
Exploiting Traffic Localities for Efficient Flow

State Lookup

Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao

Department of Computer Science and Software Engineering
The University of Melbourne

Victoria 3010, Australia
{tpeng, caleckie, rao}@cs.mu.oz.au

Abstract. Flow state tables are an essential component for improving
the performance of packet classification in network security and traffic
management. Generally, a hash table is used to store the state of each
flow due to its fast lookup speed. However, hash table collisions can
severely reduce the effectiveness of packet classification using a flow state
table. In this paper, we propose three schemes to reduce hash collisions
by exploiting the locality in traffic. Our experiments show that all our
proposed schemes perform better than the standard practice of hashing
with overflow chains. More importantly, our move and insert to front

scheme is insensitive to the hash table size.

1 Introduction

The Internet is playing an increasingly important role in our society. A number
of Internet applications, such as proxy services, firewalls and traffic billing need
packet classification. In particular, due to the poor security level of the Internet,
firewalls are an indispensable component for safeguarding on-line services. Due
to the rapid increase in Internet bandwidth, processing speed has become a
critical issue for firewall products. Although, firewalls based on FPGA hardware
can provide high throughput, they are expensive and inconvenient to upgrade.
A more flexible approach is to implement firewalls in software. The benefits of
this solution are its low cost and ease of maintenance. However, high packet
throughput becomes an issue. Consequently, the challenge is how to maintain
high processing speed without compromising the sophistication of the firewall
rule set. One important bottleneck in firewalls is caused by rule matching. In
this paper, our aim is to exploit locality patterns in Internet traffic to increase
the packet processing speed of firewalls.

A common technique to improve firewall performance is to use a flow state
table. The firewall maintains a table of all the flows that it has authenticated.
Before a packet is sent for rule checking, its flow information is checked to de-
termine whether it appears in the flow state table. If the flow is in the table,
the flow has already been seen, and so the packet is handled according to the
classification in the table. If not, the new flow is sent for rule checking, and the
authenticated flow will be added into the flow state table. Generally, there are

2 Tao Peng et al.

two types of data structures that are used to implement the flow state table,
namely, hash tables and tree structures. Generally, hash tables are faster than
tree structures for insertion and retrieval. A detailed comparison between hash
tables and tree structures is outside the scope of this paper. In this paper, we
focus on the performance of hash tables for implementing flow state tables.

Our contribution in this paper is to propose three hash table management
schemes to improve the processing efficiency of flow state tables by exploiting
traffic localities. The rest of the paper is organized as follows. In Section 2, we
briefly review the use of hash tables for traffic flows. In Section 3, we propose
three hash chain management schemes for handling the hash collisions. In Sec-
tion 4, we use real-life packet traces to evaluate our schemes. In Section 5, we
discuss other related issues for flow state tables.

2 Background on Flow State Tables

Internet services are carried via application sessions, such as downloading a web
page or sending an email. Generally, one application session comprises several
network sessions, such as TCP sessions or UDP sessions. All the packets involved
in one network session belong to one IP flow. In this paper, unless otherwise
stated, when we use the term flow we are referring to an IP flow. In IP v.4,
we use 13 bytes as the flow identification, which includes the source address,
source port number, destination address, destination port number, and protocol
number, whereas in IP v.6 [4], we use the flow label and the source and the
destination addresses. In this paper, we focus only on IP v.4, but the techniques
developed here are also applicable to IP v.6.

We define the number of packets in each flow as the flow length. The flow
length varies according to the type of application session. Some flows are short,
such as a DNS lookup; some flows are long, such as transferring a large file via
FTP. A common operation in network equipment is packet flow classification, for
example, for security clearance and traffic management. With the rapid increase
in network traffic speed, the computational overhead spent on packet classifica-
tion has become a hurdle for achieving high packet throughput rates. Fortunately,
all packets in the same flow share the same characteristics, such as integrity, pri-
ority and routing path. Hence, once one packet from a flow is classified, the
rest of the packets within the same flow can share the same classification. This
provides us with an opportunity to speed up the packet classification process by
focusing only on flow classification.

