Trusted Security Devices for Bandwidth
Conservation in IPSec Environments

C.D. Mano and A. Striegel

Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556, USA
{cmano, striegel}@nd.edu

Abstract. Information security a is constant concern of Internet data.
One security solution is IPSec, which is a set of protocols that provides
both data confidentiality and authenticity. Another concern is the last
mile bandwidth limitation on many Internet connections. This problem
can be mitigated by bandwidth conservation techniques such as Applica-
tion Layer and Stealth Multicast (SMC). Combining IPSec and multicast
techniques would be ideal, but is not possible due to the nature of en-
crypted data and the requirements of multicast messages. We present
the concept of a Trusted Security Device (TSD) which provides efficient
bandwidth usage while maintaining security levels offered by IPSec. A
TSD cooperates with clients and servers while implementing SMC tech-
nology. Minor modifications to clients and servers are necessary to enable
discovery, key exchange, and communication between clients, servers, and
TSDs. TSD technology is applicable to streaming data where confiden-
tiality, authentication, and bandwidth conservation are concerns.

1 Introduction

Information security is a constant concern of data transmitted through an elec-
tronic network. Security can be increased by using various data encryption tech-
niques. Encryption techniques can be classified into two basic categories, asym-
metric and symmetric. Asymmetric, or public key, encryption can be used to
authenticate senders of data, while symmetric keys are typically used to provide
confidentiality.

Secure Socket Layers (SSL) [1] and the IP Security Protocol Suite (IPSec) [2]
are two popular methods of creating secure communication channels between two
parties on the Internet. SSL is an application based technique that is commonly
used in web-based communication such as web browsers. IPSec is implemented
at the network layer and therefore does not rely on the support of higher level
applications. Both technologies use a combination of asymmetric and symmetric
encryption to provide both authentication and confidentiality to network data.

It is becoming increasingly common for home and small business Internet
users to serve data to remote clients. Streaming multimedia such as audio and
video, as well as online game hosting are a few examples of content that is

being served by these users. Subscription based multimedia streams require a
technology such as SSL to prevent theft of service. IPSec can be used in gaming
environments, as in Microsoft’s XBox Live, to prevent players from cheating by
receiving extra information or transmitting false information.

A typical home or small business office has a limited bandwidth connection
to the Internet. In cases such as Asymmetric DSL, the upstream bandwidth is
even more constrained than the downstream. Bandwidth conservation techniques
such as Application Layer Multicast (ALM) and Stealth Multicast (SMC)[3] are
able to reduce these bandwidth demands, but are not compatible with security
protocols such as those used in SSL or IPSec. This leaves hosts to choose between
security and bandwidth while the situation demands that both exist together.

The marriage of bandwidth conservation and information security creates
new and interesting problems which must be solved. In [4], the authors analyze
security issues as they apply to multicast. In particular the topics of authentica-
tion, confidentiality, and key management are discussed. In [5] and [6] efficient
key management techniques are presented. While these studies are effective in a
traditional multicast infrastructure they do not apply to ALM or SMC environ-
ments.

We present the concept of a Trusted Security Device (TSD) as a solution
to this problem. A TSD works in conjunction with clients and servers to utilize
bandwidth conservation methods while maintaining secure communications. Sec-
tion 2 discusses the motivation for this work as well as background information
about IPSec and SMC. Section 3 presents the concept of the TSD and discusses
communication and encryption protocols which are needed for the unit to func-
tion properly. An online gaming scenario is used to explain the entire process.
Section 4 briefly discusses other applications of TSD technology, and 5 presents
its possible weaknesses. The final section is a summary of this work.

2 Motivation and Background

Consider a case where a server is utilizing SSL to send a subscriber-based live
music stream. The purpose of SSL is to restrict the audience to those who have
paid the appropriate fees. Remember, however, that SSL is really a point-to-
point protocol, so a distinct unicast stream is be needed to broadcast to each
subscriber. The protocol could be adjusted so that all clients, following authenti-
cation, would receive the same symmetric key so that encrypted data would look
identical. This would enable SMC to provide bandwidth conservation services,
as will be explained later in this section. However, while eavesdropping would
still be prevented, the source of the data cannot be authenticated, which may
still pose a problem.

