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Abstract. Supporting multi-gigabit/s of iSCSI over TCP can quickly saturate 
the processing abilities of a SMP server today.  Legacy OS designs and APIs 
are not designed for the multi-gigabit IO speeds. Most of industry’s efforts had 
been focused on offloading the extra processing and memory load to the 
network adapter (NIC).  As an alternative, this paper shows a software 
implementation of iSCSI on generic OSes and processors.  We discuss an 
asymmetric multiprocessing (AMP) architecture, where one of the processors is 
dedicated to serve as a TCP engine. The original purpose of our prototype was 
to leverage the flexibility and tools available in generic systems for extensive 
analyses of iSCSI.  As work proceeded, we quickly realized the viability of 
generic processors to meet iSCSI requirements.  Looking ahead to chip-
multiprocessing, where multiple cores reside on each processor, understanding 
partitioning of work and scaling to cores will be important in future server 
platforms. 
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1   Motivation 

The concept of Internet Protocol (IP)-everywhere is appealing – the same 
infrastructure and expertise can be deployed across all networks.  Additionally, the 
economies of scale that is available through commodity IP networking infrastructure 
(GbE adapters, switches, cables) makes deployment affordable.  While IP network 
file-based protocols (e.g. NFS, CIFS) had been around for years, many enterprise 
workloads, such as database systems and high definition streaming video, are 
optimized for direct access to block storage. The recently defined iSCSI (SCSI over 
IP) standard is an alternative to currently deployed FC-based storage area networks 
(SAN) and offers the potential of an IP-converged SAN.  Although iSCSI is transport-
agnostic, a current workable implementation is most likely to be deployed over TCP.  
To achieve IP-converged cluster deployments, the performance and scalability of 
iSCSI must approach that of FC SANs. We recognized (and shall show in this paper), 
that the major overhead in iSCSI is not iSCSI itself, but TCP.  In the case of FC, the 
bulk of protocol processing is offloaded to hardware on the host-bus adapters (HBAs). 
As such, implementers in the IP space have envisioned that a reasonable solution 
would be a similar hardware-assisted approach, and offload TCP and/or iSCSI to TCP 
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offload engines (TOEs) and iSCSI HBAs respectively.  However, hardware 
implementation is difficult and fraught with errors [17].  Interfaces between host and 
engines are crucial, but are typically not well understood [12].  Finally, TCP has a far 
more complex state machine than other transports.  Unlike FC which is designed 
specifically for hardware implementation from ground up, TCP began life as a 
software stack.  Corner cases abound that are not so easily addressed if the solutions 
are hardwired.  Researchers [12, 17] also reasoned that the complex NIC chips often 
lag behind the performance of generic processors that tend to ride Moore’s law.     

We, therefore, chose to focus on an architecture for iSCSI in software.  Three 
major trends motivated our direction: (1) Commercially viable chip multiprocessors 
(CMP), where increased processing power is achieved through multiple cores per 
CPU, rather than clock speed ramp [8]; (2) Integration of the memory controller on 
the CPU die will effectively scale memory bandwidth with processing power; (3) 
Huge strides in bus bandwidth improvement.  (2) & (3) can potentially remove the 
chipset and bus as system bottlenecks. The availability of many cores in CMP can 
potentially breach the proverbial cpu-memory gap if software is optimally re-
architected for thread-level parallelism.  To effectively leverage many cores for 
networking becomes the key to designing future CMP servers. 

2   Approach 

Network protocol stacks of general-purpose monolithic operating systems, are known 
for their inability to scale well in SMPs [11, 22]. We take an asymmetric 
multiprocessing (AMP) approach, where one of the processors is dedicated to serve as 
a TCP engine. By separating the protocol processing from the rest of the operating 
system (OS), we hope to provide a clearly-defined sandbox whereby protocol 
processing can progress independent of limitations incurred by generic OSes.  
Additionally, we incorporated well-known network optimization techniques, 
including zero copy and asynchronous interfaces. We recognize the impact of 
effective application interfaces on network performance. In particular, existing iSCSI 
implementations [21] use BSD-style sockets, and force SCSI (which is inherently 
asynchronous) to be built upon synchronous interfaces.  We therefore took a full 
iSCSI stack implementation and re-architected it from ground up. We modified a 
reference implementation of iSCSI to use an asynchronous sockets-like API that we 
built. This allowed us to perform an experimental-based evaluation of our APIs and 
overall architecture as compared to current practices.  Research questions of interest 
to us in this study are: 1) What is the processing requirements of iSCSI in SMP mode 
?  2) What parts of iSCSI processing can benefit from the AMP model ? 3) What 
constitutes an optimal architecture for software-based iSCSI ?  