A flow state table is one type of application that takes advantage of this
feature to reduce per packet processing overhead. As shown in Figure 1, each
incoming packet is checked to see whether it belongs to any of the flows in the flow
state table. If it does, the packet is processed according to the decision associated
with the matched flow. If it does not, the packet is classified by checking the
whole rule set, and the classification result is used to update the flow state table.
As the overhead for flow state table lookup is much smaller than checking the
whole rule set [5], the overall packet classification overhead is reduced. Gupta et

Exploiting Traffic Localities for Efficient Flow State Lookup 3

al. gave an excellent tutorial on packet classification algorithms in [5]. However,
to our best knowledge, no research has been done at the time of writing this
paper on reducing the cost of flow state table lookup.

Fig. 1. Flow state table and packet classification

Several data structures have been proposed for flow state table lookup, e.g.,
search trees and hash tables [6] [3]. Typically, hash tables have the advantage
of fast lookup (O(1) if no hash collision happens), while search trees have the
advantage of dynamically adjusting the size of the data structure to the amount
of data that needs to be stored.

Our focus is on using a hash table to store the flow state information. Typi-
cally, the 13-byte flow information f is first reduced using a hash function h(f),
which returns an index into the hash table. If the hash table has N entries, then
the hash function returns an index in the range 0 ≤ h(f) < N . In practice, mul-
tiple flows can have the same hash index. Consequently, each entry in the hash
table, known as a bucket, is a pointer to a linked list of flow records that have all
been hashed to that entry. When two different flows map into the same bucket,
a collision has occurred. These linked lists are also referred as hash chains. A
critical issue for the performance of insertion and retrieval is how to manage
records in the linked list.

For example, one conventional approach taken by a well-known open source
firewall package IPfilter [6] is to always insert the new flow state record at the
front of the linked list. The idea behind this approach is that once the new flow
state is inserted, it is likely to be followed by packets from the same flow. Hence,
most of the packets will match the first node of the hash chain. Unfortunately,
tens of thousands of flows can be active at the same time in practice. In partic-
ular, several flows that are mapped into the same hash bucket can be active at
the same time. Generally, these flows interleave with each other. For example,
let Ai represent one packet from flow A, Bi represent one packet from flow B,
Ci represent one packet from flow C, and flows A, B, C are mapped into the
same hash bucket. For IP filter, the ideal sequence of the three incoming flows
will be A1A2A3A4A5...B1B2B3B4B5...C1C2C3C4C5.... In practice, the sequence
is more likely to be interleaved, e.g., A1B1A2A3A4B2B3B4C1C2A5B5C3C4C5....
In this scenario, the traffic locality cannot be fully exploited by just inserting
the new node at the front of the list.

Let us consider another extreme example. Assume four active flows are
mapped into the same hash bucket. All these four flows are active for the same

4 Tao Peng et al.

time period. Three of them are slow flows, e.g., ssh sessions, and one of them
is a fast flow, e.g., a large file download. We assume the fast flow starts before
the three slow flows. Once these four flows are included in the hash chain, their
positions in the hash chain will never be changed given no new flows are mapped
into the same hash bucket. As shown in Figure 2, the fast flow who has the dom-
inant number of packets of these four flows will have to search to the end of the
list to find a matching flow. In this scenario, most of the packets will experience
the longest searching time. Consequently, due to the complicated packet arrival
sequence, simply inserting the new flow state at the front of the list is not enough
to guarantee fast lookup performance. Better algorithms are needed to carefully
exploit locality in the traffic flows.

