change rapidly. Thus it is important
to provide security services such as availability, confidentiality, authentication [1, 2],
access control, integrity, and non-repudiation.

As in other networks, cryptography is the foundation for all network security ser-
vices [3] in MANET, and key management is the major factor to guarantee a secure
ad hoc network [4]. However, key management in ad hoc network has to be distrib-
uted service [5] as there is no fixed infrastructure to provide centralized service. An-
other major challenge is to deliver reliable data transmission when some nodes may
be compromised [6]. Attackers can disrupt data transmission and incur significant
data loss by tampering with, fraudulently redirecting, or even dropping data traffic.

First we suggest seven highly reliable data dispersing and data reconstruction
mechanisms using ECC algorithms and TC. Then a key exchange mechanism using
ECC Diffie-Hellman and TC is proposed as an alternative to RSADH.

2 Secure Data Transmission

We use Shamir’s secret sharing scheme [7] to provide reliable data transferring. There
are two basic mechanisms to combine ECC and TC. The first method is to split the
messages into n pieces before we use ECC to encrypt them individually and send
them to the receiver. At the receiving end, each share of secret is decrypted using
ECC respectively. Then k piece shares in plaintext are combined to recover the secret.
The second method is to encrypt the plaintext using ECC encryption algorithm before
we split the ciphertext into n shares. The receiver with at least k shares of ciphertext is
able to recover the ciphertext. Finally the destination can use ECC decryption algo-
rithm to decrypt the ciphertext to get the original plaintext.

We can use any source routing protocols [8], like SDR, to find out the number of
routes of disjoint nodes between the sender and the receiver to choose the number of
shares n. Then, depending on n and the estimated number of compromised nodes in
the network, we can come up with the number of share threshold k.

2.1 Transformation between a Plaintext and a Point on Elliptic Curve

Koblitz [9] gives a method to convert a message to an elliptic curve point, and vice
versa. We have a Galois Field GF(P), where P is a prime number and P > 3. An inte-
ger number k can used to determine how likely we are able to convert any plaintext
into a corresponding point on elliptic curve. First we represent the message in ASCII
code. Then we add a constant to each character in ASCII to get M such that kM < P.
Next we search for an x such that there is a y and (x, y) is a point on the elliptic curve,
where kM < x k(M + 1). To recover M, we compute≤ ⎣ ⎦kx /)1(− . We notice that
when k is larger, it is more likely to find a point (x, y) for the message M. But there
always is a chance that there is not a corresponding point (x, y) for the message M
such that kM < x ≤ k(M + 1).

2.2 ECC El-Gamal Cryptosystem

Elgamal works out an ingenious public key cryptosystem [11]. Suppose that the ECC
has a point G on an elliptic curve Ep(a, b), and the order of G is q. P is a large prime.
Bob’s private key and public key are nB, 0 < nB < q, and KB = nBG.

2.2.1 Share Split before Encryption
• First we choose a prime number p > max(M, n), and define a0 = M, the message.
• Then we select k - 1 random, independent coefficients a1, a2,K , ak - 1, 0 ≤ aj ≤ p-1,

defining the random polynomial f(x) = over , a Galois prime field. ∑
−

=

1

0

k

j

j
j xa pZ

• We compute n shares, Mt = f(xt) mod p, 1≤ t ≤ n, where xt can be just the public in-
dex t for simplicity, and convert them to points Pt on elliptic curve (a, b). pE

• Alice picks a random number r, and sends rG and Pt + rKB to Bob with index t.
• Bob recovers each elliptic curve point by calculating Pt + rKB – nBrG = Pt.
• Bob converts Pt to M t , and deduces M by using Lagrange interpolation formula

M = f(0) = ∑ ∏∑ ∏
= == = −

−
=

−

− k

i

k

j ji

j
t

k

i

k

j tt

t
t tt

t
xx

x
i

ji

j

i
1 11 1

M
0

M
(1)

2.2.2 Share Split after Encryption
• Alice converts the secret M to a point PM on the elliptic curve.
• Alice uses El-Gamal encryption to get P1 = rG and P2 = PM + rKB.
• Let P2 = (x2, y2). We choose two random polynomials f1, f2 of degree k-1 in GF(p)

such that f1(0) = x2, f2(0) = y2, and split x2, y2 into n shares of secret respectively.
Alice sends P1 and n shares of P2(x2, y2) with their corresponding indices to Bob.

