
An Architecture for Software-based iSCSI:
Experiences and Analyses

Annie Foong, Gary McAlpine, Dave Minturn, Greg Regnier, Vikram Saletore
{annie.foong, gary.l.mcalpine, dave.b.minturn, greg.j.regnier, vikram.a.saletore}

Intel Corporation
2111 NE 25th Ave, Hillsboro, OR 97124

Abstract. Supporting multi-gigabit/s of iSCSI over TCP can quickly saturate
the processing abilities of a SMP server today. Legacy OS designs and APIs
are not designed for the multi-gigabit IO speeds. Most of industry’s efforts had
been focused on offloading the extra processing and memory load to the
network adapter (NIC). As an alternative, this paper shows a software
implementation of iSCSI on generic OSes and processors. We discuss an
asymmetric multiprocessing (AMP) architecture, where one of the processors is
dedicated to serve as a TCP engine. The original purpose of our prototype was
to leverage the flexibility and tools available in generic systems for extensive
analyses of iSCSI. As work proceeded, we quickly realized the viability of
generic processors to meet iSCSI requirements. Looking ahead to chip-
multiprocessing, where multiple cores reside on each processor, understanding
partitioning of work and scaling to cores will be important in future server
platforms.

Keywords: iSCSI, Asymmetric Multiprocessing, TCP optimization

1 Motivation

The concept of Internet Protocol (IP)-everywhere is appealing – the same
infrastructure and expertise can be deployed across all networks. Additionally, the
economies of scale that is available through commodity IP networking infrastructure
(GbE adapters, switches, cables) makes deployment affordable. While IP network
file-based protocols (e.g. NFS, CIFS) had been around for years, many enterprise
workloads, such as database systems and high definition streaming video, are
optimized for direct access to block storage. The recently defined iSCSI (SCSI over
IP) standard is an alternative to currently deployed FC-based storage area networks
(SAN) and offers the potential of an IP-converged SAN. Although iSCSI is transport-
agnostic, a current workable implementation is most likely to be deployed over TCP.
To achieve IP-converged cluster deployments, the performance and scalability of
iSCSI must approach that of FC SANs. We recognized (and shall show in this paper),
that the major overhead in iSCSI is not iSCSI itself, but TCP. In the case of FC, the
bulk of protocol processing is offloaded to hardware on the host-bus adapters (HBAs).
As such, implementers in the IP space have envisioned that a reasonable solution
would be a similar hardware-assisted approach, and offload TCP and/or iSCSI to TCP

2 Annie Foong, Gary McAlpine, Dave Minturn, Greg Regnier, Vikram Saletore

offload engines (TOEs) and iSCSI HBAs respectively. However, hardware
implementation is difficult and fraught with errors [17]. Interfaces between host and
engines are crucial, but are typically not well understood [12]. Finally, TCP has a far
more complex state machine than other transports. Unlike FC which is designed
specifically for hardware implementation from ground up, TCP began life as a
software stack. Corner cases abound that are not so easily addressed if the solutions
are hardwired. Researchers [12, 17] also reasoned that the complex NIC chips often
lag behind the performance of generic processors that tend to ride Moore’s law.

We, therefore, chose to focus on an architecture for iSCSI in software. Three
major trends motivated our direction: (1) Commercially viable chip multiprocessors
(CMP), where increased processing power is achieved through multiple cores per
CPU, rather than clock speed ramp [8]; (2) Integration of the memory controller on
the CPU die will effectively scale memory bandwidth with processing power; (3)
Huge strides in bus bandwidth improvement. (2) & (3) can potentially remove the
chipset and bus as system bottlenecks. The availability of many cores in CMP can
potentially breach the proverbial cpu-memory gap if software is optimally re-
architected for thread-level parallelism. To effectively leverage many cores for
networking becomes the key to designing future CMP servers.

2 Approach

Network protocol stacks of general-purpose monolithic operating systems, are known
for their inability to scale well in SMPs [11, 22]. We take an asymmetric
multiprocessing (AMP) approach, where one of the processors is dedicated to serve as
a TCP engine. By separating the protocol processing from the rest of the operating
system (OS), we hope to provide a clearly-defined sandbox whereby protocol
processing can progress independent of limitations incurred by generic OSes.
Additionally, we incorporated well-known network optimization techniques,
including zero copy and asynchronous interfaces. We recognize the impact of
effective application interfaces on network performance. In particular, existing iSCSI
implementations [21] use BSD-style sockets, and force SCSI (which is inherently
asynchronous) to be built upon synchronous interfaces. We therefore took a full
iSCSI stack implementation and re-architected it from ground up. We modified a
reference implementation of iSCSI to use an asynchronous sockets-like API that we
built. This allowed us to perform an experimental-based evaluation of our APIs and
overall architecture as compared to current practices. Research questions of interest
to us in this study are: 1) What is the processing requirements of iSCSI in SMP mode
? 2) What parts of iSCSI processing can benefit from the AMP model ? 3) What
constitutes an optimal architecture for software-based iSCSI ?