Fig. 2. Worst-case scenario for the con-
ventional approach to managing the
hash chain. Fig. 3. The circular list hash chain

3 Proposed Schemes for Flow State Table Management

Our aim is to reduce the time needed for flow state table lookup, i.e., hash ta-
ble lookup, so that the overall packet processing speed is increased. The key
step to improving the hash table lookup speed is to organize the hash chain
so that most of the packets only need a few searches to find a matching flow.
As we discussed in Section 2, we need a more adaptive scheme to exploit traf-
fic locality. Our assumption is that for each hash bucket, the packets from the
same flow will arrive continuously for at least two packets. We call these con-
tinuously arriving packets from the same flow a burst. For example, the se-
quence A1B1A2A3A4B2B3B4C1C2A5B5C3C4C5... contains several bursts, such
as A2A3A4 and B2B3B4. The conventional approach only focuses on organizing
the hash chain according to the first packet of each flow, and fails to exploit the
locality within each burst. To address this shortcoming and inspired by Zobel’s
idea in accumulating text vocabularies [7], we propose three different algorithms
focusing on exploiting the locality within a burst.

Exploiting Traffic Localities for Efficient Flow State Lookup 5

– Move to front : This scheme maintains a linear list, and moves the most
recently matched node to the front of the list, and inserts new flows at the
end of the list.

– Insert and move to front : This scheme also maintains a linear list. However,
it not only moves the matched flow to the front but also inserts the new flow
to the front.

– Circular list : This scheme maintains a circular list for each hash bucket, and
the hash bucket either points to the last matched flow or the newly inserted
flow as shown in Figure 3.

All of these three schemes share the same feature that each matched flow will
trigger a restructure of the hash chain, i.e., moving the matched flow to the
beginning of the list. Hence, at least the second packet of each burst will only
need one search operation to find a matched flow. In the scenario shown in
Figure 2, once one packet from the fast flow 1 searches till the end of the hash
chain to find a match, the fast flow 1 will be moved to the front. Hence, the
following packets from the fast flow 1 only need one search to find the matching
flow. For the simplicity of comparison, we refer to the approach taken in IP
filter as the normal scheme, which is described in detail in Section 2 as the
conventional approach. In the next section, we will use real-life data traces to
verify our heuristics.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

2

4

6

8

10

12
x 10

7

Hash Table Size (Number of hash buckets)

N
um

be
r

of
 M

em
or

y
C

om
pa

ris
on

 In
st

ru
ct

io
ns

normal
circular list
move to front
insert and move to front

Fig. 4. Number of memory comparison
instructions used by each scheme for IP
traffic in the Auckland trace.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

120

130

140

150

160

170

180

190

Hash Table Size (Number of hash buckets)

P
ro

ce
ss

 T
im

e
(S

ec
on

ds
) normal

circular list
move to front
insert and move to front

Fig. 5. The process time used by each
scheme for IP traffic in the Auckland
trace.

4 Evaluation

Our aim is to use real-life packet traces to validate our proposed schemes. There
are two sets of packet traces that we use in the evaluation. The first packet trace is
collected at the edge router of the Department of Computer Science and Software
Engineering of the University of Melbourne in Australia. We refer to these as
the Melbourne traces. The advantage for this packet trace is that it is recent

6 Tao Peng et al.

and the whole IP packet header information is preserved. Unfortunately, these
packet traces are not publicly available yet due to the University privacy policy.
The second packet trace is collected at the Internet uplink of the University of
Auckland in New Zealand [1]. We call these the Auckland traces. The Auckland
traces are publicly available so that our results on this data trace can be easily
reproduced by other researchers. The details of these two data sets are shown in
Table 1.

Melbourne traces Auckland traces
Direction bi-directional uni-directional
Date of Collection 22 May 2004 29 March 2001
Duration 24 hours 24 hours
Total Number of Packets 153,399,408 43,226,495
Format tcpdump format DAG format

