A Multizone Pipelined Cache for IP Routing

Soraya Kasnhavi, Paul Berube, Vincent C. Gaudet, ané Net¢son Amaral

Dept. of Electrical and Computer Engineering, University of Alberta
Edmonton, Alberta, T6G 2V4, Canada
kasnavi,vgaudet@ece.ualberta.ca
berube, amaral@cs.ualberta.ca

Abstract. Caching recently referenced IP addresses and their forwarding in-
formation is an effective strategy to increase routing lookup speed. This paper
proposes a multizone non-blocking pipelined cache for IP routing lookup that
achieves lower miss rates compared to previously reported IP caches. The two-
stage pipeline design provides a half-prefix half-full address cache and reduces
the cache power consumption. By adopting a very small non-blocking buffer, the
cache reduces the effective miss penalty. This cache design takes advantage of
storing prefixes but requires smaller table expansions (up to 50% less) compared
with prefix caches. Simulation results on real traffic display lower cache miss rate
and up to 30% reduction in power consumption.

Key words: IP lookup, IP Caching, Content Addressable Memory (CAM).

1 Introduction

The sustained increase in Internet traffic over the last decade has necessitated faster and
faster backbone networks and a corresponding increase in network processor through-
put. A fundamental task in routing IP traffic is finding each packet's destination address
and corresponding next hop information in a routing table. Routing tables store routing
prefixes, rather than full destination addresses, in order to reduce table size. Multiple
prefixes may match a particular destination address. With Classless Inter-Domain Rout-
ing (CIDR), routing prefixes may have any length (0 to 32 for IPv4) [15]. In the case that
multiple prefixes match an address, the correct lookup result is defined as the longest
matching prefix. Consequently, routers must perform Longest Prefix Matching (LPM)
when searching the routing table. Since LPM is performed in every router along the
packet’s path from source to destination, routers require a fast mechanism to perform
the lookup in order to maintain high throughput and low latency under load.

An effective strategy to speed up routing lookup is to use a cache to store recent
routing results for reuse. The performance of the cache depends on the characteristics
of the IP traffic, such as itemporaland itsspatial locality. Greater temporal locality
increases the probability that destination addresses are frequently used, and thus in-
creases the utility of a cached address. Spatial locality means referencing addresses in
the same numerical range. When prefixes are cached, a single cache entry can cover a
large number of destination addresses in a same numerical range. Therefore, the spatial
locality in the traffic stream is converted to temporal locality in the cache access stream.

A cache naturally exploits temporal locality. However, routers manage traffic from
a large number of hosts. In some cases, only part of the traffic has high locality. In a

router with a single cache low-locality traffic pollutes the cache with low-utility entries.
These entries reduce the effectiveness of the cache for all traffic, and may cause thrash-
ing. However, if the cache is split then the cache performance is improved [16, 5]. One
portion of a split cache stores addresses or prefixes associated with shorter routing pre-
fixes, and the other portion caches the addresses of prefixes associated with the longer
routing prefixes. Such multizonecache prevents the lack of locality in one portion of

the traffic from polluting the locality in the rest of the traffic.

This paper proposes a hovel multizone pipelined cache (MPC). We study a two zone
MPC where one zone stores IP prefixes of 16 or fewer bits in length, while the second
zone stores full addresses. This half-prefix half-full IP MPC has a lower miss rate when
compared with full address caches. An MPC requires less lookup table expansion and
on-chip area than full prefix caches. MPC uses a small buffer to store recent IP ad-
dresses that missed the cache. This non-blocking feature allows the cache to resume
searching for other IP addresses during a miss. Hit-over-miss effectively reduces the
miss penalty. Furthermore, vertical and horizontal pipelining reduces power consump-
tion and increases throughput.

The remainder of this paper proceeds as follows: Section 2 discusses related work.
Section 3 describes the cache architecture and cache operation. Consistency issues spe-
cific to IP prefix caching are discussed in Section 4. Results from simulation of the
cache are presented in Section 5, and we conclude in Section 6.