We give a brief overview of our software-based architecture in Section 3. In
Section 4, we discuss our experimental work and how iSCSI uses asynchronous
interfaces. In section 5, we present in-depth performance analyses of iSCSI
processing requirements on SMP Linux and our AMP prototype. By separating the
stack into functional bins, we are able to pinpoint exactly where and why the AMP

An Architecture for Software-based iSCSI: Experiences and Analyses 3

model makes a difference. Wherever possible, we share the hands-on experiences
and lessons learnt from this work. We conclude with related and future research.

3 Overview of Architecture

Full architectural details of our AMP prototype were described in [16]. In that work,
our prototype was functional to a point where limited runs of one-way bulk data
transfers was possible. The work presented here is work done well beyond that phase.
Fig 1(a) shows a typical iSCSI implementation over generic (2P) SMP Linux. The
image footprint is duplicated symmetrically across the 2 processors. Our iSCSI/AMP
architecture takes a hard affinity, asymmetric viewpoint whereby application and
network processing are partitioned along very deliberate lines (Fig 1b). We refer to
the ‘host’ as the processor where the generic OS and applications reside. The
‘packet processing engine’ (PPE) is where network protocol processing (i.e. TCP/IP)
is performed. The PPE in our prototype is a loadable Linux module consisting of only
the TCP/IP stack. Once inserted, the PPE goes into a poll loop and never yields the
processor. Here lies the crux of our AMP design: The hard partitioning allows the
PPE to continuously poll for work from the NICs or the host. The PPE does not get
interrupted by devices, nor scheduled by the host OS. The PPE runs without
interference from the OS and devices. The poll is performed on shared memory. The
PPE can poll NIC descriptors for synchronization, without causing memory bus
traffic, until the cache-lines of the associated shared memory is modified. Finally,
since the PPE determines its own path of execution, it can predict memory usage and
pre-fetch accurately. The host to PPE interface is implemented as a set of
asynchronous queues [4] in cache-coherent, shared host memory. The doorbell queue
is emulated in software and is the mechanism for the host to inform the PPE that work
has been posted on the work queues.

Fig. 1(a). iSCSI in SMP mode (Linux) (b) iSCSI in AMP mode

Conversely, the event queue is a means for the PPE to inform the host that work
has been completed. Furthermore, we have specifically designed our host-engine
interface to remove locking. Our queues are one-way (e.g Host only posts to work

Operating
System

doorbells

TX
Q

RX
Q

Ev
ent Q

Host on CPU0 PPE on CPU1

do (;;) {
Service Host

RX processing;
TX processing;
connect/accept

proc;
Service NIC
 RX processing;
 Host completions;
 Cleanup;
}

SCSI
midlayer

 iometer

dat
a

modified iSCSI
driver

async.
sockets/KAL

modified e1000 driver

modified TCP stack

Host
Interface

Operating System

CPU0

SCSI midlayer

iometer

iSCSI driver
Kernel

sockets TCP stack

e1000 driver

CPU1

SCSI midlayer

iometer

iSCSI driver
Kernel

sockets TCP stack

e1000 driver

IPI

4 Annie Foong, Gary McAlpine, Dave Minturn, Greg Regnier, Vikram Saletore

queues; PPE reads from work queues). This explicit producer-consumer model
completely eliminates locking between PPEs and hosts. In the general case with
multiple hosts and PPEs, locking will only be required between host to host, and PPE
to PPE. Looking ahead to Receive-side scaling enabled NIC implementations [22],
which have the ability to parse and direct flows to specific processors/cores, there will
be minimal need for locking among PPEs. The programming interface is an
asynchronous, sockets-like interface, over which we have built over iSCSI
implementation. A Kernel Adaptation Layer (KAL) provides the necessary shim that
hides the innards of work and event queues manipulation from the host application.
This interface also enables pre-posting, and is essential to the implementation of zero-
copy. There is true zero-copy on the transmit path (loosely based on tcp_sendpage()
used by in-kernel applications in Linux); and zero-copy from the host’s point of view
on the receive path. The PPE does the copy on behalf of host.