We give a brief overview of our software-based architecture in Section 3. In 
Section 4, we discuss our experimental work and how iSCSI uses asynchronous 
interfaces.  In section 5, we present in-depth performance analyses of iSCSI 
processing requirements on SMP Linux and our AMP prototype.  By separating the 
stack into functional bins, we are able to pinpoint exactly where and why the AMP 
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model makes a difference.  Wherever possible, we share the hands-on experiences 
and lessons learnt from this work. We conclude with related and future research.   

3 Overview of Architecture 

Full architectural details of our AMP prototype were described in [16].  In that work, 
our prototype was functional to a point where limited runs of one-way bulk data 
transfers was possible. The work presented here is work done well beyond that phase. 
Fig 1(a) shows a typical iSCSI implementation over generic (2P) SMP Linux. The 
image footprint is duplicated symmetrically across the 2 processors. Our iSCSI/AMP 
architecture takes a hard affinity, asymmetric viewpoint whereby application and 
network processing are partitioned along very deliberate lines (Fig 1b).  We refer to 
the ‘host’ as the processor where the generic OS and applications reside.    The 
‘packet processing engine’ (PPE) is where network protocol processing (i.e. TCP/IP) 
is performed. The PPE in our prototype is a loadable Linux module consisting of only 
the TCP/IP stack. Once inserted, the PPE goes into a poll loop and never yields the 
processor. Here lies the crux of our AMP design: The hard partitioning allows the 
PPE to continuously poll for work from the NICs or the host. The PPE does not get 
interrupted by devices, nor scheduled by the host OS. The PPE runs without 
interference from the OS and devices.  The poll is performed on shared memory. The 
PPE can poll NIC descriptors for synchronization, without causing memory bus 
traffic, until the cache-lines of the associated shared memory is modified. Finally, 
since the PPE determines its own path of execution, it can predict memory usage and 
pre-fetch accurately.  The host to PPE interface is implemented as a set of 
asynchronous queues [4] in cache-coherent, shared host memory. The doorbell queue 
is emulated in software and is the mechanism for the host to inform the PPE that work 
has been posted on the work queues.  

 

  

Fig. 1(a). iSCSI in SMP mode (Linux)  (b) iSCSI in AMP mode 

Conversely, the event queue is a means for the PPE to inform the host that work 
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queues; PPE reads from work queues). This explicit producer-consumer model 
completely eliminates locking between PPEs and hosts.  In the general case with 
multiple hosts and PPEs, locking will only be required between host to host, and PPE 
to PPE.  Looking ahead to Receive-side scaling enabled NIC implementations [22], 
which have the ability to parse and direct flows to specific processors/cores, there will 
be minimal need for locking among PPEs. The programming interface is an 
asynchronous, sockets-like interface, over which we have built over iSCSI 
implementation.  A Kernel Adaptation Layer (KAL) provides the necessary shim that 
hides the innards of work and event queues manipulation from the host application. 
This interface also enables pre-posting, and is essential to the implementation of zero-
copy.  There is true zero-copy on the transmit path (loosely based on tcp_sendpage() 
used by in-kernel applications in Linux); and zero-copy from the host’s point of view 
on the receive path. The PPE does the copy on behalf of host.  