This problem is evident in the case where the data is a stream of stock
prices. Because a group key is being used for the encryption we know that
the data is coming from a member of the group, but we cannot authenticate
which member of the group is sending it. This is a risky proposition when your
hard earned money is at stake! As stated before, SSL. and IPSec are able to

provide authentication of Internet traffic. This, however, is not feasible because
while in a unicast environment a shared secret symmetric key provides source
authentication, in this multicast scenario a shared group key only provides group
authentication, not source authentication.

The remainder of this section discusses IPSec and SMC, and provides insight
into reasons for their inability to work together in the streaming data scenarios
presented.

2.1 IPSec

IPSec is a set of protocols designed to provide security services at the IP Layer.
With data encryption being handled at this layer it provides security to net-
worked applications that do not have encryption capabilities such as SSL built
in to them. Virtual Private Networks (VPN) are a popular implementation of
IPSec which is commonly used to create secure connections between a user and
an entity such as a company. A telecommuting employee may use a VPN to log
into their company’s network so all data that traverses the Internet is secure.

IPSec offers two protocols for handling network traffic security, IP Authen-
tication Header (AH) [7] and Encapsulating Security Payload (ESP) [8]. The
protocols are similar in that they are able to provide authentication, integrity,
and replay protection. AH also provides integrity of the IP header and non-
repudiation. ESP provides confidentiality via encryption. The two protocols can
be used together to obtain all required security characteristics. In this study we
are particularly concerned with the following security characteristics:

Confidentiality

— Integrity

— Source Authentication
Replay Protection

As mentioned previously, in order for SMC to work, a group symmetric key,
rather than pairwise unique symmetric keys, must be used. This eliminates the
source authentication characteristic which is required. Another option is the use
of a ticket. A ticket is a smaller piece of data, such as a checksum of the mes-
sage, which is encrypted with a private key and then added to the message. The
receiver could verify the ticket which provides source authentication. The com-
putational requirements of asymmetric key encryption is still a problem however,
because this must be done for every packet being sent.

2.2 Stealth Multicast

SMC is a method of converting redundant unicast Internet traffic into efficient
multicast packets. This is enabled by the use of a module called a Virtual
Group Detection Manager (VGDM) [3]. A VGDM performs similarity analy-
sis on packet payloads and, based on pre-defined heuristics, caches the packet
or forwards it on to its destination. A cached packet will become a member of

a virtual group, or will simply be forwarded on as normal. Virtual groups are
comprised of a single packet payload along with the destinations of all packets
with the identical payload. A group is used to create a single multicast packet
to be delivered via SMC. Multicast packets are received by a SMC enabled de-
vice on the client side where the packet is converted back to the original unicast
packet.

Again, this method is dependent on the ability of the VGDM to identify
similar packet payloads in order to create virtual groups. Encryption of data
creates a problem because unless the same key is used for all transmissions
identical plaintext creates different ciphertext. As was discussed before, a group
symmetric key allows the similarity detection to take place, but we suffer because
source authentication is not possible.

3 Trusted Security Device

We propose the concept of a Trusted Security Device to solve this problem. A
TSD works in conjunction with clients and servers to provide security for data
transmissions. This includes the four major characteristics of confidentiality, in-
tegrity, source authentication, and replay protection. It is even effective in a
heterogeneous environment where not all clients are enabled with a TSD unit.
The TSD works as a trusted party which is delegated the responsibility of pro-
viding security. Minor modifications are required of clients and servers in order
to facilitate direct communication with the TSD. VGDM capabilities from SMC
are incorporated in order to reduce the amount of redundant traffic sent to the
Internet.

We illustrate the functionality and use of a TSD with a possible real life
implementation of an XBox Live gaming system. XBox Live is a service which
allows XBox owners to host networked games across the Internet. It is one of
many scenarios where home users may host servers and distribute streaming or
other content through the Internet.

3.1 Architecture

Figure 1a is a typical XBox Live architecture consisting of multiple XBox con-
sole machines, with one being designated as the game server (XGS), and the
XBox Live Server (XLS). Using a custom version of IPSec, Microsoft’s XBox
communicates and authenticates with the XLS. Authentication is made possible
by a 2048-bit asymmetric key which is hardwired into the XBox. Once an XGS
is authenticated it is listed as an open server for other players to join. An XBox
client (XC), authenticated in the same manner, is able to join a game on a listed
game server. Following the coordination of the game server and clients, commu-
nication travels directly between the XBox consoles. While Microsoft does not
release details of their protocols or implementation, our analysis of XBox Live
traffic shows that communication is done with encrypted unicast UDP packets.