Table 1. Data sets used in evaluation

Our experiments include on-line evaluation and off-line evaluation. For the
Melbourne trace, we conducted an on-line evaluation. In the flow state lookup
engine we implemented the normal scheme and our three proposed flow state
table lookup schemes. In the traffic generator we use tcpreplay [2], an open
source tool, to replay the traffic traces collected. Both the flow state lookup
engine and the traffic generator comprise a 2.8 GHz Pentium 4 processor with
1 MB L2 cache and 512 MB RAM. For the Auckland trace, we conducted an
off-line evaluation 1 in a linux PC with dual 900MHz Xeon CPUs (each CPU
has 512 KB L2 cache), and 512 MB RAM. Instead of reading the traffic from
the network card, our programs read the traffic from the data trace file. As the
total number of flows in each data set is large and we only need to maintain the
states for the active flows, we need a mechanism to delete the old flow states and
add the new flow states. For the convenience of evaluation of each hash chain
management scheme, we simply remove the last 5 flows states once the hash
bucket size reaches 10. The key goal of our experiments is to investigate how our
algorithm improves the flow state lookup efficiency. The hash function we use is
the bit-wise hash function from Zobel et al. [7].

4.1 Process Efficiency

We use two different metrics to evaluate the efficiency of each flow state lookup
scheme. First, we count the number of memory comparison instructions each
scheme has used. Note that for simplicity, we count the number of memory
comparison instructions rather than the total number of instructions executed.
In our experiment, we count the number of calls to memcmp() used by each
scheme. A smaller number of instructions indicates that the traffic localities have

1 The data server that was used to store the Auckland traces did not have enough
resources to conduct an on-line evaluation.

Exploiting Traffic Localities for Efficient Flow State Lookup 7

0.5 1 1.5 2 2.5

x 10
4

3

3.5

4

4.5

5

5.5

6
x 10

8

Hash Table Size (Number of hash buckets)

N
um

be
r

of
 M

em
or

y
C

om
pa

ris
on

 In
st

ru
ct

io
ns

normal
circular list
move to front
insert and move to front

Fig. 6. Number of memory comparison
instructions used by each scheme for IP
traffic in the Melbourne trace

0.5 1 1.5 2 2.5

x 10
4

170

180

190

200

210

220

230

Hash Table Size (Number of hash buckets)

P
ro

ce
ss

 T
im

e
(S

ec
on

ds
)

normal
circular list
move to front
insert and move to front

Fig. 7. Processor time used by each
scheme for IP traffic in the Melbourne
traffic

been better exploited, and the scheme has high efficiency. Second, we record the
time spent by the processor (not the elapsed time) to process the same amount of
traffic for each scheme. Each scheme only processes the IP traffic. Moreover, we
vary the hash table size to see how this affects the performance of each scheme.

Figure 4 illustrates the performance of our schemes for the Auckland traces.
The normal scheme used 1.1×108 memory comparison instructions, the circular
list scheme used 4.6 × 107 memory comparison instructions, while the move to
front scheme and the insert and move to front scheme used only 8.4 × 106 and
4.5× 106 memory comparison instructions respectively. Similarly, Figure 6 illus-
trates the performance of our schemes for the Melbourne traces. The evaluation
results are quite similar to the Auckland traces. The insert and move to front
scheme still performs the best, followed by the move to front scheme and circular
list scheme.

The move and insert to front scheme performs the best because it keeps the
more recent flow closer to the front of the hash chain. As the move to front
scheme inserts the new node at the end of the hash chain, the entire hash chain
has to be searched to find a matched node when the next packet of the new
flow arrives. Hence, the move to front scheme needs more memory comparison
instructions than the insert and move to front scheme. As the circular list leaves
the pointer at the most recently matched node, the node in front can become
the last node. As shown in Figure 3, if an incoming packet matches the slow
flow 2, the hash bucket leaves the pointer at the slow flow 2. All packets from
slow flow 2 only need one search to find a matching flow. However, if the next
incoming packet is from slow flow 1, then it needs 4 searches to find the matching
flow entry. This problem can be exacerbated if we have multiple fast flows in
the same bucket. Consequently, the number of memory comparison instructions
needed by the circular list scheme is larger than both the move to front scheme
and the insert and move to front scheme. Figure 5 illustrates the performance of
all four schemes in terms of processing time. We can see that the move to front