4 Implementation Details

4.1 Lessons in Experimental Setup

Our initiator is a system with 2P Intel® Xeon™ 2.4GHz processors on a 400 MHz
front-side bus. The OS is the Linux-2.4.18 kernel. 2 standard Intel Pro1000 GbE
controllers, on a 64bit/133MHz PCI bus, are used to match the performance of 2Gbps
FC. The base iSCSI initiator/target code is from SourceForge [21]. We used IOmeter
[19] to exercise read/write transactions on the SCSI layer. We modified dynamo
(IOmeter’s driver) to use raw IO in order to turn off buffer caches on the initiator.
Operating in this mode forces a serialization of requests in the SCSI midlayer.
Because of various serializations throughout a complex system typical of any iSCSI
setup, we went through great lengths to ensure that bottlenecks, other than iSCSI
processing, are removed. We ran 2 instances of dynamo to parallelize block requests
and get around Linux’s SCSI serialization. We configured IOmeter and our iSCSI
initiator driver to issue multiple outstanding IO commands. This functionality is
necessary to circumvent the roundtrip latencies of TCP. However, the iSCSI targets
we used did not have such support. We emulated such support through over-
provisioning socket buffers (set to 128KB) on our targets. This workaround worked
for our particular one-initiator (one connection) to on-target setup. Finally, we used
RAM disks on the targets to remove dependencies on disk IO speeds.

4.2 iSCSI’s usage of Asynchronous APIs

iSCSI encapsulates SCSI command data blocks into TCP/IP packets that can be sent
over IP networks [21]. The iSCSI protocol is an end-to-end transaction-based
protocol, very much like SCSI. It goes through phases of authentication and
discovery before entering the full feature phase where data is transferred. iSCSI is
typically implemented as a low-level driver, and may be called in interrupt context.
Polling for events would be inefficient, and explicit blocking is not an option. Since

An Architecture for Software-based iSCSI: Experiences and Analyses 5

processors must not block waiting for disks, the SCSI midlayer is asynchronous.
However, most iSCSI implementations are built over BSD synchronous sockets, and
require additional threads to emulate a non-blocking iSCSI driver Fig. 2(a). At least 2
threads are required per connection. Substantial synchronization among threads will
become an issue as the number of connections increases. Asynchronous APIs (Fig.
2(b)) simplifies the picture. Transmits are posted asynchronously without the need
for a token thread. We have used a receive thread (RX) in this prototype version. The
final version, using an event callback mechanism, removes the need for a RX thread
altogether. An asynchronous interface allows our iSCSI implementation two ways of
waiting for an event: (1) by polling the event queue or (2) by explicit blocking
(sleeping) if there are no pending events. In the latter case, an inter-processor
interrupt (IPI) is generated only if it is necessary to wake the sleeping process. The
ability to either poll or sleep is a powerful tool that allows the user to control its own
response to events.

Fig. 2(a). iSCSI reads over synchronous APIs (b) asynchronous APIs

While iSCSI HBA implementation deals with entire requests, our software-based
iSCSI has an inherent byte-stream nature to its user interface (both synchronous and
asynchronous versions of sockets). The non-existent message boundary makes it
difficult to determine the granularity of events (i.e. when work is considered as done).
Along similar lines, we noted in our work the awkwardness of pre-posting for reads
without a direct data placement [23] awareness in the PPE. During an iSCSI read, we
can at best pre-post for the reading of the iSCSI header (typically 48B). It is on
parsing the header contents that we know how much more to receive. If direct data
placement is available, the initiator would have pre-posted enough buffers to handle
the headers, data payloads, and command statuses. On correct placement of all
packets, the PPE would issue 1 event that signals the completion of an entire request.

In our particular implementation, we emulated this behavior by limiting our
initiator to communicate with only one target per connection. We depended on the
socket buffers as the command and data pipeline, so that throughput does not suffer.
In this way, we can pre-post buffers, for both the header and data, at command issue
time. In our case, we know that whatever comes back is for the current outstanding
command. This is not generally applicable since responses (i.e. associated data) to
commands can, and will come out of order. Even with this optimization, there is not
an appreciable improvement. The wait() semantics that our prototype implemented

SCSI midlayer

RX

TX

send (iscsi_cmd);

recv (iscsi_hdr);
case (DATA)
while(received<expected)
 recv (data);

ToQ

case (RESPONSE)
 callback to SCSI

cmds coming in
asynchronously,
cannot block

Extensive
synchronization
among threads

Requires a
“token” thread
just to queue
cmds
asynchronously

RX

SCSI midlayer

Wait for (Rx Event);
case (HEADER)
 post RX (iscsi data);
 post RX (iscsi response);

case (RESPONSE)
 callback to SCSI;
Reap (All Tx Events);
Release all Tx buffers; (pre)post RX(iscsi_hdr);

post TX (iscsi_cmd);

RX & TX posts are
non-blocking

6 Annie Foong, Gary McAlpine, Dave Minturn, Greg Regnier, Vikram Saletore

only allowed for the reaping of one event. Every posting of work must be
accompanied by a corresponding wait() (or poll()). In the worst case, this may
translate to an interrupt from the PPE for every event. Working with iSCSI exposed
the need for a wait_N() functionality (i.e. wait for N events before waking the host).
With wait_N(), an application can better coalesce events according to what was
previously posted. E.g. Wait_2() would wake the host only on the arrival of both
headers and data. The earlier issue of byte-stream semantics still haunts us in the
PPE, and we are unable address it unless a framing protocol [23] is added to TCP.