Yoox Live
amhem'\cmmn

=

Internet

m multicast
I unicast e

XBox Client 1
XBox Client 2
— XBox Client 3

XBox Game |**
Server

IXBox Client 3|

a) b)

Fig. 1. Configuration and data flow of typical XBox Live setup

We will assume that each connection between a client and game server is estab-
lished as a secure IPSec connection. This results in encryption using a different
shared secret key between the server and each client. It is important to have
this secure communication for game data to prevent cheating. In an unsecured
environment unscrupulous players may collect information about the game or
transmit false messages to other players in order to gain an unfair advantage.
Figure 1b shows a similar environment as previously described with the addi-
tion of TSDs on the game server and two of the three client machines. The TSD
lies in-line between the XBox and the router. While the T'SD will analyze and
retransmit much of the XBox game data, for all other communication, includ-
ing authentication from the XBox Live server, messages from clients, and dhcp
requests, the TSD acts as a pass-through device. The following subsections de-
scribe the process of T'SD discovery and the encryption protocols used to provide
necessary encryption while allowing a VGDM to improve network efficiency.

3.2 Discovery

Each individual XBox, including the game server, must discover whether or
not a TSD exists in their local environment. Because of the high level of trust
which must exist between an XBox and TSD this requires a protocol that allows
an XBox to discern between an authorized TSD and a spoofed, and possibly
malicious, one.

First, authentication between an XBox and the XLS is established as normal.
This is enabled by the hardwired 2048-bit asymmetric key, and results in a secure
IPSec connection between the XBox and the XLS. Once this connection has been
established an XBox can discover its local TSD.

Similar to a Public Key Infrastructure (PKI) [9], an XBox uses the XLS as
a trusted third-party to establish the authenticity of the TSD. First, the XBox
must broadcast a message to its LAN.

XBox — BCast: (M,ID,N,ttl =1)

where
N = E(Nonce, Ky)

This message is comprised of four items. First, a message M states that the
message is requesting discovery of a TSD. Next is an identification number of
the XBox followed by a nonce encrypted with a secret symmetric key generated
by the XBox. This is for the purpose of authenticating a future message from
the XLS. Finally the message has a TTL of one hop, which is sufficient because
of the network topology requirements of the T'SD.

If any device other than a TSD receives this broadcast message it will be
discarded. A TSD will use the message as a signal to send a message to the XLS
in order to authenticate itself with its local XBox.

In similar fashion to the XBox, the TSD authenticates itself to the XLS via
a hardwired asymmetric key.

TSD — XLS: E(ID+ N+ ST;,TSDyiv)

The XLS is able to verify that the message is coming from a valid TSD
because it holds the corresponding asymmetric key of the secret hardwired key
TSDpriv. The message includes the identification number and the encrypted
nonce that the TSD received from the local XBox. The identification number
is the same number as is held by the XLS already, so the XLS can identify
the source of the original discovery request. The key ST, is a symmetric key
generated by the T'SD that is established for communication between itself and
the XBox. The XLS flags the XBox as being TSD enabled and then sends the
following message to the XBox.

XLS — XBox : E("TSD/OK" + N + ST,, XS,)

where X S; is the secret symmetric key used for the IPSec connection between
the XBox and the XLS. The XBox decrypts the message, authenticating the
source, and obtains the message that a local TSD has been authenticated. The
authentication of the TSD is strengthened by the decryption

XBox: D(N,K,) = Nonce

and a check to verify that Nonce' equals Nonce, the original value the XBox
calculated.

The XBox now holds the key ST, which will be used for secure, authenticated
communication with the TSD. The location of the T'SD is unknown, so the XBox
broadcasts a message similar to the initial authentication request.

X Box — BCast : E(ConnectionRequest, ST)

Only the TSD will understand the message, as it generated ST, so it replies,
establishing a secure communication channel.