8 Tao Peng et al.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

2

4

6

8

10
x 10

7

Hash Table Size (Number of hash buckets)

N
um

be
r

of
 M

em
or

y
C

om
pa

ris
on

 In
st

ru
ct

io
ns

normal
circular list
move to front
insert and move to front

Fig. 8. Number of memory comparison
instructions used by each scheme for
TCP traffic in the Auckland traces

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

110

120

130

140

150

160

170

180

Hash Table Size (Number of hash buckets)

P
ro

ce
ss

 T
im

e
(S

ec
on

ds
)

normal
circular list
move to front
insert and move to front

Fig. 9. Processor time used by each
scheme for TCP traffic in the Auckland
traces

scheme, the insert and move to front scheme, and the circular list scheme have
very similar performance, which is about 30% faster than the normal scheme.
The benefit for the circular list scheme is that only one operation is needed to let
the hash bucket point to the recently matched node, which is simpler than the
linear list. This benefit is diminished by the disadvantage of a large number of
searches. Consequently, the overall processing time for the circular list scheme is
very close to the move to front scheme and the insert and move to front scheme.
Similar results are shown in Figure 7. We can see that in the Melbourne trace
the insert and move to front scheme clearly stands out as the best scheme. More
importantly, for hardware implementation, the hash chain can be implemented
as a ring buffer instead of a linked list, where the size of the bucket is fixed. In
this scenario, the circular list is more efficient than the other three schemes as it
only needs to keep track of the most recently matched flow, and does not need
to keep the rest of the flow entries in order.

4.2 Traffic Type

In some flow state table lookup implementations, e.g. a firewall application, the
TCP, UDP, and ICMP flows are treated differently. For example, firewalls will
have different sets of rules for each protocol. More importantly, only TCP traffic
requires an initial handshake to establish a connection, and is regarded as stateful
traffic. Hence, maintaining a flow state table for TCP traffic is essential for
many Internet applications. This section investigates how our schemes perform
under TCP traffic. Figures 8 and 9 illustrate the results for the Auckland traces.
Figures 10 and 11 illustrate the results for the Melbourne traces. We can see
that all of our three schemes perform better than the normal scheme. Overall,
the insert and move to front scheme performs the best.

Exploiting Traffic Localities for Efficient Flow State Lookup 9

0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

8

10

12

14

16
x 10

7

Hash Table Size (Number of hash buckets)

N
um

be
r

of
 M

em
or

y
C

om
pa

ris
on

 In
st

ru
ct

io
ns

normal
circular list
move to front
insert and move to front

Fig. 10. Number of memory compari-
son instructions used by each scheme for
TCP traffic in the Melbourne trace

0.5 1 1.5 2 2.5

x 10
4

74

76

78

80

82

84

86

88

90

92

Hash Table Size (Number of hash buckets)

P
ro

ce
ss

 T
im

e
(S

ec
on

ds
)

normal
circular list
move to front
insert and move to front

Fig. 11. Processor time used by each
scheme for TCP traffic in the Melbourne
trace

4.3 Hash Table Size

In this section, we aim to investigate the effects of the hash table size on the
performance of each scheme. As we see from the Figures 4 to 11, the flow state
table lookup performance is not sensitive to the hash table size. In theory, a larger
hash table size can reduce the hash collision rate and the average hash chain
length, and hence enhance the flow state table lookup performance. However, in
our experiments, the hash chain length is reduced to be 5 once it reaches 10 in
order to delete old flows. As the total number of flows is much larger than the
number of flows the hash table can hold, each hash chain length is likely to reach
10 and will be reduced to 5 afterward. Hence, the average hash chain length is
always between 5 and 10 for hash tables with different sizes. The benefit of a
large hash table is to hold more flow states and reduce the number of flows that
need to be re-inserted after deletion. The major cost of inserting a new flow is
to classify the flow, i.e., deciding whether to admit or reject the flow. This cost
is highly application dependent. Consequently, we do not consider this cost in
our experiments, and a flow is inserted directly once no matching flow is found.
For this reason, the hash table size has little effect on the flow state table lookup
performance.