4 Implementation Details  

4.1 Lessons in Experimental Setup  

Our initiator is a system with 2P Intel® Xeon™ 2.4GHz processors on a 400 MHz 
front-side bus.  The OS is the Linux-2.4.18 kernel. 2 standard Intel Pro1000 GbE 
controllers, on a 64bit/133MHz PCI bus, are used to match the performance of 2Gbps 
FC.  The base iSCSI initiator/target code is from SourceForge [21]. We used IOmeter 
[19] to exercise read/write transactions on the SCSI layer. We modified dynamo 
(IOmeter’s driver) to use raw IO in order to turn off buffer caches on the initiator.  
Operating in this mode forces a serialization of requests in the SCSI midlayer.  
Because of various serializations throughout a complex system typical of any iSCSI 
setup, we went through great lengths to ensure that bottlenecks, other than iSCSI 
processing, are removed.  We ran 2 instances of dynamo to parallelize block requests 
and get around Linux’s SCSI serialization.  We configured IOmeter and our iSCSI 
initiator driver to issue multiple outstanding IO commands.  This functionality is 
necessary to circumvent the roundtrip latencies of TCP. However, the iSCSI targets 
we used did not have such support. We emulated such support through over-
provisioning socket buffers (set to 128KB) on our targets.  This workaround worked 
for our particular one-initiator (one connection) to on-target setup. Finally, we used 
RAM disks on the targets to remove dependencies on disk IO speeds.   

4.2 iSCSI’s usage of Asynchronous APIs 

iSCSI encapsulates SCSI command data blocks into TCP/IP packets that can be sent 
over IP networks [21].  The iSCSI protocol is an end-to-end transaction-based 
protocol, very much like SCSI.  It goes through phases of authentication and 
discovery before entering the full feature phase where data is transferred. iSCSI is 
typically implemented as a low-level driver, and may be called in interrupt context. 
Polling for events would be inefficient, and explicit blocking is not an option. Since 
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processors must not block waiting for disks, the SCSI midlayer is asynchronous. 
However, most iSCSI implementations are built over BSD synchronous sockets, and 
require additional threads to emulate a non-blocking iSCSI driver Fig. 2(a). At least 2 
threads are required per connection. Substantial synchronization among threads will 
become an issue as the number of connections increases. Asynchronous APIs (Fig. 
2(b)) simplifies the picture.  Transmits are posted asynchronously without the need 
for a token thread.  We have used a receive thread (RX) in this prototype version. The 
final version, using an event callback mechanism, removes the need for a RX thread 
altogether. An asynchronous interface allows our iSCSI implementation two ways of 
waiting for an event: (1) by polling the event queue or (2) by explicit blocking 
(sleeping) if there are no pending events.   In the latter case, an inter-processor 
interrupt (IPI) is generated only if it is necessary to wake the sleeping process.  The 
ability to either poll or sleep is a powerful tool that allows the user to control its own 
response to events.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 2(a). iSCSI reads over synchronous APIs (b) asynchronous APIs 
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command.   This is not generally applicable since responses (i.e. associated data) to 
commands can, and will come out of order.  Even with this optimization, there is not 
an appreciable improvement. The wait() semantics that our prototype implemented 
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only allowed for the reaping of one event.  Every posting of work must be 
accompanied by a corresponding wait() (or poll()).  In the worst case, this may 
translate to an interrupt from the PPE for every event.  Working with iSCSI exposed 
the need for a wait_N() functionality (i.e. wait for N events before waking the host). 
With wait_N(), an application can better coalesce events according to what was 
previously posted.  E.g. Wait_2() would wake the host only on the arrival of both 
headers and data.   The earlier issue of byte-stream semantics still haunts us in the 
PPE, and we are unable address it unless a framing protocol [23] is added to TCP. 

5 Performance Analysis 

In this section, we present a series of results comparing the performance of iSCSI 
over generic SMP Linux and our AMP prototype for sequential iSCSI reads/writes of 
8KB and 64KB requests. We also noted frequency scaling characteristics to project to 
future processors. Finally, we used Oprofile (a profiler based on event sampling) [20] 
to determine the breakdown of processing hotspots and perform in-depth analyses to 
fully understand performance impact and provide reasons behind them.   

5.1  Throughput & Utilization 
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Fig. 3. (a) iSCSI throughput & CPU utilization (2P full utilization is 200%)  (b) iSCSI cost  

iSCSI SMP scaling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.8 1.6 2.4 4x3.2
(projected)

CPU clock rate (GHz)

G
Hz

/G
bp

s

8KB W 64KB W 8KB R 64KB R

iSCSI AMP scaling

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.8 1.6 2.4 4x3.2
(projected)

CPU clock rate (GHz)

G
Hz

/G
bp

s

8KB W 64KB W 8KB R 64KB R  
Fig. 4. SMP versus AMP scaling (the flatter than lines, the better the scaling). 
 