This protocol allows an XBox to identify and authenticate a TSD in its
local network without prior knowledge of its existence. A spoofed TSD and
message replay are the two attacks which we are concerned with here. A spoofed
XBox is not a concern because we assume it is not possible based on the XBox

authentication protocol. The hardwired asymmetric key in the TSD prevents
spoofing in exactly the same way as the XBox. The nonce is unique to each
authentication request made by the XBox. This prevents replay attacks because
a nonce will be invalid for future authentication attempts. The secret symmetric
key is also unique to each request, adding additional strength against replay
attacks. The only unencrypted message is the initial authentication request from
the XBox. A spoofed authentication would be defeated because an XBox cannot
be spoofed, and the XBox would have to verify the original encrypted nonce in
the authentication request.

Now each XBox knows whether or not it has a TSD and is ready to join a
game. When an XC joins an XGS an IPSec connection is established just as in
the standard architecture. This results in a unique symmetric key, SC§, between
each XGS-XC pair. If game play started at this point it would proceed just as in
the standard configuration. The next step is the delegation of keys, which allows
the TSD to take over security responsibilities.

3.3 Trust and Delegation

There are three types of key exchanges needed to create a secure environment.
First is the key exchange between the XGS and its local TSD. Second is between
the TSD of the XGS and the TSD enabled XCs. The final exchange is between
the XCs and their corresponding local TSD. Table 1 summarizes these keys
which will be used for communication during game play. In the notation: S =
Server, C* = Client (* represents identification number), and T = local TSD.
So T in ST refers to the server’s local TSD and in C!'T represents C!’s TSD.
This exchange takes place at the beginning of each game, but because players
can join or leave mid-game, is can be done for a single player at any time.

First the XGS must transfer a list of XCs along with their symmetric keys
SCY to its local TSD.

XGS — TSDxgs: E(XC List+ Key List, STs)

Next, TDSxgs must determine which of the XCs are TSD enabled. This is
accomplished by sending each XC an inquiry using the appropriate symmetric
key obtained from the XGS.

TSDxas — XC.: E(TSD?,5CY)

The TDSxgs intercepts replies and can then divide the XCs into two group,
TSD enabled and non-TSD.

TS D x s must now generate a shared group key for multicast communication
as well as an asymmetric key pair to be used for authentication. This is not the
same as the 2048-bit key used for authentication with the XLS, but is a smaller
key used specifically for the current communication. It then distributes the keys
to TSD group members. Assuming a scenario such as figure 1b.

TSDxgs — C1: E(SGs+ Sk4 SCh)

pubs

Table 1. Notation of encryption keys

H Key [Notation H
Symmetric Key for S and C* SCy
Symmetric Group Key SGs

Asymmetric Keys for S’s TSD S;i‘fv, S:,fff,
Symmetric Key for S and local TSD ST
Symmetric Key for C* and local TSD| C*T;

TSDxgs — Co: E(SGs + Stig, SC?)

At this point TSDxgs cannot communicate directly with the TSDs of the
XCs. The final step enables this communication by each XC transferring the
group and private keys just received to their local TSD.

XC, — TSD¢, : E(SGs+ St C*T,)

p

Now all keys necessary for the communication protocol have been generated
and shared. A summary of each unit and the keys they possess are listed in
table 2. The communication protocol, in conjunction with these keys, will cre-
ate a secure environment similar to the basic XBox scenario, while adding the
capability of a VGDM to allow a more efficient use of bandwidth. This process
will be shown as a step-by-step progression in the following subsection.

Table 2. Summary of Key Possession

I Unit [Keys |
XGS SC?F, ST,
TSDxas SCz, ST, SGs, Sk,
Non-TSD C. SCy
TSD Enabled C.|SC?, SGs, C* T, Sk
TSDc., SG,, C*T., SLi%

3.4 Message Processing

We are only concerned with the flow of a message from an XGS to an XC.
Messages in the opposite direction proceed just as before using the established
IPSec channel between the game server and client as no advantage can be gained
in terms of bandwidth conservation in this direction.

Figure 2 shows the flow of messages sent from an XGS to its clients. Assume
the server generates a message, M, which will be sent to clients C7, C5, and Cj,
where C; and Cjy each have a TSD (Figure 1b). The game server encrypts and
sends messages as it would in a standard, non-TSD, configuration.