5 Performance Analysis

In this section, we present a series of results comparing the performance of iSCSI
over generic SMP Linux and our AMP prototype for sequential iSCSI reads/writes of
8KB and 64KB requests. We also noted frequency scaling characteristics to project to
future processors. Finally, we used Oprofile (a profiler based on event sampling) [20]
to determine the breakdown of processing hotspots and perform in-depth analyses to
fully understand performance impact and provide reasons behind them.

5.1 Throughput & Utilization

iSCSI performance (2P @1.6GHz)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

8KB W 64KB W 8KB R 64KB R

iSCSI transactions

C
PU

 U
til

.

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B
/s

)

SMP CPU AMP CPU SMP BW AMP BW

iSCSI cost (2P @1.6GHz)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

8KB W 64KB W 8KB R 64KB R

iSCSI transactions

H
z/

bp
s

SMP Hz/bps AMP Hz/bps

An Architecture for Software-based iSCSI: Experiences and Analyses 7

Fig. 3. (a) iSCSI throughput & CPU utilization (2P full utilization is 200%) (b) iSCSI cost

iSCSI SMP scaling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.8 1.6 2.4 4x3.2
(projected)

CPU clock rate (GHz)

G
Hz

/G
bp

s

8KB W 64KB W 8KB R 64KB R

iSCSI AMP scaling

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.8 1.6 2.4 4x3.2
(projected)

CPU clock rate (GHz)

G
Hz

/G
bp

s

8KB W 64KB W 8KB R 64KB R
Fig. 4. SMP versus AMP scaling (the flatter than lines, the better the scaling).

Fig 3(a) shows improved bandwidth and reduced CPU utilization of AMP over SMP.
Worthy of note is the AMP prototype’s ability to push throughput at line rate
(~200MB/s). A more illuminating view is to look at the cost metric of GHz/Gbps
(i.e. cycles per bit transferred) in Fig 3(b). The AMP model is 30-40% more efficient
than SMP. The ability (or inability) to scale across processor frequencies exposes
dependencies on non-processing components (Fig 4).