Fig 3(a) shows improved bandwidth and reduced CPU utilization of AMP over SMP. 
Worthy of note is the AMP prototype’s ability to push throughput at line rate 
(~200MB/s).  A more illuminating view is to look at the cost metric of GHz/Gbps  
(i.e. cycles per bit transferred) in Fig 3(b).  The AMP model is 30-40% more efficient 
than SMP. The ability (or inability) to scale across processor frequencies exposes 
dependencies on non-processing components (Fig 4).   
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iSCSI 64KB Write Processing Distribution
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Fig. 6. Profile comparison of iSCSI 64KB writes 

 
The SMP model implies that the image footprint is duplicated exactly across 
processors.  However, it does not imply exact load balancing. In Windows NT and 
Linux default configurations, interrupts go only to CPU0 [2, 22].  Scheduling is 
dependent not only on running processes, but also on interrupts coming in from 
devices.  (Fig 5, Fig 6) give a visual representation of iSCSI processing distribution for 
the 2 models. Exact percentages will be given in the next section. We have carefully 
binned Linux functions into logical layers and abstracted processing to a level where 
analysis gave useful insights. As much as we can, we have separated the compute-
intensive parts of TCP protocol processing (TCP), i.e. the cranking of the state 
machine, from the kernel support, memory-intensive parts of TCP processing 
(kernel).  Kernel support includes memory/buffer management routines, the 
manipulation of TCP contexts, timers, etc. A full implementation of the sockets 
interface includes not only the obvious BSD sockets API, but also system calls, and 
schedule-related routines.  This is how an application causes a socket action to be 
executed from the user level all the way down to the TCP stack.  We put all these 
functions into the schedule bin. Interrupts refer to NIC interrupt processing, which 
logically also belongs to interfaces. We have separated them here to showcase that 
our PPE does not take device interrupts. For AMP, q-processing roughly takes the 
place of interrupts and system calls. Driver refers to the NIC driver routines. Others 
refer to miscellaneous user routines including runtime libraries and Oprofile. Finally, 
copies are of movement of payload data.  This allows us to contrast the one-copy path 
of standard OS with our prototype’s zero-copy implementation on writes. We have 
established that the major hotspots of iSCSI processing are in SCSI, TCP engine, 
kernel support and copies.  iSCSI (without data integrity computation) takes less than 
5% of processing. Because of Linux 2.4 use of a single io_request_lock spinlock for 
the entire block device system, the SCSI midlayer makes up a much larger overhead.   

5.3 In-depth Analyses 

Intuitively, the most notable benefit of hard partitioning is improved cache locality. 
In this section, we will quantify that statement, and pinpoint exactly where and why 
improvements occur as we go from the SMP to AMP mode. Also, we have combined 
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interrupts, system calls, queue processing and scheduling appropriately into the 
interface bin.  In addition to counting cycles (time), we also noted cache misses and 
machine clears, as they tend to have the largest performance impact [7].   