XGS —TSD: E(C,+ M,SC}) = M,

| TSD of Client XBox | Client XBox

VGDM |

creates virtual
o |
E(M+AF,SGs) | TSD Group

m ups.
s

M
D(M,.ST) C
ang

- M, o
E(M,SC) |—>| D(M,.5C))

E(M,SC))

XBox Game Server TSD of Server Client XBox
' '

Fig. 2. Flow of messages sent from the XBox Game Server to XBox Clients with and
without a TSD

XGS - TSD: E(Cy+ M,5C%) = M,
XGS —TSD: E(Cs+ M,SC3) =M,

The messages are intercepted by the TSD are checked to see if the destination
XC is TSD enabled. TSD group messages are decrypted using the appropriate
symmetric key.

TSD: D(M'y,SCY) =M
TSD: D(M",,5C2) =M

Client C'5 is not part of the TSD group, so its message is simply placed in the
VGDM queue. y
TSD — Cy: M,

Non-group messages are queued before delivering in order to minimize deliv-
ery time differences between originally temporally close messages.

The messages which are destined for TSD group members are placed in the
VGDM staging area for similarity detection to take place. The VGDM is the
part of SMC technology which creates multicast packets for delivery on networks
lacking traditional multicast infrastructure. The VGDM analyzes data payloads
and creates a message group based on the similarity of the data payloads. The
result is a single message that is to be delivered to multiple XCs.

Prior to encrypting the payload of the group message an authentication footer
(AF) is created (Figure 3). The AF is comprised of an MD5 hash of the message
and sequence number. The AF is encrypted with the private key of the TSD,
appended to the message and then the entire message is encrypted with the
group key.

TSD — C1,Cy : E(M + E(AF,S%%),5G,) = M,

priv

The AF is dependent on the level of security required for a particular application.
In this application a 2-byte sequence number and 4-byte hash would be sufficient.

The symmetric group key offers confidentiality and group authentication.
However, it does not authenticate the sender within the group. Public key en-
cryption of the entire message would allow for this authentication, but compu-
tational requirements for public key encryption make this unrealistic. The AF

MDS5 Hash
a) | Message |

AF
b) | . | E(ChkSm + Seqt#, §,) |

Fig. 3. An authentication footer is an encrypted 4-byte MD5 hash of the message and
a 2-byte sequence number. This provides source authentication for XBox clients.

provides three important aspects of data security. First, the sequence number
prevents replay attacks. More details will be given during the description of the
receiver TSD. Second, the checksum verifies the integrity of the data, which en-
sures that the message has not been tampered with. Finally, encryption with
the private key of the TSD provides for source authentication. The public key
encryption done here is very minimal when compared to encrypting the entire
message, so the added latency of delivering the message is minimal.

The VGDM then transmits the group messages via ALM or some other mul-
ticast method. The client side TSD receives the multicast packets and decrypts
both the message and the resulting AF.

C,.TSD: D(M,SG,) = M + AF

C.TSD : D(AF, S;fﬁl,) = checksum + seq.number

The checksum is validated by calculating an MD5 hash of M and comparing
the results. The sequence number is compared to the previous number and if
it falls within a pre-determined range, such as plus or minus 10, the message is
accepted. The message is then encrypted and delivered to the XC.

C.TSD — C, : E(M,SC*) = M

Notice that the XBoxs use the same keys for sending and receiving as they
would in a non-TSD scenario. Also, the only additional information they hold
concerns their own local TSD. The TSD of the XGS is the only entity that holds
all knowledge of the TSD enabled XCs. So the only modification needed to the
XBox is to enable it to discover a TSD and exchange keys.

In an online gaming environment backward and forward confidentiality are
not much of a concern. In other environments it may be, but it can be easily
handled with key updates. Sophisticated key update protocols, typically for large
audiences, are discussed in [4]. Generally speaking, when a client joins or leaves,
or at set intervals, the new keys must be distributed to the TSD group members.
In a gaming scenario, with a limited number of participants, it would probably
be sufficient to perform this operation at the start of each game, but can be
done as needed. The SG; keys and the S;ffll) and Szt,f,‘fv keys would need to be
regenerated by the TSD of the XGS and appropriately distributed through the
secure IPSec connections just as was done during the initial key exchanges.