2 Related Work

Many researchers have addressed the efficiency of routing caches. Some studied exist-
ing locality in IP traffic [9, 5]. Others designed more efficient caches for IP routing [6,
13,16]. In 1988, Feldmeier demonstrated that a routing-table cache could reduce the
lookup time in network gateways by 65% [9]. Berutteal. designed a method to im-
plement a high density, fully associative CAM-based cache in the Xilinx VirtexE FPGA
architecture [2]. Their design is further discussed in Section 3. Cléuah designed

a CPU style IP caching scheme and demonstrated that general-purpose processors can
serve as a powerful platform for high performance IP routing [6]. Since the data streams
presented to the network processors have very different characteristics than the streams
accessed by general-purpose CPUs, the cache design must be considerably different
and the cache coverage must be improved to achieve acceptable performance [4]. A
network cache should cache address ranges rather than individual addresses and its
blocks should be small. Liu proposes IP Prefix Caching to achieve lower miss rates
due to higher locality in prefixes compared to individual addresses [13]. Prefix caching

is very efficient due to increased spatial locality but the lookup table of prefix caches
should be transformed to assure correct cache results [13, 16]. Section 4 presents this
transformation. Cache miss rate can improve when the cache is divided into different
zones dedicated to different lookup prefix lengths. Chvets and MacGregor studied a
multizonecache [5]. They simulated a two-zone full address cache where IP addresses
are stored in each zone according to their lookup result prefix lengths. Their new cache
design shows miss ratios approximately one-half those of conventional caches.

IP caches have very large miss penalties because a miss requires a rather slow main
table lookup. Complicated lookup techniques can be applied to the main table to in-
crease the lookup speed. However, these techniques dramatically increase the table up-
dating delays. Thus, improving the cache miss ratio could compensate for the large
cache miss penalty and allow a simple main lookup table to provide fast table updates.
Non-blocking general purpose processor caches hide memory latency by overlapping
the processor computations with memory data accesses [3]. Special registers are used to
hold information about each cache miss. The processor can then overlap the service of
a cache read miss with the execution of the subsequent instructions [8, 11]. B¥tuyan
al. used execution-driven simulation to study the impact of instruction level parallelism
(ILP) and cache architectures on the performance of routers [12]. They observed up to
37% improvement for their traces due to multiple issues, out of order executions and
non-blocking loads.

This paper proposes MPC, a multizone, non-blocking, pipelined cache. MPC uses
prefix caching in multiple zone caches to improve cache miss ratio. MPC adopts a
non-blocking buffer to reduce the effective cache miss penalty. A pipelined design im-
plements a novel search and reduces power consumption. The details of the MPC ar-
chitecture and features are further described in Section 3.

3 Architecture

Figure 1(a) presents a functional block diagram of a two zone MPC. MPC is based on
the previous work of Berubet al. [2]. IP addresses or prefixes are stored iDesti-
nation Address ArrayDAA). Next hop information is stored in thidext Hop Array
(NHA). The DAA and NHA are co-indexed, with one entry in the NHA corresponding
to a single entry in the DAA.

MPC searches all entries of the DAA for an IP address. If the MPC finds the ad-
dress in the DAA, a cache hit occurs, and the corresponding next hop from the NHA
is returned to the processor. If no entry in the DAA matches the IP address, a cache
miss occurs. In this case, a lookup in the full routing table is performed and the cache
is updated with the new destination address/next hop pair.

Figure 1(b) presents a structural description of MPC. The DAA is divided into two
parts horizontally. The two parts form the two zones of the cache, and have indepen-
dent sizes. The uppérefix ZonestoresshortIP prefixes, which are 16 or fewer bits
long. The lowerFull Address Zonestores full 32-bit IPv4 destination addresses. The
Full Address Zonés further divided vertically, with each entry split in half. The most
significant 16 bits of the address are store@€#M1 while the least significant 16 bits
are stored ilCAM2

The NHA is implemented using standard SRAM technology. The DAA is imple-
mented using a combination of Content Addressable Memory (CAM) and Ternary
CAM (TCAM) cells. A CAM is a fully associative binary memory capable of matching
a specific pattern of data (a key) against all its entries in parallel. A CAM is used to
implement the two halves of tHeull Address ZoneA TCAM is used to implement the
Prefix Zoneof the cache because a TCAM can stdom'’t carestates in addition to 0s

Processor

DAA NHA
Q.
% Stage 2 E
< %16%—[
é DAA NHA :% o Prefix Zone ﬁ g
2| l(cam) |Entry | (RAM) g
o Select CAM1| |CAM2||| Entry
a > z Stage 1| 4| Stage2| || Select]
1
(MSB) (LSB)
T T
Update Address Select —16—> 16—
Full Address Zone
(a) Functional View. (b) MPC Memory Allocation.