We begin by first getting a per-CPU view of iSCSI processing (Table 1). All 
counters have been normalized to work done. There is a reduction of cycles per 
instruction (CPI) in all bins, between SMP and AMP modes, showcasing the overall 
higher efficiency in AMP processing.  As expected, the others and SCSI layers, which 
are untouched, show similar counts in both modes.  We believe it is useful to call out 
that the %distributions by themselves cannot reveal this insight, an evaluation of 
absolute counts is necessary. Due to space limitation, we will call out analyses using 
writes as an example (reads can be similarly interpreted)).    TCP protocol processing 
has a CPI of 3.7-4.5 for SMP, and 3 on the PPE for AMP.  Kernel takes 22.5% on 
CPU0 and 12.3% on CPU1 for SMP.  The different loading on CPU is due to the  
glaringly large difference in the number of machine clears. NIC interrupts go to 
CPU0, in addition to IPIs from CPU1.  Kernel support overheads are primarily on the 
PPE for AMP, once again with much improved CPI. iSCSI “writes” incurs no copies, 
but do require setup for zero-copy.  Zero-copy had essentially transformed copies 
from a “memory-intensive” bin (note cache misses in SMP W) to a “compute-
intensive” bin (note number of instructions in AMP W). We should point out that 
copies on read (under Linux-2.4.x) are implemented via rep movl (repeat string 
moves) which explains the large CPIs (18.7-21.9). Copy for writes is a carefully 
crafted rolled-out loop that moves data efficiently based on alignment that is known 
beforehand.  Reads were implemented assuming arbitrary arrival of bytes.  An 
optimized version of copy on read had since appeared in Linux-2.6 [18]. The largest 
improvement in CPI is seen in interface (SMP: 10.5-15.1, AMP:1.3-5.2). Once again, 
the large number of machine clears on CPU0 is notable. Interestingly, interfaces do 
not contribute to large processing hotspots in themselves.  But, they have an indirect 
impact on pipeline and caching behaviors. These overheads are the price a software 
network stack pays for existing in a generic OS environment.  They represent 
intrusions points into the processing path other than themselves, and are tricky to 
characterize.  We found machine clears to be a reasonable counter to quantify such 
impact. Machine clears (i.e. instruction pipeline flushes) are caused by context 
switches due to interrupts (e.g. from devices, IPIs, page faults, etc) and scheduling.  
Characterization of machine clears, therefore, allows us to get a handle on these 
elusive intrusion points. Evidence of their impact surfaces wherever large number of 
machine clears occur.  

Table 1. Per CPU characterization of SMP and AMP (normalized) 
CPU0 CPU1

SMP W cycles instr clears L2 misses %CPU CPI cycles instr clears L2 misses %CPU CPI
idle 8104615 506010 6424 114 20.4% 14580192 1024038 10114 481 36.8%
others 359423 185096 0 1202 0.9% 1.9 545192 216346 319 956 1.4% 2.5
SCSI 3130769 1086538 3462 2332 7.9% 2.9 3987500 1614183 4345 2374 10.1% 2.5
iSCSI 310385 64904 126 1022 0.8% 4.8 356731 108173 204 913 0.9% 3.3
Interface 4338654 287260 30349 4381 10.9% 15.1 1696154 161058 4537 3840 4.3% 10.5
Kernel 8938462 1676683 24351 11563 22.5% 5.3 4874615 1080529 8395 9531 12.3% 4.5
TCP 7068077 1914663 22260 8347 17.8% 3.7 6935000 1540865 43882 12332 17.5% 4.5
Copies 4142885 1304087 6911 16352 10.4% 3.2 5012115 1657452 7530 19159 12.6% 3.0
Driver 3299423 638221 6683 9099 8.3% 5.2 1660769 371394 4724 2813 4.2% 4.5
Total Non-idle 31588077 7157452 94141 54297 25068077 6750000 73936 51917  



10      Annie Foong, Gary McAlpine, Dave Minturn, Greg Regnier, Vikram Saletore 

CPU0 CPU1
AMP W cycles instr clears L2 misses %CPU CPI cycles instr clears L2 misses %CPU CPI
idle 9109619 681548 9458 122 47.0% 2120190 732738 2036 33 10.1%
others 786476 290476 738 268 4.1% 2.7 0 0 0 0 0.0%
SCSI 6494857 2534524 7854 991 33.5% 2.6 0 0 0 0 0.0%
iSCSI 988857 339286 878 446 5.1% 2.9 0 0 0 0 0.0%
Interface 1587333 305357 3911 1402 8.2% 5.2 1878762 1429762 1967 991 8.9% 1.3
Kernel 217714 45238 167 229 1.1% 4.8 5537905 1716667 5560 2220 26.3% 3.2
TCP 198667 63095 280 33 1.0% 3.1 5065619 1670238 6152 4875 24.0% 3.0
Copies 0 0 0 0 0.0% 1712667 757143 2616 286 8.1% 2.3
Driver 0 0 0 0 0.0% 4773810 1747619 4768 4970 22.6% 2.7
Total Non-idle 10273905 3577976 13827 3435 18968762 7321429 21063 13342  

