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Abstract. In this paper, we explore a novel approach to perform a probabilistic
fast analysis of web communications. Instead of relying on pattern matching
algorithms, we look at simple network and transport level parameters and try to
infer what happens at the application level. Our approach provides the ability to
perform a trade-off between analysis speed and precision that could prove
useful for some traffic analysis applications.

1. Introduction

The appearance of new threats (e.g. worms, DDOS attacks) has led network
operators to provide intrusion detection services to their customers. In this paper we
consider one of the challenges implied by this activity; the ability to monitor
communications within operator networks. This task can be considered challenging
for several reasons (limited traffic analysis abilities, large amounts of traffic, limited
ability to introduce new mechanisms). We focus on HTTP based communications
because they constitute one of the largest aggregate of packets on the Internet. The
goal of this paper is to present techniques that would enable such communications to
be analyzed in the network while complying with the aforementioned limitations.

2. Measurement Information

Our goal is to check whether network or transport level information could be used
to infer application level operations. In a first part we examine how protocols might
render this operation difficult. HTTP [1] exchanges can be viewed at several levels.
At the lowest level, the HTTP protocol is based on a request-response protocol where
each request attempts to perform an HTTP operation on an object at the server. We
later call this level micro-session level. Information in HTTP 1.1 messages is
organized into information elements called headers. Although HTTP 1.1 defines more
than 40 different headers, requests and responses usually only use a few them.

HTTP 1.1 provides the ability for web clients and servers to multiplex several
HTTP request-responses exchanges over a single TCP connection. Among persistent
connections we can additionally distinguish between connections using pipelined
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requests and regular connections. Pipelined connections are used by the client to

perform several requests without waiting for an answer from the server. This ability is

however limited by the structure of html documents. Therefore micro-sessions can be
distinguished at the network level by either looking at:

e Connections set-up and ending in the case of non persistent connections.

e Request-Response session patterns [3] in the case of non-pipelined persistent
connections. These patterns can be found by observing TCP sequence numbers.

e Request-Response session patterns in the case of persistent pipelined connections.
However only the first micro-session can be distinguished from other exchanges.
An interesting question is thus whether pipelined, persistent connections are

supported in the real life. [3] shows that most browsers are either unable to use

persistent-pipelined connections or configured by default to avoid using them.

3. Method and Objects size inference

Our assumption is that objects sizes can be inferred from network or transport level
measurements. Several factors can play a role in making this process more difficult.
For example at the transport level, measurement information includes HTTP headers.
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Fig. 1. Header and total sizes for various types of responses.

Figure 1 provides the relation between header sizes, types of response and total
sizes in the case of our web server. These values where obtained by capturing
responses packets from the server over several hours. Six types of responses
(identified by code numbers) were captured.

Figure 1 shows that 200 (OK) responses can be distinguished from other responses
by looking at the total size. Some 200 responses have a size that collides with other
types of responses. However objects associated with these responses constitute less
than 1% of existing objects. 304 (not modified) responses can also be distinguished
from other responses by looking at the total size.

Additionally, tests show that persistent connections include additional HTTP
headers. These headers have a fixed size (57 bytes). As a result knowing whether a
connection is persistent is sufficient to deduce the influence of the persistence on the
HTTP header size. This knowledge can be obtained by looking at multiple
connections establishment-teardown over short periods of time. Table 1 provides the
relation between response sizes and codes.



Table 1. Response code classification using response size for persistent connections.

Result Response Size

200 RS >550 or 250<RS<460
304 240<RS <250

301, 400, 403, 404 460<RS<550

Using a similar methodology, we define a set of classification criterion in order to
infer the method used in HTTP requests.

Figure 1 shows that 200 responses can carry HTTP headers whose size are not
fixed. As a result using an average HTTP header size value to estimate objects sizes
in the case of GET requests can lead us erroneous results. By looking more closely at
HTTP headers we can classify header fields according to their behavior:

e Some headers values never change (e.g. response code, server id, accept range).

e Some header values change but have a fixed size (e.g. last modified and date).

e Some header sizes change depending on the document (e.g. content type, size).

As a result for a given object, the response size should remain constant. This means
that by keeping the relation between response sizes and object sizes, we can get an
exact estimate of objects sizes.

4. URI inference

For URI Inference, our goal is to use parameters such as the object size, the date
and time at witch a request was performed or the IP address of the requesting client.
The relation between these parameters can be found in log files on the web server.

The model we selected to perform inference operations is a Bayesian network.
Bayesian networks are graphical models that can be used to represent causal
relationships between variables. A Bayesian network is usually defined as an acyclic

directed graph G,G = (V, E), where V' is a set of nodes and E the set of vertexes, a
finite probability set (Q, Z,P) and a set of variables defined on (Q, Z,P), so that :

P,k ) =TT PO IC() M
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where C(Vi), is the set of causes for ¥, in the graph.

The inference in a causal network consists in propagating unquestionable
information within the network, in order to deduce how beliefs concerning the other
nodes are modified. This propagation is related to causal relations between nodes.

In order to limit the resources used by our model, a first step was to aggregate
possible parameter values. IP addresses were aggregated into country codes and date
and time were also aggregated in some way. As the cost of inference in a Bayesian
network increases exponentially with the number of variables we also evaluated the
ability for each parameter (size, country codes, time, date) to explain URIs. This led
us to the selection of country code and size variables (Bayesian network in Figure 3).
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Fig. 2. Resulting Bayesian network.

5. Implementation and tests

A traffic analyzer was implemented as an extension to IPFilter [4] to capture HT TP
sessions. Sessions are delimited as specified in section 2. When a session ends, the
corresponding information (size, IP addresses, time, and date) is handed to a user
space process and stored in a file.

Validation tests were performed using our departmental web server. This web
server includes roughly 15k objects and receives 10k requests a day. Models were
built using a one month log file including 309k requests. The validation was
performed by simulating requests to the server using the same log file. Results are
presented in Table 2. Among requests, only requests with a "200" response codes
were used for method inference. Only inferred "GET", "200" requests were used for
object size and URI inference.

Table 2. Ability to predict correct parameter values.

Parameter Requests considered | Correct Responses % Correct
Response Code 300986 288568 96
Method 228189 208347 92
Object Size 154289 150505 98
URI 154289 135212 88

An implementation of our inference process was performed in C in order to test its
performance. The implementation was performed on FreeBSD using a 2.4Ghz
Pentium Xeon (512KBytes cache, 1GBytes RAM). Results show that our inference
process should be able to analyze roughly 1M requests per second using a 2.5Mb
model. Assuming standard Internet traffic this would allow us to treat a 20Gb/s full
duplex link.
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