The security attributes of data integrity and confidentiality, replay protec-
tion, and sender authentication have all been maintained with the addition of
the TSD in the online gaming framework. At the same time the TSD has en-
abled a technology such as SMC to efficiently transmit data via a multicast
protocol. This allows hosts with constrained or limited upstream bandwidth to
provide streaming multimedia content while reducing QoS problems associated
with bandwidth constraints. Bandwidth conservation is obviously an advantage
to the content host, but it is also positive for the receivers. This enables them to
take advantage of a provider’s efficient data stream, improving the QoS of the
presentation on their end.

4 Other Applications

We have presented the TSD concept within the framework of a popular online
gaming architecture. However, the capability of the TSD is not limited to such
a scenario. The true ability of the TSD is the offering of data confidentiality and
source authenticity while reducing distribution bandwidth requirements.

The target application for this technology is anything that needs to provide
information security while delivering content to multiple receivers. Previously we
mentioned the streaming stock price example. This, as well as most information
data streams, is an ideal place for TSD technology. General public subscription
based audio and video streams may or may not be candidates depending on
source authentication needs. However, for private groups, such as corporate,
government, or military organizations, source authentication is critical and TSD
services would be a great benefit.

We have begun to investigate how the TSD would fit into a distributed
backup system. This would allow secure data to be efficiently transferred to mul-
tiple backup sites simultaneously. This scenario is more complex than streaming
media because of the effects of dropped packets. We will be investigating a
method of efficiently incorporating the ability to handle this in the future.

5 Weaknesses

The addition of a TSD obviously offers a new point of attack for malicious users.
However, the authentication process for the TSD is similar to that of an XBox, so
in terms of security strength they can be considered equal. In other scenarios the
TSD would still be authenticated in a way that provides equal security strength
to the existing infrastructure.

A system that does not require modification of existing systems would be
ideal in terms of ease of deployment and scope of use. The TSD, however, does
require modifications to be made in order for trust to be established and keys to
be exchanged. This requirement, while necessary and unavoidable, prevents the
TSD from becoming a general purpose network appliance, but does position it
as a revenue generating add-on product.

6 Summary

The marriage of bandwidth conservation and information security can be per-
formed by the implementation of a trusted security device. Bandwidth conserva-
tion techniques such as ALM or SMC can be used to reduce redundant network
traffic and do not suffer the deployment problems of traditional multicast. SMC
relies on the ability to detect identical data payloads to create virtual multicast
groups for efficient delivery of data. IPSec is a protocol for secure data transfer,
but does not work with a SMC because SMC is not able to detect similar data
when encrypted with different keys.

The TSD is a trusted device to which clients and servers delegate the re-
sponsibility of providing authentication and confidentiality of data. TSD imple-
mentation requires minimal modification to servers and clients to be able to
function together. Discovery, key exchange, and the encryption protocol are the
three major steps to creating a secure infrastructure with TSD.

A TSD infrastructure allows secure streaming data to be efficiently broadcast
across the Internet. It allows bandwidth limited hosts to increase their audience
while minimizing bandwidth costs. End users will benefit by receiving more
efficient TSD enabled streams which increase the QoS over the traditional unicast
streams from the same server.

References

1. P. K. Alan Freier, Philip Kariton, “The SSL protocol: Version 3.0,” Netscape Com-
munications, Inc., Mountain View, CA, March 1996.

2. S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol,” Internet
Engineering Task Force: RFC 2401, November 1998.

3. A. Striegel, “Stealth multicast: A catalyst for multiccast deployment,” in Proceedings
of IFIP Networking, Athens, Greece, May 2004, pp. 817-828.

4. T. Hardjono and G. Tsudik, “IP multicast security: Issues and directions,” Annales
de Telecom, 2000.

5. I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key management
for secure internet multicast using boolean function minimization techniques,” in
Proceedings IEEE Infocomm’99, vol. 2, 1999, pp. 689-698.

6. G. Ateniese, M. Steiner, and G. Tsudik, “New multiparty authentication services
and key agreement protocols,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 4, pp. 628-639, 2000.

7. S. Kent and R. Atkinson, “IP Authentication Header,” Internet Engineering Task
Force: RFC 2402, November 1998.

8. S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP),” Internet
Engineering Task Force: RFC 2406, November 1998.

9. R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509 Public Key Infrastruc-
ture,” The Internet Society: RFC 3280, April 2002.