Fig. 1. General Description of the Cache Architecture.

and 1s. TCAM bits set to theéon't carestate will match both Os and 1s in the key. Thus,
a TCAM is well suited to store IP prefixes.

3.1 Cache Functionality

Breaking the DAA into three pieces allows cache lookups to be pipelined. The pipeline
has three stages: (1) a lookup@#AM1 (2) a lookup in eitheCAM2or thePrefix Zone

as required by the results of the first stage; (3) an access téHBeRAM(on a hit) to

return the lookup result (forwarding information or cache miss indication). In stage 1
the most significant 16 bits of the address are appli€€iAM1 If there are any matches

in CAM1 in stage 2 the corresponding entriesG&M?2are searched with the 16 least
significant bits of the address to complete the full-IP match inFihié Address Zone
Otherwise, stage 2 applies the 16 most significant bits of the address to the prefixes
cached in thePrefix Zone If there is a match in either thieull Address Zoner the

Prefix Zone stage 3 accesses the RAM location corresponding to the matching entry,
and returns the next hop data as the lookup result. Note that if the IP address hits CAM1,
the prefix zone is not searched at all. The correctness of this lookup scheme requires
that each IP address either hit the cache in the full address zone or in the prefix zone,
but never in both. The routing table transformations required to ensure correct cache
results are described in Section 4.

When there is no match either in the Full Address Zone or in the Prefix Zone, a
cache miss is reported. A routing table search returns the routing information that is
then stored in the MPC. The time required to complete this search and store the value
in the cache is known asiss penalty Servicing a miss is time consuming because
of the slow main memory accesses to the routing table. MPC stores recent misses in
an Outstanding Miss BuffegfOMB) until the processor returns the lookup results (see
Section 3.2). Figure 2(a) depicts the pipeline flow diagram for a cache search. The
diagram for an update is in Figure 2(b).

Update Start |
S
the Update Result
W) %W

Yes U
SearchLSBin| [SearchMSBIi Update the Update the
CAM 2 TCAM Full Address| Prefix Zone
Zone
: No Search al entries of OMB
Read info (Outstanding Miss Buffer)
from RAM Search End for the Update Result
(. No Update End
Yes
Irﬂ;lligﬂci)ﬁgg Clear the Valid Bit
(Outstanding Miss Bufer) for al matching entries
(a) Cache Search (b) Cache Update

Fig. 2. Flow Diagram of the Cache performance.

3.2 Outstanding Miss Buffer

MPC uses the OMB to store recent misses until the processor returns their lookup re-
sults. Without OMB, MPC would need to stall while each cache miss is serviced. Block-
ing hinders cache throughput because further cache searches cannot proceed until the
lookup is performed and the cache updated, even if pending request would hit the cache.
When a miss occurs in the non-blocking MPC, the address is stored in the OMB and the
cache continues performing lookups. If subsequent IP addresses hit the cache while a
miss is being serviced,kdt under misoccurs. Amiss under misgsecondary miss) oc-

curs when a subsequent IP address also misses the cache. Secondary misses are stored
in the OMB until the buffer is full, at which point MPC blocks and the processor stalls
until misses are serviced and removed from OMB. An example of MPC functionality
with a two-entry OMB is given in Figure 3. In this example, IP2, IP4 and IP6 are cache
misses. The MPC is able to search for IP3 and IP5 and forward their corresponding in-
formation to the processor while the main table lookup for IP2 is in progress. The MPC
stalls after searching for IP6 because OMB is full. No new IP can be searched until IP2
is serviced and removed from OMB to make room for IP6.

When the lookup result of a pending IP address in the OMB comes back from
the main memory lookup, the MPC updates either the prefix zone or the full address
zone with the corresponding information according to the MPC replacement policy. An
expansion of the lookup table ensures that the result is either a short prefix that updates
the prefix zone, or a full address with 32 bits that updates the full address zone (see
Section 4).