• Bob recovers x2, and y2 , and calculates the point PM = P2 – nBP1.
• Eventually Bob will convert the point PM to the secret M.

Instead of sending n pieces of x2, y2 to Bob, Alice can choose a random k – 1 de-
gree polynomial f with a0 = x2 and a1 = y2. Thus Alice and Bob can use Vandermonde
matrix [10] instead of Lagrange interpolation to share more than one secretes.

2.3 The Massey-Omura Protocol

Since Massey-Omura encryption [12] requires four transmissions between Alice and
Bob, it is not an efficient solution for threshold crypto-system. Let N be the order of
Ep(a, b). Alice and Bob choose their secret key nA and nB respectively, such that
gcd(nA, N) =1 and gcd(nB, N) =1. NR = ∞ for any point R on the curve according to
Lagrange’s theorem. nB

-1PM 3 = nB
-1nBnA

-1nAPM = nB
-1nB(PM + qNPM) = nB

-1nB PM = PM

Encryption algorithm:
• Alice calculates plaintext M’s corresponding point PM on the elliptic curve, and

sends PM 1 = nAPM to Bob.

• Bob sends back PM 2 = nBPM 1 to Alice.

• Alice sends PM 3 = (nA
-1mod N)PM 2 to Bob.

Decryption algorithm:
Bob calculates (nB

-1mod N) PM 3 = PM, and recovers plaintext M by PM.

2.3.1 Share Split before Encryption
• Alice splits the secret M into n shares of secret Mt, 1≤ t ≤ n.
• Alice converts a share Mt into a point Pt on the curve, and sends Pt 1 = nAPt to Bob.

• Bob sends Pt 2 = nBPt 1 to Alice.

• Alice computes Pt 3 = nA
-1Pt 2 and sends it to Bob, nA

-1
NZ∈ .

• Bob computes nB
-1Pt 3

 and it is Pt, nB
-1

NZ∈ .
• With at least k share of PM, Bob recovers PM, and converts the PM to the secret M.

2.3.2 Share Split after Encryption
• Alice converts the secret M to a point PM = (x, y) on the curve.
• Alice computes PM 1 = nAPM = (x1, y1), splits x1 and y1 into n shares respectively,

and sends n pieces of x1 t and y1 t to Bob.

• Bob combines k pieces of x1 t and y1 t separately to get (x1, y1), i.e., PM 1 , com-

putes PM 2 = nAPM 1 = (x2, y2), splits x2 and y2 into n shares respectively, and sends

n pieces of x2 t and y2 t to Alice.

• Alice combines k pieces of x2 t and y2 t separately to get (x2, y2), i.e., PM 2 , com-

putes PM 3 = nA
-1PM 2 = (x3, y3), splits x3 and y3 into n shares respectively, and

sends n pieces of x3 t and y3 t to Bob.

• Bob combines k pieces of x3 t and y3 t separately to get (x3, y3), i.e., PM 3 , com-

putes PM = nB
-1 PM 3 , and converts the point PM to the secret M.

2.4 ECC Diffie-Hellman Protocol

A generalization of the original Diffie-Hellman key exchange in found a new
depth when Koblitz [13] suggested that such a protocol could be used with the group
over an elliptic curve. The order of a point G on an elliptic curve E

*
pZ

p(a, b) is q. P is a
large prime. The secret key K = nAnBG is generated using DH algorithm.
Encryption algorithm:
• Alice finds the point PM corresponding to M, and sends PM + nAnBG to Bob.
Decryption algorithm:
• Bob subtracts nAnBG from PM + nAnBG, and converts PM to the plaintext M.

2.4.1 Share Split before Encryption
• Alice splits the secret M into n shares of secret M t, 1≤ t ≤ n.
• Alice converts one share M t to a point Pt on the curve.
• Alice computes Pt + nAnBG and sends it to Bob.
• Bob recovers Pt by subtracting nAnBG from Pt + nAnBG.
• With at least k share of PM, Bob recovers PM, and converts the PM to the secret M.