5.2 Hotspot Profiles

iSCSI 64KB Read Processing Distribution

others others others
SCSI

SCSI
SCSI

iSCSI

iSCSI

iSCSI

Schedule

Schedule

Schedule

Kernel
Kernel

Kernel

Kernel

TCP TCP

TCP

Copies Copies Copies

Driver
Driver

DriverIntr/Qs

Intr/Qs

Intr/Qsidle
idle

idle

idle

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

SMP CPU0 SMP CPU1 AMP CPU0 AMP CPU1

%
CP

U

Fig. 5. Profile comparison of iSCSI 64KB reads

8 Annie Foong, Gary McAlpine, Dave Minturn, Greg Regnier, Vikram Saletore

iSCSI 64KB Write Processing Distribution

others others othersSCSI SCSI

SCSI

iSCSI iSCSI

iSCSI

Schedule
Schedule

Schedule

Kernel Kernel

Kernel

Kernel

TCP
TCP TCP

Copies/setup
Copies/setup Copies/setup

Driver
Driver

Driver
Intr/Qs

Intr/Qs

Intr/Qs
idle

idle
idle

idle

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

SMP CPU0 SMP CPU1 AMP CPU0 AMP CPU1

%
CP

U

Fig. 6. Profile comparison of iSCSI 64KB writes

The SMP model implies that the image footprint is duplicated exactly across
processors. However, it does not imply exact load balancing. In Windows NT and
Linux default configurations, interrupts go only to CPU0 [2, 22]. Scheduling is
dependent not only on running processes, but also on interrupts coming in from
devices. (Fig 5, Fig 6) give a visual representation of iSCSI processing distribution for
the 2 models. Exact percentages will be given in the next section. We have carefully
binned Linux functions into logical layers and abstracted processing to a level where
analysis gave useful insights. As much as we can, we have separated the compute-
intensive parts of TCP protocol processing (TCP), i.e. the cranking of the state
machine, from the kernel support, memory-intensive parts of TCP processing
(kernel). Kernel support includes memory/buffer management routines, the
manipulation of TCP contexts, timers, etc. A full implementation of the sockets
interface includes not only the obvious BSD sockets API, but also system calls, and
schedule-related routines. This is how an application causes a socket action to be
executed from the user level all the way down to the TCP stack. We put all these
functions into the schedule bin. Interrupts refer to NIC interrupt processing, which
logically also belongs to interfaces. We have separated them here to showcase that
our PPE does not take device interrupts. For AMP, q-processing roughly takes the
place of interrupts and system calls. Driver refers to the NIC driver routines. Others
refer to miscellaneous user routines including runtime libraries and Oprofile. Finally,
copies are of movement of payload data. This allows us to contrast the one-copy path
of standard OS with our prototype’s zero-copy implementation on writes. We have
established that the major hotspots of iSCSI processing are in SCSI, TCP engine,
kernel support and copies. iSCSI (without data integrity computation) takes less than
5% of processing. Because of Linux 2.4 use of a single io_request_lock spinlock for
the entire block device system, the SCSI midlayer makes up a much larger overhead.

5.3 In-depth Analyses

Intuitively, the most notable benefit of hard partitioning is improved cache locality.
In this section, we will quantify that statement, and pinpoint exactly where and why
improvements occur as we go from the SMP to AMP mode. Also, we have combined

An Architecture for Software-based iSCSI: Experiences and Analyses 9

interrupts, system calls, queue processing and scheduling appropriately into the
interface bin. In addition to counting cycles (time), we also noted cache misses and
machine clears, as they tend to have the largest performance impact [7].

We begin by first getting a per-CPU view of iSCSI processing (Table 1). All
counters have been normalized to work done. There is a reduction of cycles per
instruction (CPI) in all bins, between SMP and AMP modes, showcasing the overall
higher efficiency in AMP processing. As expected, the others and SCSI layers, which
are untouched, show similar counts in both modes. We believe it is useful to call out
that the %distributions by themselves cannot reveal this insight, an evaluation of
absolute counts is necessary. Due to space limitation, we will call out analyses using
writes as an example (reads can be similarly interpreted)). TCP protocol processing
has a CPI of 3.7-4.5 for SMP, and 3 on the PPE for AMP. Kernel takes 22.5% on
CPU0 and 12.3% on CPU1 for SMP. The different loading on CPU is due to the
glaringly large difference in the number of machine clears. NIC interrupts go to
CPU0, in addition to IPIs from CPU1. Kernel support overheads are primarily on the
PPE for AMP, once again with much improved CPI. iSCSI “writes” incurs no copies,
but do require setup for zero-copy. Zero-copy had essentially transformed copies
from a “memory-intensive” bin (note cache misses in SMP W) to a “compute-
intensive” bin (note number of instructions in AMP W). We should point out that
copies on read (under Linux-2.4.x) are implemented via rep movl (repeat string
moves) which explains the large CPIs (18.7-21.9). Copy for writes is a carefully
crafted rolled-out loop that moves data efficiently based on alignment that is known
beforehand. Reads were implemented assuming arbitrary arrival of bytes. An
optimized version of copy on read had since appeared in Linux-2.6 [18]. The largest
improvement in CPI is seen in interface (SMP: 10.5-15.1, AMP:1.3-5.2). Once again,
the large number of machine clears on CPU0 is notable. Interestingly, interfaces do
not contribute to large processing hotspots in themselves. But, they have an indirect
impact on pipeline and caching behaviors. These overheads are the price a software
network stack pays for existing in a generic OS environment. They represent
intrusions points into the processing path other than themselves, and are tricky to
characterize. We found machine clears to be a reasonable counter to quantify such
impact. Machine clears (i.e. instruction pipeline flushes) are caused by context
switches due to interrupts (e.g. from devices, IPIs, page faults, etc) and scheduling.
Characterization of machine clears, therefore, allows us to get a handle on these
elusive intrusion points. Evidence of their impact surfaces wherever large number of
machine clears occur.