CPU0 CPU1
SMP R cycles instr clears L2 misses %CPU CPI cycles instr clears L2 misses %CPU CPI
idle 2560159 197421 2103 0 7.9% 7073492 543651 4851 233 21.9%
others 708254 138889 714 2078 2.2% 5.1 824762 255952 908 1736 2.6% 3.2
SCSI 2165079 657738 2307 1781 6.6% 3.3 5011429 1983135 6156 3775 15.5% 2.5
iSCSI 519524 158730 352 957 1.6% 3.3 647302 230159 521 1161 2.0% 2.8
Interface 4152222 262897 32480 4067 12.7% 15.8 2271905 263889 6161 5427 7.0% 8.6
Kernel 7323333 1277778 18948 10665 22.5% 5.7 4677302 671627 13661 8348 14.5% 7.0
TCP 8747937 1897817 30303 9742 26.9% 4.6 5586667 1093254 34157 10342 17.3% 5.1
Copies 3507619 187500 4866 19286 10.8% 18.7 5331905 243056 7004 28482 16.5% 21.9
Driver 2886032 575397 9792 8373 8.9% 5.0 821270 173611 3249 1920 2.5% 4.7
Total Non-idle 30010000 5156746 99762 56949 25172540 4914683 71815 61190  

CPU0 CPU1
AMP R cycles instr clears L2 misses %CPU CPI cycles instr clears L2 misses %CPU CPI
idle 9872667 701190 10208 170 51.1% 737333 268452 673 0 3.5%
others 660762 289881 551 229 3.4% 2.3 0 0 0 0 0.0%
SCSI 5420762 2247024 6446 976 28.1% 2.4 0 0 0 0 0.0%
iSCSI 779048 260119 771 473 4.0% 3.0 0 0 0 0 0.0%
Interface 2100667 346429 7649 2033 10.9% 6.1 1151143 493452 1235 1321 5.5% 2.3
Kernel 293714 50000 321 369 1.5% 5.9 4927143 1413095 3551 4783 23.5% 3.5
TCP 178571 55952 414 12 0.9% 3.2 6304286 1966667 5345 5485 30.0% 3.2
Copies 0 0 0 60 0.0% 5525524 487500 6313 32057 26.3% 11.3
Driver 0 0 0 0 0.0% 2335810 711905 2378 5521 11.1% 3.3
Total Non-idle 9433524 3249405 16152 4152 20243905 5072619 18821 49167  
 

Finally, to provide a quantifiable value to our discussions, we combined total 
processing requirements on both processors and perform a speedup analysis (Table 2). 
For example, to derive % improvement in the number of machine clears (or other 
counters) in the TCP engine, when going from the SMP to AMP mode is obtained as 
follows: 

% Improvement = (clears-TCPSMP / clears-totalSMP) × (1 –  clears-TCPAMP / clears-TCPSMP)  
clears-TCPSMP = Number of machine clears (per work done) observed in TCP on SMP 
clears-TCPAMP = Number of machine clears (per work done) observed in TCP on AMP 
clears-totalSMP = Total number of machine clears (per work done) observed on SMP 

Table 2. Comparative analysis of AMP over SMP  

64KB W Improvements in
Cycles L2 Misses Clears

idle
others 0.1% 0.8% -1.5%
SCSI 0.8% 7.9% -0.1%
iSCSI -0.4% 0.7% -1.4%
Interface 3.2% 5.9% 6.3%
Kernel 10.2% 12.3% 14.4%
TCP 11.0% 15.6% 15.9%
Copies 9.4% 8.8% 9.4%
Driver 0.2% 6.2% 3.6%

TOTAL 34.6% 58.2% 46.8%  

64KB R Improvements in
Cycles L2 Misses Clears

idle
others 1.3% 0.6% 1.6%
SCSI 2.7% 10.4% 2.6%
iSCSI 0.6% 1.5% 0.2%
Interface 4.9% 7.7% 7.6%
Kernel 10.5% 12.0% 16.3%
TCP 12.1% 16.1% 20.1%
Copies 5.1% 9.9% 6.4%
Driver 2.1% 1.9% 4.7%