2.4.2 Share Split after Encryption
• Alice converts the secret M to a point PM = (x, y) on the curve.
• Alice computes PC = nAnBG + PM = (xC, yC).
• Alice splits xC and yC into n shares of xC t and yC t respectively, 1≤ t ≤ n.

• Alice sends n pieces of xC t and yC t to Bob.

• Bob combines k pieces of xC t and yC t separately to get (xC, yC), i.e., PC.
• Bob computes PM

 = PC - nAnBG, and converts the point PM to the secret M.

2.5 The Menezes-Vanstone Cryptosystem

Menezes-Vanstone Elliptic Curve Cryptosystem [14] is a solution to the problem of
encoding a message in a point. It uses a point on an elliptic curve to mask a point in
the plane. It is fast and simple. Let H be a cyclic subgroup of Ep(a, b) with the genera-
tor G. Bob has a private key nB, and a public key nBG. The message M is converted
into a point PM = (x, y) in GF(p).
Encryption algorithm:
• Alice select a random number r < |H|, and calculates rnBG = (xk, yk).
• Alice sends (rG, xkx mod p, yky mod p) to Bob.
Decryption algorithm:
• Bob calculates nBrG = rnBG = (xk, yk).
• Bob recovers x and y by xk

-1xkx mod p and yk
-1yky mod p.

• Bob converts the point(x, y) to get the original plaintext M.

2.5.1 Share Split before Encryption
• Alice splits the message M into n shares of secret Mt, 1≤ t ≤ n.
• Alice converts each share Mt into a point Pt.
• Alice select a random number r < |H|, and calculates rnBG = (xk, yk).
• Alice sends (rG, xkxt

 mod p, ykyt
mod p) to Bob.

• Bob calculates nBrG = rnBG = (xk, yk).
• Bob recovers x

t
and y

t
 by xk

-1xkxt
mod p and yk

-1ykyt
 mod p.

• With at least k share of PM, Bob recovers PM, and converts the PM to the secret M.

2.5.2 Share Split after Encryption
• Alice converts the message M into a point PM.
• Alice select a random number r < |H|.
• Alice calculates rnBG = (xk, yk), and calculates z = xkx mod p, and w = ykx mod p.
• Alice splits z, w into n shares of zt, and wt respectively, 1≤ t ≤ n.
• Alice sends rG and n pieces of zt, and wt to Bob.
• Bob combines k pieces of zt and wt separately to get (z, w).
• Bob calculates nBrG = rnBG = (xk, yk).
• Bob recovers PM by xk

-1z = xk
-1xkxmod p and yk

-1w = yk
-1yky mod p.

• Eventually Bob converts PM to the secret M.

2.6 The Koyama-Maurer-Okamoto-Vanstone Cryptosystem

KMOV [15] conjugates the polynomial-time extraction of roots of polynomials over a
finite field with the intractability of factoring large numbers. Bob chooses two large
prime numbers, p and q, such that p 2≡≡ q mod 3. Let n = pq, 0 < b < p and b < q,
and N = lcm(p+1, q+1). Bob picks up his public key e with gcd(e, N) = 1. His private
key d is e-1 mod N.
Encryption algorithm:
• Alice represents M as a point PM on elliptic curve En(0, b), and sends ePM to Bob.
Decryption algorithm:
• Bob calculates dePM = (rN + 1) PM = PM, where r is an integer.
• Bob recovers the original plaintext M by PM.

2.6.1 Share Split before Encryption
• Alice splits the secret M into n shares of secret Mt, 1≤ t ≤ n.
• Alice converts a piece of share Mt into a point Pt on the curve.
• Alice computes ePt and sends it to Bob.
• Bob recovers Pt by dePt = Pt.
• With at least k share of PM, Bob recovers PM, and converts the PM to the secret M.

2.6.2 Share Split after Encryption
• Alice converts the secret M to a point PM = (x, y) on the curve.
• Alice computes PC = ePM = (xC, yC).
• Alice splits xC and yC into n shares of xC t and yC t respectively, 1≤ t ≤ n.

• Alice sends n pieces of xC t and yC t to Bob.

• Bob combines k pieces of xC t and yC t separately to get (xC, yC), i.e., PC.
• Bob computes PM

 = dPC, and converts the point PM to the secret M.