MPC requires a pipeline stall to update the data stage by stage. After an update is
complete, the missing IP is removed from OMB. However, other pending IP addresses
in the OMB might be identical to the recently updated IP address. Additionally, an

1 2 3 4 5 6 Time (clock cycles)

IR [c1 c2T NHA L s: Sl
| c1 caT B ClockCycles B UCUs UC2T UNHA B : Buffer
‘ C1:CAM1
% Cl C2T NHA 1 IP: IP Address
IR ClL CAT B« s » | NHA : Next Hop Array
IR Cl C2IT NHA : C2/T:CAM2or TCAM
IR Cl C2Tss B UC1/s: Update CAM1 or Stall
UC2/s: Update CAM2 or Stall
% s s ci coT UNHA: Update Next Hop Array

Fig. 3. Pipeline Diagram of the Cache.

update result might be a prefix covering multiple pending IP addresses in the OMB.
To ensure that the same lookup result is not written into the cache multiple times, we
implement the OMB as a 33-bit CAM. Each OMB entry stores a 32 bit address and
avalid bit. Only valid entries require a software lookup and cache update. After each
update, an associative search of OMB identifies all matching entries. If the lookup result
is a prefix, itsdon't carebits are externally masked to ensure that they match with the
data in OMB. The valid bits of all matching entries are cleared. A second search for
those matching OMB entries will now hit the cache, and provide the processor with the
next hop information. The flow diagram for an MPC update is shown in Figure 2(b).

4 Lookup Table Transformation

Caching prefixes reduces the cache miss rate because a stored prefix can cover a large
range of the address space. However, routers are required to provide Longest Matching
Prefix routing. If multiple prefixes match an address, a situation may arise where the
longest matching prefix is not present in the cache, but a shorter matching prefix is in
the cache. This short matching prefix will produce a cache hit, leading to an incorrect
routing decision. Figure 4(a) depicts an example of three prefixes of a routing table or-
ganized as &ie. A trie presentation of a lookup table is a tree-based scheme where the
root of the trie corresponds to the most significant bit of the address. Branching right
indicates that a bit is 1, while branching left indicates that a bit is 0. A complete trie
enumerates every possible address. In order to reduce the space requirement of the trie,
only the nodes required to form a path to each prefix are stored. Nodes are sequentially
numbered from top to bottom and from left to right. Gray nodes represent prefixes
stored in the lookup table. The prefix in node 2 (prefix 1) is said to encompasses the
prefix in node 13 (prefix Il), because node 2 is on the path from the root to node 13.
Encompassing prefixes are responsible for situations where a prefix cache may produce
incorrect routing decisions. If Prefix | is cached, it will match with IP addresses whose
longest matching prefix in the trie is Prefix II. An IP address matching Prefix 1l could
then be incorrectly matched by Prefix | and forwarded to port A. Therefore, encom-
passing prefixes amon-cacheableln this example, the prefix at node 4 (prefix 111) is
cacheabléecause it does not encompass any other prefix.

Prefix |

®%@ Goth) g 1 ®\1@ (2) (port A)
WD H @6 1 ® 5
Prefix I @ Prefix -1 > 1 Prefix 1-2 Prefix 1-1
(port B) (portA) 43 (@4 (portA) (portA) (3
(a) Original trie (no (b) Full trie expansion (c) Partial trie ex-
expansion) pansion in [13]

Fig. 4. Trie presentation of a small lookup table.

4.1 Prefix Caching and Table Expansion

One general solution to ensure correct routing cache results is to cacheachiable
prefixes and cache full IP addresses when lookup resulteareacheablerefixes [13,

16]. This solution requires no lookup table transformation, but the cache miss rate will
be higher because of the reduced coverage afforded by the full addresses placed in
the cache. Moreover, the lookup scheme must decide if a prefix is cacheable or not.
Other solutions expand the trie to ensure that all prefixes are leaves of the trie, and thus
cacheableFigure 4(b) shows a complete expansion of the trie for our example. Prefix