TOTAL 39.3% 60.1% 59.6%  
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Wherever we see an improvement in cycles, we also see corresponding 

improvements in cache misses and machine clears on AMP.  There is a 11%  (out of a 
total of 34.6%) improvement in cycles in TCP. Zero copy accounts for 9.4%, 
showcasing the importance of this optimization.  Another 10.2% comes from 
improvement in kernel support.  The routines used in kernel and TCP are essentially 
the same in either SMP or AMP modes. The improvements come from fewer cache 
misses in AMP mode.  Despite our best efforts, TCP still contain memory-related 
routines (e.g. reading of TCP contexts when calculating window size).  The 
elimination of interrupts and scheduling on the PPE resulted in much fewer machine 
clears (14.4% fewer in kernel, 15.9% fewer in TCP, out of a total of 46.8%).  Since 
host and PPE processing are confined to the same processor on the AMP, the number 
of IPIs needed for synchronization is also reduced.  The reason for the improvement 
seen in copy for reads is worth pointing out. In SMP, the bottom and top halves of the 
TCP stack can potentially be executed on any processor.  Copies can incur cache 
misses on both source and destinations.  In the AMP case, sources are always on the 
PPE, and destinations on the host.  Looking back at the per-CPU breakdown in Table 
1, we confirmed that the reduction in cache misses is primarily on the host in AMP.  
Functional partitioning had enabled destinations of copy to remain warm in cache.  

6 Related Work 

The major overheads of a software TCP stack are well documented [5, 6, 10].  Much 
of these overheads lie in memory touching operations that do not scale well with 
processor speeds.  More commonly overlooked are the overheads incurred by 
scheduling and interrupting [10].  To improve cache locality, static affinity [7]  and 
improved scheduling affinity in Linux-2.6 [18] are efforts to direct interrupts and 
processes to the most appropriate processors. While this works for relatively 
homogenous applications, dynamically changing applications still pose challenges. As 
such, other researchers have built prototypes based on functional partitioning [13, 
14,15]. An interesting use of functional partitioning [3] has shielded CPUs service 
only user-defined high priority tasks and interrupts, to deliver real time response using 
standard Linux.  Early works on dedicating a CPU to do specific functions were done 
primarily on proprietary OS on supercomputers. Processors are dedicated to perform 
message-passing among nodes [9, 14].  More recently, the AsyMOS project [13] 
logically attaches general purpose CPUs for the purpose of adding intelligence to 
devices. They made use of a lightweight device kernel on their device CPU, in place 
of a full OS. The TCP Servers project [15] defines a generic architecture to offload 
TCP processing to either processors or nodes. Unlike our focus on removing OS and 
device intrusions, their focus is the use of a kernel thread dispatcher to dynamically 
schedule TCP functions onto dedicated processing nodes. Communication between 
CPUs in [13, 15] is based on inter-processor and/or remote procedure calls, whereas 
we have implemented our interfaces with queues in cache-coherent shared memory. 
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7 Conclusion 

The ability to process iSCSI at line rate is the key to enabling IP-based storage area 
networks. Our software implementation, not only achieved line rate performance, but 
also had the same efficiency as HBAs discussed in [1, 17]. We found that successful, 
software-based iSCSI architecture must include the following: Zero copy, or exploit 
thread-level parallelism to hide copy costs; Re-architect applications to leverage well-
designed interfaces; and reduce/eliminate device interrupts and OS intrusions. 
Working with iSCSI allowed us to gain insights to real usage models to drive API 
requirements.  Due to the clean separation of the TCP engine, lessons learnt here are 
also equally applicable to offload adapters. We believe that the hard affinity approach 
gives the upper bound on network performance possible on existing processors and 
platform architectures.   Because of partitioning, we were able to fully control the 
scheduling of protocol processing.  This however does introduce resource balancing 
issues, where the question of PPEs to host processors ratio must be addressed.  The 
next challenge is to architect an approach that allows for the existence of multiple 
partitioned PPEs, and be able to optimally balance these resources within the confines 
of mainstream operating systems.  Looking ahead to chip-multiprocessing, where 
multiple cores reside on each processors, asymmetric partitioning of work to cores 
provides an effective and viable OS model to multiprocessing. 
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