2.7 The Ertaul Crypto-system

P is the generator point while x is the private key, and Y = x*P is the public key.
H((xi, yi)) = Hash(xi⊕ yi) is a HASH function such as MD5, SHA-1.
Encryption algorithm:
1. Alice selects a random value r from Zq.
2. Alice computes U = r*P and V = H(r*Y)⊕M, and sends C = (U, V) to Bob.
Decryption algorithm:
1. Given a ciphertext C = (U, V), Bob computes x*U= x*r*P = r*x*P.
2. Bob computes V⊕ H(r*x*P) = H(r*Y)⊕ M⊕ H(r*x*P) = M

2.7.1 Share Split before Encryption
• Alice splits the secret M into n shares of secret Mt, 1≤ t ≤ n.
• Alice selects a random value r from Zq, and computes U = r*P.

• For each share Mt, Alice computes Vt = H(r*Y) ⊕ Mt.
• Alice sends ciphertext Ct = (U, Vt) to Bob.
• Given a ciphertext Ct, Bob computes x*U= x*r*P.
• Bob computes H(r*x*P) and Vt ⊕ H(r*x*P) = H(r*Y) ⊕ Mt ⊕ H(r*x*P) = Mt
• With at least k share of Mt, Bob is able to recover M.

2.7.2 Share Split after Encryption
1. Alice selects a random value r from Zq, computes U = r*P.
2. Alice computes V = H(r*Y) ⊕ M, splits V into n shares of secret Vt, 1≤ t ≤ n.
3. Alice sends ciphertext Ct = (U, Vt) to Bob.
4. Bob recovers V, and computes x*U= x*r*P.
5. Bob computes H(x*r*P) and V ⊕ H(x*r*P) = H(r*Y) ⊕ M ⊕ H(x*r*P) = M.

2.8 The Demytko cryptosystem

Demytko [16] uses a fixed randomly chosen elliptic curve En(a, b) over the ring n,
where n = pq is an RSA modulus. It relies on the fact that if a number x is not the x-
coordinate of a point on an elliptic curve Ep(a, b), then it will be the x-coordinate of a
point of the twisted curve),(baEp defined as, in addition to the point at infinity, the

set of points (x, y) satisfying),(baEp : y2 = x3 + ax + b, where y = u v , u ,
and v is a fixed quadratic non-residue modulo p. Let |E

pF∈
p(a, b)| = 1 + p + α ,

| b) Ep(a, | = 1 + p -α , |Eq(a, b)| = 1 + q +β , | b) Eq(a, | = 1 + q -β .
N1 = lcm(p + 1 +α , q + 1 +β) N2 = lcm(p + 1 +α , q + 1 -β)
N3 = lcm(p + 1 -α , q + 1 +β) N4 = lcm(p + 1 -α , q + 1 -β)

e is chosen such that gcd(e, Ni) = 1, and private key di is calculated by di = e-1 mod Ni,
i = 1 to 4. Let x represent the plaintext and s the ciphertext (where 0).1, −≤≤ nsx
Encryption algorithm:

Alice sends (s, t) = e(x, y) where y = baxx ++3 and t = bass ++3 .
Decryption algorithm:

Bob determines which di of the four inverses of e should be used based on the
Jacobi symbols (c3 + ac + b/p) and (c3 + ac + b/q). Bob computes(x, y) = di(s, t).

2.8.1 Share Split before Encryption
• Alice splits the secret M into n shares of secret Mt, 1≤ t ≤ n.
• For each share Mt, Alice computes Ct = e(xt, yt), and sends ciphertext Ct to Bob.
• Given a ciphertext Ct, Bob chooses which d of the four inverses of e to be used.
• Bob computes (xt, yt) = dCt, and recovers M.

2.8.2 Share Split after Encryption
• For a message M, Alice computes C = e(M, y).
• Alice splits C into n shares of secret Ct, 1≤ t ≤ n, and sends ciphertext Ct to Bob.
• With at least k share of Ct, Bob is able to recover C.
• Bob chooses which d of the four inverses of e to use, and computes (M, y) = dC.