| is expanded by appending "0” to form prefix I-1 in node 5, and by appending "11" to
form prefix I-2 in node 14 and the forwarding information (port A) is copied in both
nodes 5 and 14. Observe that the number of valid prefixes increases and the lookup table
gets larger. Liu reports up to an 118% increase in table size [13]. Routing table expan-
sion is unfavorable due to memory area limitations, power consumption and cost. On
the other hand, table expansion pushes prefixes lower in the trie, increasing the search
time for Software searches. Also, updates in a fully expanded table are challenging,
since an expanded prefix no longer exists and the update must find the prefixes created
by expansion. Liu presents a partial prefix expansion to reduce the number of prefixes in
the lookup table for a prefix cache [13]. Figure 4(c) depicts the partial expansion in [13]
where non-cacheable prefixes are expanded only to their first level of expansion. Prefix
I-1 is added to the trie at node 5 with same forwarding information as prefix I. Observe
that routing table growth is less than with full expansion, but the lookup scheme must
still decide if a prefix iscacheableor not.

4.2 Table Expansion in MPC

Our MPC solution for table expansion is illustrated in Figure 5(a). MPC fully expands
the routing table for short prefixes, pushing them down the tree until they either become
leaf nodes, or become 17 bits long. All short prefixes are thus cacheable in the Prefix
Zone of the MPC. Any destination address matching a long prefix in the lookup table
is stored in full in the Full Address Zone of the MPC. This table transformation has the
following advantages:

O b
Prefix |

g @%};ully Expanded

%; Non- Expanded Prefixes

(Not stored in theCache)

32 hits
.16 bits

2% |p Addresses

(a) The Proposed Partial Table Ex- (b) Expansion Free
pansion) Transformation

Fig. 5. Table Transformation.

1. Routing table expansion is limited to those prefixes that provide the greatest cover-
age of the IP address space.

2. At most one prefix stored in the Prefix Zone can match a destination address, since
all short prefixes are cacheable.

3. Since the short prefixes in the Prefix Zone are cacheable, no address can hit both
the Prefix Zone and the Full Address Zone. Therefore, any address that could hit
the Prefix Zone is guaranteed to miss the Full Address Zone.

4. Alength check is sufficient to determine if a prefix is cacheable.

Note that points 2 and 3 guarantee that there cannot be multiple hits for a search
in the cache, which simplifies cache design. Also, point 3 enables our power-saving
pipelined search.

4.3 Expansion-Free Software Lookups

Lookups may be implemented in hardware or software. A software lookup walks down
the trie to find the longest matching prefix for an IP address [15]. The longest matching
prefix is the last prefix encountered in the trie. Some of these longest matching prefixes
might not be cacheable in a non-expanded table. We propose &xgansion-Free

(EF) method to generate cacheable prefixes using a simple and inexpensive mechanism
during a software lookup. EF forwards the generated cacheable prefixes to the cache but
does not store them in the lookup table, thus eliminating problems associated with table
expansion. Since the original submission of this paper, we learnt that Akhbarieadeh

al. independently developed a similar method [1]. Figure 5(b) illustrates the EF method
on the example of Figure 4. Letbe the last node visited during a traversal of the trie for

an IP address, and Igtbe the last node visited containing a prefix during the traversal.
EF has three rules.

1. If p = n is a leaf node in the trie, then the prefix jnis cacheable and can be
forwarded to the prefix cache. For example, for IP addresses covered by node 4,

p = n = 4. Thus the prefix in node 4 is cacheable and is forwarded to the cache as
the lookup result.

2. If p = nis not a leaf node in the trig; is not cacheable. In Figure 5(b), assume
an IP address matches noden5= p = 2. A cacheable prefix can be produced
by adding 0 (the next bit in the address) to the path followed to encouniéris
generated cacheable prefix is forwarded to the cache.

3. If p # n, the prefix inp is not cacheable. In Figure 5(b), assume an IP address
matches node 14 in the trie. For this IP address; 2 andn = 6. A cacheable
prefix is produced by adding a 1 (the next bit in the address) to the path traversed
to find n. This generated cacheable prefix is forwarded to the cache.

5 Performance Evaluation

To evaluate the MPC design we build a high level architectural simulator and run it with
real IP traces and lookup tables of three distributing (neither core nor edge) routers of
local service providers. The characteristics of the data used for simulations are given in
Table 1.