To facilitate our study of the impact of the hash table size, we performed an
extreme experiment, where no flows are purged from the hash bucket. However,
this experiment is limited by hardware, i.e., the RAM size. We conducted this
experiment on TCP traffic in the Melbourne trace, as it contains 2 million flows
which can be handled by our hardware. As we see from Figure 12, all our schemes
perform significantly better than the normal scheme when the hash table size is
small. Generally, the small hash table size will increase the length of the hash
chain, which in turn increases the processing time for each flow state lookup.
However, this processing time is reduced if we keep reordering the hash chain
to make sure all the active flows are in the front. More importantly, the insert

10 Tao Peng et al.

and move to front scheme is insensitive to the hash table size as it fully exploits
the temporal localities in the traffic. The processing time of all the four schemes
converges when a large hash table size is used. This is due to the fact that the
average size of the hash chain is reduced to be 1, and there is no difference
between the four schemes.

10
3

10
4

10
5

10
6

10
7

0

500

1000

1500

2000

2500

3000

3500

Hash Table Size (Number of hash buckets)

P
ro

ce
ss

 T
im

e
(S

ec
on

ds
)

normal
move to front
circular list
insert and move to front

Fig. 12. Processor time used by each scheme for TCP traffic in the Melbourne
trace, where no flows are purged from the hash bucket.

4.4 Complexity of the Schemes

It is difficult to discuss the complexities of the schemes without knowing the
traffic flow statistics and hash function properties. Let us define a simple uniform
hash function2

h : K 7−→ T

where K is the set of keys (the 13 bytes flow identification in our experiment),
where T is the set of memory locations in the hash table. Let n be the hash
table size and l be the number of keys we want to hash, then the load factor
can be defined as α = l

n
. Based on our observation on the Auckland traces and

Melbourne traces, we assume the packet sequence within each hash bucket is as
follows:
A1A2...AkB1B2...BkC1C2...Ck...A(j−1)k+1A(j−1)k+2...AjkB(j−1)k+1B(j−1)k+2...

BjkC(j−1)k+1C(j−1)k+2...Cjk(j � 1, k � 1), where A, B, C are the flows that
are mapped into the same hash bucket, k is the size of the burst and j is the
number of bursts in each flow. Then we can summarize the searching complexity
of the normal scheme and our schemes in Table 2, where Xi (i = 0, 1, 2, 3) is a
variable representing the cost of searching for an element in a hash chain, and
Yi (i = 1, 2, 3) is a variable representing the cost of reordering the hash chain.
Note that i = 0 is the normal scheme, i = 1 is the move to front scheme, i = 2 is
the circular list scheme and i = 3 is the insert and move to front scheme. Based

2 A Simple Uniform Hash function assumes that any given element is equally likely
to hash into any one of the hash buckets.

Exploiting Traffic Localities for Efficient Flow State Lookup 11

on the analysis of Section 4.1, the variables satisfy X0 ≈ X2 > X1 > X3 and
Y1 = Y3 > Y2. We can see that all our schemes outperform the normal scheme
in terms of complexity if the burst length k is sufficiently large.

Normal Move to front Circular list Insert & move to front
O(1 + X0α) O(1 + 1

k
X1α + 1

k
Y1) O(1 + 1

k
X2α + 1

k
Y2) O(1 + 1

k
X3α + 1

k
Y3)

Table 2. Comparison between our three schemes and the normal scheme in
terms of searching complexity.

5 Discussion

From Figure 8 and Figure 10, we can see that our three proposed hash chain man-
agement schemes perform better in the Auckland traces than in the Melbourne
traces. For example, in the Auckland trace, the circular list scheme reduced mem-
ory comparison instructions by 55% compared with the normal scheme; while
in the Melbourne trace, it only reduced the memory comparison instructions by
40% compared with the normal scheme.