3 Key Exchange Method

Suppose that the order of a point G on an elliptic curve Ep(a, b) is q. P is a large
prime. Reliable key exchange using Threshold Crypto-systems works like below.
• First, Alice chooses a secret number nA with 0 < nA < q.
• Bob chooses a secret number nB with 0 < nB < q.
• Alice computes her public key KA = (xA, yA) = nAG.
• Alice splits xA and yA into n separate shares, xA t and yA t , and sends them to Bob.
• Bob computes his public key KB = (xB, yB) = nBG.
• B splits xB and yB into n separate shares, xB t and yB t , and sends them to Alice.

• Alice uses k shares of xB t and yB t separately to recover xB, and yB, i.e., nBG.
• Alice calculates secret key K = nAnBG
• Bob uses k shares of xA t and yA t separately to recover xA, and yA, i.e., nAG.
• Bob computes the same key by nBnAG = nAnBG.

4 Performance and Complexity Comparison

4.1 Computation Complexity of Share Split before Encryption and Share Split
after Encryption

There are mainly three types of operations in our methods, point addition, point expo-
nentiation and Lagrange interpolation. Doubling of points takes one inverse operation,
10 additions, and six multiplications while addition of two different points takes one
inverse operation, 10 additions, and five multiplications. Addition points and doubling
of points of basic ECC arithmetic are of comparable computation complexity.

Next we will compare the complexity of point addition and point exponentiation,
i.e., P + Q and rG. Let w = p’s length in bits and r is a number in GF(p). We can rep-

resent r in binary as rwrw-1…r0 or r = . rG = ()G i

w

i

i r∑
=

−

1

12 i

w

i

i r∑
=

−

1

12

Since integer multiplications are much more expensive than integer additions, from
now on, we will take only multiplications into consideration. w - 1 additions of two
different points need 5(w – 1) multiplications and w – 1 inverse operations. We can
see that addition of two points is far cheaper than exponentiation of a point. A (k, n)
Shamir’s secret sharing algorithm has a complexity of O(k2), k2 multiplications and k2

+ k additions. As k << w (160 256≤≤ w), it is straightforward to see that ECC en-
cryption/decryption is much more expensive than Lagrange interpolation in the same
prime field. Table 1 lists the number of three types of calculations required for each
ECC-TC algorithm plus number of packets and packet sizes between senders and re-
ceivers.

w is the length in bits needed to represent the largest number that can be used, i.e.,
p, and w = ⎡ ⎤plog . Each packet contains all necessary information for each round
of communication between the sender and the receiver, including each individual
share xi and its index i. From this table, we can see, in general, share split before en-
cryption is slower than share split after encryption. Among seven ECC-TC algo-
rithms, MV and Ertaul are the most best from the perspective of computing power re-
quirements because they have the least number of elliptic curve exponentiation
calculations over prime fields. If network bandwidth is the critical factor, KMOV and
Demytko are better choices.

 Table 1. Complexity comparison of seven ECC secret sharing algorithms

Share split before encryption Share split after encryption ECC

rG P+Q Lagrange rG P+Q Lagrange

Pkt size Pkt #

EG 3n 2n 1 3 2 2 5w n

MO 4n 0 1 4 0 6 3w 3n

DH 0 2n 1 0 2 2 3w n

MV 3 0 1 3 0 2 5w n

KMOV 2n 0 1 2 0 2 3w n

Ertaul 3 0 1 3 0 1 4w n

Demytko 2 0 1 2 0 1 3w n

4.2 Performance advantages comparison of ECC with RSA

Currently, for the same level of resistance against the best known attacks, the system
parameters for an elliptic-curve-based system can be chosen to be much smaller than

the parameters for RSA or mod p systems [17]. Table 2 and 3 are taken from [17, 18],
and are directly comparable to RSA numbers for the same platform. Table 3 uses
ECCDH for ECC encryption and decryption. It calculates the time taken to compute
the secret key nAnBG. Encryption and decryption time are symmetric in ECCDH. Ta-
ble 4 is from [19]. In table 5, we calculate the timings of seven ECC secret sharing al-
gorithms by only considering point exponentiation since that is bulk of the calcula-
tion. Clearly ECCDH is the fastest algorithm. Same as before splitting secret after
encryption has better performance than splitting secret before encryption.