Table 1.Trace Characteristics

ISP1|ISP2|ISP3
Trace Length (Packets) 991179894898142
Routing Table Size (Prefixes)1021910219 6355

To evaluate the performance improvements achieved by MPC, we compare the miss
rates of MPC with a full address IP cache and a full prefix cache. For a fair compari-
son, the IP cache is simulated as a two-zone two-stage pipelined cache with equal sized
zones. This architecture caches full IP addresses and is implemented in a 32 bit bi-
nary CAM. The prefix cache is a 32-bit Ternary-CAM that store prefixes, using a fully
expanded version of the real lookup table (LUT). The miss rates are given in Table 2.

Table 2. Miss Rates (%) vs. Cache Sizes (No. of Entries) for Three Traces

ISP1 ISP2 ISP3
Entries|| IP [ProposedPrefix| IP [ProposedPrefix| IP [ProposedPrefix
512 |[22.7 155 74 110.8 6.2 29 |13.6 3.0 0.5
1024 ||15.4 7.9 25|72 3.3 1.3 122 2.0 0.5
2048 ||10.5 3.7 14 |49 2.0 1.2 19 16 0.5

Clearly, the prefix cache outperforms the two other caches with the same number
of entries. However, the prefix cache must be implemented in a 32-bit TCAM. Since

the area required for a TCAM cell is almost twice the area of a CAM cell, MPC and
the IP Cache use half the area of a prefix cache with the same number of entries. To
compare the performance of caches with the same storage area, MPC and the IP cache
should be compared to a prefix cache with half as many entries. The simulation results
indicate that for equal cache size (storage area), the performance of MPC is almost as
good as the prefix cache. Moreover, the prefix cache requires full LUT expansion while
MPC requires a partial expansion (as described in Section 4). Table 3 compares the total
number of prefixes in the LUT after the expansion for a prefix cache and MPC.

Table 3. Number of Prefixes after Table Expansion

ISP1 ISP2 ISP3
Entrieg% LargefEntrieg% LargefEntrieg% Large
Original Table|10219] - 10219, - 6355 -

Prefix Cache | 30620, 199 |30620, 199 | 7313 15
MPC 17485 71 17485 71 6469 2

MPC uses a small buffer (OMB) to hide the miss penalty. The miss penalty is mod-
eled in our simulator by &tencyparameter. A cache that has no buffer to store recent
misses has to stall at each miss and wait until the update result is returned to the cache.
To evaluate the impact of the miss penalty we measure a metric called CPO (Clock Per
Output) that reports the average number of clock cycles necessary to provide the Next
Hop Information for an IP address. Figure 6 depicts CPO versus Latency for MPC with
no OMB, OMB with a single entry, and OMB with 10 entries. As expected, CPO in-
creases linearly with latency for a cache with no buffer. For small latencies, in an MPC
with a single entry OMB, the CPO is almost independent of the latency. For larger val-
ues of latency, CPO again increases linearly, but remains less than without the OMB.

5.1 Power Savings

In a CAM-based device, power consumption is an important constraint that is ad-
dressed by many designs [7, 14]. The power consumption in a CAM-based device can
be separated into three components: Evaluation Power (Search power), Input Power
and Clocking Power [10]. All these sources are linearly dependent on the number of
entries searched. If 50% of the time, only half of the entries of the cache are searched,
the effective number of entries during each search operation is reduced to 75% of the
physical number of entries. Thus 25% power is saved.

MPC divides the cache entries into two zones: the TCAM prefix zone and the CAM
full address zone. For the study of power consumption, we assume that each zone con-
tains half of the cache entries. The prefix zone is searched only if the address misses
CAML1 of the full address zone. Our simulation results, presented in Table 4, indicate
that almost 60% of the IP addresses hit CAM1, eliminating the need to search the
TCAM. This results in a 30% reduction in the effective number of entries searched

»
o
N
o

4 {{-e-No OMB o -e-No OMB /
55 L|+1Enty /'/ 2 1= 1Entry

£ |2 10 Entries / P] =< 10 Entries /
g3 £
3 ~ 315 ——
=25 =
& e &
1] 2 (4]
3 / / !
215 o
= S

1 05

0.5
0 T T T T T T T T l 0 T T T T T T T T l
1 5 10 15 20 25 30 35 40 1 5 10 15 20 25 30 35 40
Latency (cycles) Latency (cyles)
(a) ISP1 (b) ISP2
25
-e-No OMB
2 H-=&1Entry

<10 Entries /‘

o

Clocks Per Output

o
3}

o

1 5 10 15 20 25 30 35 40
Latency (cycles)

(c) ISP3

Fig. 6. CPO vs. Latency for 1K-Entry (equally sized zones) MPC.

in the cache, and a corresponding 30% power savings compared to caches that search
all entries.