Table 1. Per CPU characterization of SMP and AMP (normalized)
CPU0 CPU1

SMP W cycles instr clears L2 misses %CPU CPI cycles instr clears L2 misses %CPU CPI
idle 8104615 506010 6424 114 20.4% 14580192 1024038 10114 481 36.8%
others 359423 185096 0 1202 0.9% 1.9 545192 216346 319 956 1.4% 2.5
SCSI 3130769 1086538 3462 2332 7.9% 2.9 3987500 1614183 4345 2374 10.1% 2.5
iSCSI 310385 64904 126 1022 0.8% 4.8 356731 108173 204 913 0.9% 3.3
Interface 4338654 287260 30349 4381 10.9% 15.1 1696154 161058 4537 3840 4.3% 10.5
Kernel 8938462 1676683 24351 11563 22.5% 5.3 4874615 1080529 8395 9531 12.3% 4.5
TCP 7068077 1914663 22260 8347 17.8% 3.7 6935000 1540865 43882 12332 17.5% 4.5
Copies 4142885 1304087 6911 16352 10.4% 3.2 5012115 1657452 7530 19159 12.6% 3.0
Driver 3299423 638221 6683 9099 8.3% 5.2 1660769 371394 4724 2813 4.2% 4.5
Total Non-idle 31588077 7157452 94141 54297 25068077 6750000 73936 51917

10 Annie Foong, Gary McAlpine, Dave Minturn, Greg Regnier, Vikram Saletore

CPU0 CPU1
AMP W cycles instr clears L2 misses %CPU CPI cycles instr clears L2 misses %CPU CPI
idle 9109619 681548 9458 122 47.0% 2120190 732738 2036 33 10.1%
others 786476 290476 738 268 4.1% 2.7 0 0 0 0 0.0%
SCSI 6494857 2534524 7854 991 33.5% 2.6 0 0 0 0 0.0%
iSCSI 988857 339286 878 446 5.1% 2.9 0 0 0 0 0.0%
Interface 1587333 305357 3911 1402 8.2% 5.2 1878762 1429762 1967 991 8.9% 1.3
Kernel 217714 45238 167 229 1.1% 4.8 5537905 1716667 5560 2220 26.3% 3.2
TCP 198667 63095 280 33 1.0% 3.1 5065619 1670238 6152 4875 24.0% 3.0
Copies 0 0 0 0 0.0% 1712667 757143 2616 286 8.1% 2.3
Driver 0 0 0 0 0.0% 4773810 1747619 4768 4970 22.6% 2.7
Total Non-idle 10273905 3577976 13827 3435 18968762 7321429 21063 13342

CPU0 CPU1
SMP R cycles instr clears L2 misses %CPU CPI cycles instr clears L2 misses %CPU CPI
idle 2560159 197421 2103 0 7.9% 7073492 543651 4851 233 21.9%
others 708254 138889 714 2078 2.2% 5.1 824762 255952 908 1736 2.6% 3.2
SCSI 2165079 657738 2307 1781 6.6% 3.3 5011429 1983135 6156 3775 15.5% 2.5
iSCSI 519524 158730 352 957 1.6% 3.3 647302 230159 521 1161 2.0% 2.8
Interface 4152222 262897 32480 4067 12.7% 15.8 2271905 263889 6161 5427 7.0% 8.6
Kernel 7323333 1277778 18948 10665 22.5% 5.7 4677302 671627 13661 8348 14.5% 7.0
TCP 8747937 1897817 30303 9742 26.9% 4.6 5586667 1093254 34157 10342 17.3% 5.1
Copies 3507619 187500 4866 19286 10.8% 18.7 5331905 243056 7004 28482 16.5% 21.9
Driver 2886032 575397 9792 8373 8.9% 5.0 821270 173611 3249 1920 2.5% 4.7
Total Non-idle 30010000 5156746 99762 56949 25172540 4914683 71815 61190

CPU0 CPU1
AMP R cycles instr clears L2 misses %CPU CPI cycles instr clears L2 misses %CPU CPI
idle 9872667 701190 10208 170 51.1% 737333 268452 673 0 3.5%
others 660762 289881 551 229 3.4% 2.3 0 0 0 0 0.0%
SCSI 5420762 2247024 6446 976 28.1% 2.4 0 0 0 0 0.0%
iSCSI 779048 260119 771 473 4.0% 3.0 0 0 0 0 0.0%
Interface 2100667 346429 7649 2033 10.9% 6.1 1151143 493452 1235 1321 5.5% 2.3
Kernel 293714 50000 321 369 1.5% 5.9 4927143 1413095 3551 4783 23.5% 3.5
TCP 178571 55952 414 12 0.9% 3.2 6304286 1966667 5345 5485 30.0% 3.2
Copies 0 0 0 60 0.0% 5525524 487500 6313 32057 26.3% 11.3
Driver 0 0 0 0 0.0% 2335810 711905 2378 5521 11.1% 3.3
Total Non-idle 9433524 3249405 16152 4152 20243905 5072619 18821 49167

Finally, to provide a quantifiable value to our discussions, we combined total
processing requirements on both processors and perform a speedup analysis (Table 2).
For example, to derive % improvement in the number of machine clears (or other
counters) in the TCP engine, when going from the SMP to AMP mode is obtained as
follows:

% Improvement = (clears-TCPSMP / clears-totalSMP) × (1 – clears-TCPAMP / clears-TCPSMP)
clears-TCPSMP = Number of machine clears (per work done) observed in TCP on SMP
clears-TCPAMP = Number of machine clears (per work done) observed in TCP on AMP
clears-totalSMP = Total number of machine clears (per work done) observed on SMP

Table 2. Comparative analysis of AMP over SMP

64KB W Improvements in
Cycles L2 Misses Clears

idle
others 0.1% 0.8% -1.5%
SCSI 0.8% 7.9% -0.1%
iSCSI -0.4% 0.7% -1.4%
Interface 3.2% 5.9% 6.3%
Kernel 10.2% 12.3% 14.4%
TCP 11.0% 15.6% 15.9%
Copies 9.4% 8.8% 9.4%
Driver 0.2% 6.2% 3.6%

TOTAL 34.6% 58.2% 46.8%

64KB R Improvements in
Cycles L2 Misses Clears

idle
others 1.3% 0.6% 1.6%
SCSI 2.7% 10.4% 2.6%
iSCSI 0.6% 1.5% 0.2%
Interface 4.9% 7.7% 7.6%
Kernel 10.5% 12.0% 16.3%
TCP 12.1% 16.1% 20.1%
Copies 5.1% 9.9% 6.4%
Driver 2.1% 1.9% 4.7%

TOTAL 39.3% 60.1% 59.6%

An Architecture for Software-based iSCSI: Experiences and Analyses 11

Wherever we see an improvement in cycles, we also see corresponding

improvements in cache misses and machine clears on AMP. There is a 11% (out of a
total of 34.6%) improvement in cycles in TCP. Zero copy accounts for 9.4%,
showcasing the importance of this optimization. Another 10.2% comes from
improvement in kernel support. The routines used in kernel and TCP are essentially
the same in either SMP or AMP modes. The improvements come from fewer cache
misses in AMP mode. Despite our best efforts, TCP still contain memory-related
routines (e.g. reading of TCP contexts when calculating window size). The
elimination of interrupts and scheduling on the PPE resulted in much fewer machine
clears (14.4% fewer in kernel, 15.9% fewer in TCP, out of a total of 46.8%). Since
host and PPE processing are confined to the same processor on the AMP, the number
of IPIs needed for synchronization is also reduced. The reason for the improvement
seen in copy for reads is worth pointing out. In SMP, the bottom and top halves of the
TCP stack can potentially be executed on any processor. Copies can incur cache
misses on both source and destinations. In the AMP case, sources are always on the
PPE, and destinations on the host. Looking back at the per-CPU breakdown in Table
1, we confirmed that the reduction in cache misses is primarily on the host in AMP.
Functional partitioning had enabled destinations of copy to remain warm in cache.

6 Related Work

The major overheads of a software TCP stack are well documented [5, 6, 10]. Much
of these overheads lie in memory touching operations that do not scale well with
processor speeds. More commonly overlooked are the overheads incurred by
scheduling and interrupting [10]. To improve cache locality, static affinity [7] and
improved scheduling affinity in Linux-2.6 [18] are efforts to direct interrupts and
processes to the most appropriate processors. While this works for relatively
homogenous applications, dynamically changing applications still pose challenges. As
such, other researchers have built prototypes based on functional partitioning [13,
14,15]. An interesting use of functional partitioning [3] has shielded CPUs service
only user-defined high priority tasks and interrupts, to deliver real time response using
standard Linux. Early works on dedicating a CPU to do specific functions were done
primarily on proprietary OS on supercomputers. Processors are dedicated to perform
message-passing among nodes [9, 14]. More recently, the AsyMOS project [13]
logically attaches general purpose CPUs for the purpose of adding intelligence to
devices. They made use of a lightweight device kernel on their device CPU, in place
of a full OS. The TCP Servers project [15] defines a generic architecture to offload
TCP processing to either processors or nodes. Unlike our focus on removing OS and
device intrusions, their focus is the use of a kernel thread dispatcher to dynamically
schedule TCP functions onto dedicated processing nodes. Communication between
CPUs in [13, 15] is based on inter-processor and/or remote procedure calls, whereas
we have implemented our interfaces with queues in cache-coherent shared memory.