Table 2. Key sizes in bits for equivalent levels

Symmetric ECC DH/DSA/RSA
80 163 1024
128 283 3072
192 409 7680
256 571 15360

Table 3. Sample ECC and RSA timings in milliseconds over prime fields

Processor MHz 163-
ECC

192-
ECC

1024-
RSAe

1024-
RSAe

2048-
RSAe

2048-
RSAd

UltraSPARC
II

450 6.1 8.7 1.7 32.1 6.1 205.5

StrongARM 200 22.9 37.7 10.8 188.7 39.1 1273.8

Table 4. ECC of Koblitz curve over and RSA (e = 2mF
2

16 + 1) timings in milliseconds on
Pentium II 400MHZ

163-
ECAESe

163-
ECAESd

233-
ECAESe

233-
ECAESd

283-
ECAESe

283-
ECAESd

4.37 2.85 7.83 4.85 11.02 6.78
1024-RSAe 1024-RSAd 2048-RSAe 2048-RSAd
3.86 66.56 13.45 440.69

Table 1 and Table 5 clearly indicate share split before encryption is not as efficient

as share split after encryption. The reason is that share split before encryption splits a
secret into n shares and does n encryptions instead of just one in share split after en-
cryption. If the environment has limited computing power, like mobile network or
embedded system, MV, KMOV and Demytko take 2 elliptic curve exponentiations
while other algorithms requires at least 3. On the other hand, if the application is run-
ning over a network with very limited capacity, packet size is more important than
complexity. In that case, Massey-Omura, KMOV, and Demytko are the best choices
as the packet size is 3w, 3w, and 2w respectively. We noticed that Ertaul ECC-TC has
the following advantages: Converting messages into points eliminated, ECC become a
block cipher, proven secure cryptosystems (ECC and MD5/SHA-1). Furthermore it is
a stable algorithm, i.e., it has the same complexity in both share split before encryp-
tion and share split after encryption. It is close to the best candidates in all cases.

Table 5. ECC secret sharing timings in milliseconds over prime fields.

ECC share split before encryption share split after encryption

163-

bit Sun
192-

bit Sun
163-

bit ARM
192-bit

ARM
163-

bit Sun
192-

bit Sun
163-

bit ARM
192-

bit ARM

EG 18.3n 26.1n 68.7n 113.1n 18.3 26.1 68.7 113.1

MO 24.4n 34.8n 91.6n 150.8n 24.4 34.8 91.6 150.8

DH 6.1 8.7 22.9 37.7 6.1 8.7 22.9 37.7

MV 12.2 17.4 45.8 75.4 12.2 17.4 45.8 75.4

KMOV 12.2n 17.4n 45.8n 75.4n 12.2 17.4 45.8 75.4

Ertaul 18.3 26.1 68.7 113.1 18.3 26.1 68.7 113.1
De-

mytko 18.3n 26.1n 68.7n 113.1n 12.2 17.4 45.8 75.4

5. Related Works

A different approach has been proposed to alleviate the detrimental effects of packet
dropping by detecting misbehaving nodes and reporting such events, and maintaining
a set of metrics reflecting the past behavior of other nodes [20]. It consists of two enti-
ties, the watchdog and the pathrater. When a node forwards a packet, the node’s
watchdog verifies that the next node in the path also forwards the packet. If the next
node does not forward the packet, then it is malicious. The pathrater uses this feed-
back to choose the best route that is most likely to deliver packets.

Secure Message Transmission Protocol [21] is a comprehensive protocol that toler-
ates rather than detects and isolates malicious nodes. SMT requires a security associa-
tion between the two end communicating nodes, i.e., the source and the destination. It
uses Active Path Set, a set of diverse, node disjoint paths to transfer dispersed pieces
of each outgoing message using Information Dispersal Algorithm. SMT can operate
with any underlying secure routing protocol. The message and redundancy data are
divided into a number of pieces so that if M out of N transmitted pieces are received
successfully, the original message can be correctly reconstructed. The sender updates
the rating of each path in its APS based on the feedback provided by the destination.
The destination validates the incoming pieces and acknowledges the successfully re-
ceived ones through a feedback across multiple routes back to the source.