6 Conclusion

We have proposed MPC, a non-blocking, multizone-pipelined-cache that dedicates dif-
ferent zones to different lookup prefix lengths. TRefix Zoneis able to store and
search prefixes with 16-bits or less. Thell Address Zonatores and searches for full

IP addresses whose lookup prefixes are more than 16 bits long. Prefix caching increases
the cache coverage while a relatively small table expansion is required. EF method, pro-
posed in this paper, completely eliminates table expansion for software lookups. Also
MPC potentially can achieve higher throughput and low power consumption due to
pipelining. The effective miss penalty is also reduced by using the non-blocking buffer
to let the cache search for new IPs while waiting for the lookup results of cache misses.

Table 4. CAM1 Hit Rates

Entries|ISP1 %|(ISP2 %|(ISP3 %
512 62 64 74
1024 63 65 74
2048 63 65 74

References

10.

11.

12.

13.

14.

15.

16.

M. J. Akhbarizadeh and M. Nourani. Efficient prefix cache for network processoittn
Annual IEEE Symposium on High Performance Interconneetges 41-46, Aug 2004.

. P. Berube, A. Zinyk, J.N. Amaral, and M. MacGregor. The bank nth chance replacement

policy for FPGA-based CAMs. Id3th International Conference on Field Programmable
Logic and Applications (FPL)Lisbon, Portugal, September 2003.

. T. Chen and J. Baer. Reducing memory latency via non-blocking and prefetching caches.

In 5th Int. Conf. Architectural Support for Programming Languages and Operating Systems
pages 51-61, Oct 1992.

. Tzi-Cker Chiueh and Prashant Pradhan. Cache memory design for network processors. In

Sixth International Symposium on High-Performance Computer Architeghages 409—
419, Toulouse, France, January 2000.

. L.L. Chvets and M. MacGregor. Multi-zone caches for accelerating IP routing table lookups.

In Merging Optical and IP Technologies Workshop on High Performance Switching and
Routing pages 121-126, May 2002.

. Tzicker Chiueh and Prashant Pradhan. High performance IP routing table lookup using CPU

caching. INEEE INFOCOM (3) pages 1421-1428, 1999.

. A. Efthymiou and J.D. Garside. A CAM with mixed serial-parallel comparison for use in low

energy cachedEEE Transaction on Very Large Scale Integration (VLSI) Systai825—
329, March 2004.

. K. I. Farkas and N. P. Jouppi. Complexity/performance tradeoffs with non-blocking loads.

In 21st Int. Symposium on Computer Architectyprages 211-222, 1994.

. D.C. Feldmeier. Improving gateway performance with a routing-table cachi&ER IN-

FOCOM 88 pages 298-307, March 1988.

C. Jen; H. Hsiao, D. Wang. Power modeling and low-power design of content addressable
memories. INEEE Int. Symposium on Circuits and Systepages 926-929, May. 2001.

D. Kroft. Lookup free instruction fetch/prefetch cache organizatior8thrint. Symposium

on Computer Architecturgpages 81-87, May 1981.

H. Wang L. Bhuyan. Execution-driven simulation of IP router architecture$EHE Int.
Symposium on Network Computing and Applicatigragyes 145-155, Oct. 2001.

H. Liu. Routing prefix caching in network processor desigrildnth International Confer-

ence on Computer Communications and Netwa@ict 2001.

K. Pagiamtzis and A. Sheikholeslami. Pipelined match-lines and hierarchical search-lines for
low-power content addressable memories|HRE Custom Integrated Circuit Conference
September 2003.

M.A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous. Survey and taxonomy of IP address
lookup algorithmsIEEE Network 15:8—-23, April 2001.

W.L. Shyu, C.S. Wu, and T.C. Hou. Multilevel aligned IP prefix caching based on singleton
information. INGLOBECOM 02volume 3, page 2345 2349, Nov 2002.