12 Annie Foong, Gary McAlpine, Dave Minturn, Greg Regnier, Vikram Saletore

7 Conclusion

The ability to process iSCSI at line rate is the key to enabling IP-based storage area
networks. Our software implementation, not only achieved line rate performance, but
also had the same efficiency as HBAs discussed in [1, 17]. We found that successful,
software-based iSCSI architecture must include the following: Zero copy, or exploit
thread-level parallelism to hide copy costs; Re-architect applications to leverage well-
designed interfaces; and reduce/eliminate device interrupts and OS intrusions.
Working with iSCSI allowed us to gain insights to real usage models to drive API
requirements. Due to the clean separation of the TCP engine, lessons learnt here are
also equally applicable to offload adapters. We believe that the hard affinity approach
gives the upper bound on network performance possible on existing processors and
platform architectures. Because of partitioning, we were able to fully control the
scheduling of protocol processing. This however does introduce resource balancing
issues, where the question of PPEs to host processors ratio must be addressed. The
next challenge is to architect an approach that allows for the existence of multiple
partitioned PPEs, and be able to optimally balance these resources within the confines
of mainstream operating systems. Looking ahead to chip-multiprocessing, where
multiple cores reside on each processors, asymmetric partitioning of work to cores
provides an effective and viable OS model to multiprocessing.

Acknowledgement
We would like to thank Don Cameron for being the biggest fan of our iSCSI over

ETA work; and Jason Fung for his help in consolidating megabytes of data, and
carefully abstracting them to a point where sane analysis can proceed.

References
1 S. Aiken, D. Grunwald and P. Andrew. A performance analysis of the iSCSI protocol. In

Proceedings of the 20th IEEE Conf. on Mass Storage Systems and Technologies, 2003.

2 V. Anand and B. Hartner. TCPIP Network Stack Performance in Linux Kernel 2.4 and
2.5. In Proc. of the Ottawa Linux Symposium, Ottawa, 2002

3 S. Brosky and S. Rotolo. “Shielded Processors: Guaranteeing Sub-millisecond Response
in Standard Linux”, 4th Real-Time Linux Workshop, Boston, Dec 2002.

4 D. Cameron and G. Regnier. The Virtual Interface Architecture. Intel Press, 2002.

5 J. Chase, G. Gallatin, K. Yocum. End system optimizations J. for high-speed TCP. IEEE
Comms, Special Issue on high-speed TCP, 2001, 39(4).

6 A. Foong, T. Huff, H. Hum, J. Patwardhan and G. Regnier. TCP performance re-visited.
In Proc of the IEEE ISPASS, Austin, Mar 2003.

7 A. Foong, J. Fung, D. Newell, P. Irelan, A. Lopez-Estrada, S. Abraham. Architectural
characterization of the impact of Processor Affinity on Network Processing, to appear
IEEE ISPASS, Mar 2005.

8 L. Hammond, B. Nayfeh and K. Olukotun. A single-chip multiprocessor. IEEE Computer,
Sept 1997.

9 J. Hsu and P. Banerjee,. A message passing coprocessor for distributed memory
multicomputers, In Supercomputing, 720 – 729, 1990.

An Architecture for Software-based iSCSI: Experiences and Analyses 13

10 J. Kay and J. Pasquale. The Importance of Non-Data Touching Processing Overheads in
TCP/IP. In Proc of ACM SIGCOMM, 1993.

11 P. Leroux. Building Scalable Networking Equipment Using SMP. Dedicated Systems
Magazine, 2001.

12 J. Mogul. TCP offload is a dumb idea whose time has come. In Proc of HotOS IX, Lihue,
May, 2003.

13 S. Muir and J. Smith. AsyMOS: An asymmetric multiprocessor OS. In Proceedings of
OPENARCH '98, April 1998.

14 P. Pierce and G. Regnier. The Paragon implementation of the NX message passing
interface. In Proc of SHPCC 94, 1994.

15 M. Rangarajan, A. Bohra, K. Banerjee, E. Carrera, and R. Bianchini. TCP servers:
Offloading TCP processing in internet servers. Technical report, Rutgers University, 2002.

16 G. Regnier, D. Minturn, G. McAlpine, V. Saletore and A. Foong. ETA: Experience with
an Intel Xeon Processor as a packet processing engine. IEEE Micro, Jan 2004.

17 P. Sarkar, S. Uttamchandani, and K. Voruganti. Storage over IP: When does hardware
support help ? In Proc of the 2nd USENIX Conf on File and Storage Technologies, 2002.

18 M. Meredith, D. Vianney. Linux 2.6 Performance in the Data Center. Linux World Expo,
Jan 2004.

19 Iometer performance Analysis Tool. http://www.iometer.org.
20 Oprofile: A system-wide profiling tool for Linux. http://oprofile.sourceforge.net.
21 UNH-iSCSI, Intel iSCSI reference stacks. http://sourceforge.net/.

22 Scalable Networking: Eliminating the Receive Processing Bottleneck—Introducing RSS.
http://www.microsoft.com/whdc/

23 Remote direct data placement protocol. http://www.ietf.org/html.charters/rddp-
charter.html