The major reason for this performance difference is the difference in traffic
characteristics. As we analyzed in Section 3, our three proposed schemes perform
well if the flows are not highly interleaved, i.e., if the packets of each flow tend
to arrive in uninterrupted bursts. The Auckland trace is uni-directional while
the Melbourne trace is bi-directional. For the TCP traffic in the bi-directional
trace, the incoming flows and the outgoing flows are highly correlated. Hence,
the flows in the Melbourne trace are more heavily interleaved than the Auckland
trace.

More importantly, the Melbourne trace is collected at the router of the com-
puter science department in the University of Melbourne. Hence, it contains a
lot of inter-departmental traffic, and only 50% of the total traffic is TCP traffic.
Moreover, nearly 16% of the TCP traffic is SSH traffic. In contrast, the Auckland
traces are collected at the router that provides the Internet connection to the
University of Auckland. More than 95% of the Auckland trace is TCP traffic,
while only 0.25% of the TCP traffic is SSH traffic. Generally, SSH traffic is gen-
erated by users who remotely login to a server. The speed of the SSH flows are
strongly affected by many human factors, e.g., a person’s typing speed or the
time spent thinking between typing commands. Moreover, the SSH flows can
be active for quite a long time, e.g., researchers may login to servers for several
days to run some time-consuming experiments. In summary, the SSH traffic can
be described as slow speed flows that last for a long time. Consequently, we are
less likely to see flow bursts in the SSH traffic, as slow flows are more likely to
be highly interleaved.

From Figure 4 and 8, we can see that the number of memory comparison
instructions used in TCP traffic is close to the number of memory comparison
instructions used in IP traffic. This is because the majority (over 95%) of traffic
in the Auckland traces is TCP traffic. From Figures 6 and 10, we can see that the

12 Tao Peng et al.

number of memory comparison instructions used in TCP traffic is less than 20%
of the number of memory comparison instructions used in IP traffic. This can
be explained by the following two reasons. First, the TCP traffic only accounts
for 50% of the total IP traffic in the Melbourne traces. Second, we found a
large proportion of UDP scan traffic in the Melbourne traces. The UDP scan
traffic generally consists of a large number of short UDP flows, which adds extra
overhead to the flow state lookup for the Melbourne traces.

6 Conclusion

In this paper, we have proposed three hash chain management schemes to im-
prove flow state table lookup performance by exploiting the temporal locality
in network traffic. Our insert and move to front scheme which inserts the new
flow and moves the matched flow to the front of the hash chain, performs the
best. It is followed by our circular list scheme and move to front scheme. The
insert and move to front scheme has the best performance and is insensitive to
the hash table size as it constantly reorders the hash chain to accurately reflect
the locality of the incoming traffic. The circular list approach only preserves
the locality for the matched node, where the localities of rest of the flows in the
bucket are lost. By evaluating our schemes using real life data traces, we see that
all our three schemes perform better than the normal scheme. We also discussed
several factors that affect the flow state table lookup performance, such as the
type of traffic. The conclusions of our research are now being incorporated by
our industry partner (Intelliguard Pty Ltd) into their network security products.

Acknowledgment

We would like to thank the ARC Special Research Center for Ultra-Broadband
Information Networks (CUBIN) for providing the test environment, and thank
the Waikato Applied Network Dynamics Research Group for making available
their data traces. We also wish to thank Mr. Darren Reid and Mr. Peter Yandell
for their useful suggestions and comments. This work was supported by the
Australia Research Council.

References

1. Waikato Applied Network Dynamics Research Group, The University of Waikato.
2. http://tcpreplay.sourceforge.net/.
3. Packet Filter. http://www.benzedrine.cx/pf.html.
4. S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification. RFC

2401, the Internet Engineering Task Force (IETF), December 1998.
5. P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network,

March 2001.
6. Darren Reed. IP Packet Filter. http://coombs.anu.edu.au/˜avalon/.
7. J. Zobel, S. Heinz, and H. E. Williams. In-memory hash tables for accumulating

text vocabularies. Information Processing Letters, 80(6):271–277, 2001.