We need to implement our solution and run it by a simulator to compare it with
other related works to see the performance improvement.

6 Conclusions

The security-sensitive applications of ad hoc networks require high degree of security,
but ad hoc networks are inherently vulnerable to security attacks. Threshold cryptog-
raphy is a valid approach to build a highly available and highly secure key manage-
ment service by distributing trust among a group of servers. Elliptic curve cryptogra-

phy provides an efficient alternative to RSA public key encryption. We successfully
use ECC and TC to provide the best of both worlds in MANET environment.

References

[1] T.P. Pedersen, “A Threshold Cryptosystem without a Trusted Party”, In Proc. Of
Eurocrypt’91, Lecture Notes in Computer Science, LNCS 547, Springer Verlag, pp.522-526,

1991
[2] Kazuo Takaragi, Kunihiko Miyazaki, Masashi Takahashi, A Threshold Digital Signature Is-

suing Scheme without Secret Communication
[3] Amitabh Mishra and Ketan Nadkarni, Security in Wireless Ad Hoc Networks, The Hand-

book of Ad Hoc Wireless Networks, December 2002, pp. 30.1-30.51
[4] L. Zhou and Z.J. Haas, Securing Ad Hoc Networks, IEEE Network Magazine, Nov./Dev.

1999
[5] Dan Zhou, Security Issues in Ad Hoc Networks, The Handbook of Ad Hoc Wireless Net-

works, December 2002, pp. 32.1-30.14
[6] Panagiotis Papadimitratos and Zygmunt Haas, Securing Mobile Ad Hoc Networks, The

Handbook of Ad Hoc Wireless Networks, December 2002, pp. 31.1-31.17
[7] A. Shamir, How to Share a Secret, in Communications of the ACM, vol.22, no.11, pp.612-

613, 1979
[8] P. Papadimitratos, Z.J. Haas, Secure Routing for Mobile Ad Hoc Networks, in: Proceddings

of the SCS Communication Networks and Distributed Systems Modeling and Simulation
Conference (CNDS 2002), San Antonio, TX, January 27-31, 2002

[9] N. Koblitz, A Course in Number Theory and Cryptography (Graduate Texts in Mathemat-
ics, No 114), Springer-Verlag, 1994

[10] W. Trappe, L. C. Washington, Introduction to Cryptography: with Coding Theory, Pren-
tice Hall, 2002

[11] T. Elgamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete Loga-
rithms, IEEE Transactions on Information Theory, IT-31(4):469-472, July 1985

[12] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Chapman &
Hall/CRC, 2003

[13] N. Koblitz, Elliptic Curve Cryptosystems, Math. Comp., 48,203-209, 1987
[14] A. Menezes, S. A. Vanstone, Elliptic Curve Cryptosystems and Their Implementation,

Journal of Cryptology, 6 (1993), 209-224
[15] K. Koyama, U. Maurer, T. Okamoto, S. A. Vanstone, New Public-Key Schemes Based on

Elliptic Curves over the Ring Zn, Proceedings of Crypto’91, LNCS 576, Springer-Verlag,
pp. 252-266, 1992

[16] N. Demytko, A New Elliptic Curve Based Analogue of RSA, EUROCRYPT’93, LNCS
765 40-49 (1993)

[17] Kristin Lauter, The Advantages of Elliptic Curve Cryptography for Wireless Security,
IEEE Wireless Communications, February 2004

[18] V. Gupta, S. Gupta, S. Chang, Performance Analysis of Elliptic Curve Cryptography for
SSL, ACM Workshop Wireless Security, Mobicom 2002, Atlanta, GA, September 2002

[19] Michael Brown, Donny Cheung, Darrel Hankerson, Julio Lopez Hernandez, Michael
Kirkup, and Alfred Menezes, PGP in Constrained Wireless Devices, in: Proceedings of the
9th USENIX Security Symposium, Denver, CO, August 2000

[20] S. Marti, T.J. Giuli, K. Lai, M. Baker, Mitigaing Routing Misbehavior in Mobile Ad Hoc
Networks, in: Proceedings of the 6th MobiCom, Boston, MA, August 2000

[21] P. Papadimitratos, Z.J. Haas, Secure Message Transmission in Mobile Ad Hoc Networks

