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The increase in link speeds, increased parallelism within routers and switches, 
QoS support and load balancing among links, all point to future networks with 
increased packet reordering. Unchecked, packet reordering will have a 
significant detrimental effect on the end-to-end performance, while resources 
required for dealing with packet reordering at routers and end-nodes will grow 
considerably. A formal analysis of packet reordering is carried out and Reorder 
Density (RD) metric is defined for measurement and characterization of packet 
reordering. RD captures the amount and degree of reordering, and can be used 
to define the reorder response of networks under stationary conditions. 
Properties of RD are derived, and it is shown that the reorder response of the 
network formed by cascading two subnets is equal to the convolution of the 
reorder responses of individual subnets. Packet reordering over the Internet is 
measured and used to validate the derivations. 

1   Introduction 

The reasons for out of order arrival of packets include but are not limited to: (i) packet 
striping at layer 2 and 3 links, i.e., when an earlier packet is placed in a longer queue 
and later packet in a shorter queue, the packets may arrive out of order [4,7], (ii) 
retransmissions on wireless links [3] and due to TCP, (iii) diffServ scheduling where 
the flow that exceeds the constraints, e.g., the non-conformant packets are dropped or 
given a lower priority leading to the packet placement in different queues resulting in 
an out-of-order delivery [6], and (iv) route fluttering where for example a route may 
oscillate due to dynamic load splitting among the links. In such cases, different 
packets of the same stream take different routes leading to different delays [12]. 

Packet reordering, irrespective of its cause, impacts applications based on both 
TCP and UDP significantly. In the case of TCP, when packets in forward path go out 
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of order, the receiver may perceive packets as lost, resulting in a reduced congestion 
window, and increased number of retransmissions [4,5] that further degrade the 
performance. Reverse-path reordering, i.e., reordering of acknowledgements, results 
in the loss of TCP’s self-clocking property, leading to bursty transmissions and 
possibly to increased congestion [4]. Approaches for mitigating the impact of out-of-
order packet delivery on TCP performance include adjusting ‘dupthresh’ parameter, 
i.e., the number of duplicate ACKs to be allowed before classifying a following non-
acknowledged packet as lost [19]. In delay sensitive applications based on UDP, e.g., 
IP telephony, an out-of-order packet that arrives after the elapse of playback time is 
treated as lost thereby decreasing the perceived quality of voice. To recover from 
reordering, the out-of-sequence packets are buffered until they can be played back in 
sequence to the application.  Thus, an increase in out-of-order delivery by the network 
consumes more resources at the end-hosts, and also affects the end-to-end 
performance of the applications. 

There is an effort to address this issue at intermediate nodes, at IP level.  Many 
contemporary routers attempt to eliminate the reordering caused by the scheduling 
schemes within these nodes by either a) input reordering, i.e., identifying the 
individual streams and forwarding the packets of same stream to the same queue thus 
preventing reordering, or b) output reordering, i.e., buffering packets at the output of 
the router to ensure that the packets belonging to the same stream are released in order 
of their entry into the node  [9]. For example, the network processors from vendors 
such as IBM, Motorola, Vitesse, TI and Intel, have built-in hardware to track flows. 
While these approaches reduce the reordering that occurs inside a router, they cannot 
eliminate reordering due to multiple paths. Furthermore, the complexity of these 
approaches will increase significantly as the number of parallel flows in a pipe 
increases (due to the need to keep information on a large number of parallel flows), 
and as the ratio of packet time to routing latency decreases.  

The delay in sequencing the packets back in order (as in output buffering) is 
proportional to log (Cs/U) where Cs is the capacity of the link and U the packet size 
[18]. The buffer size requirements to put the packets back in order are also shown to 
increase dramatically with link speed. With the increase in number of flows, keeping 
track of them becomes difficult too. Moreover, the number of table entries in routers 
are growing exponentially [17], which means that in spite of high-speed links in 
future, packets will spend more time within the network, i.e., a higher end-to-end 
delay to packet time ratio, leading to more load splits and higher packet reordering. 
Increase in latency required at the intermediate switches and routers to reorder the 
packets add to the end-to-end latency and the RTT, thereby affecting the performance 
as well [2].  

Next generations of networks have to deal with the problem of out-of-sequence 
packets proactively. However, scant attention has been paid so far towards 
understanding the nature of reordering that occurs in networks. Characteristics of 
reordering that occurs in a given end-to-end path may be used to enhance the ways 
that the protocols deal with this problem. Measurement and characterization of 
reordering in packet sequences and models that provide insight into this problem can 
lead to the development of scalable techniques to deal with reordering and tools that 
diagnose network problems. 
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This paper investigates reordering of packets and proposes a metric, Reorder 
Density (RD), for measuring reordering in a packet sequence. This metric captures the 
magnitude and statistical properties of reordering occurring in a network. Thus, we 
define the reorder response of a network, as the RD of the sequence leaving the 
network corresponding to an in-order input packet sequence. Further, it is shown that 
the reorder response of a cascaded pair of networks corresponds to the convolution of 
the reorder responses of the individual networks. This allows us to systematically 
measure, model and evaluate reordering in complex networks. Next section identifies 
the requirements of metrics for packet reordering that will make the metric a 
comprehensive and a useful tool to capture, model, and study packet reordering. In 
Section 3, the reorder problem is formulated and the proposed metric RD is presented. 
Section 4 presents measurements of reordering over the Internet for a range of 
network spans, and verifies the model for computing reordering on cascaded 
networks. Conclusions are presented in section 5. 

2   Metrics for Reordering 

The percentage of out-of-order packets has been used as a metric for characterizing 
packet reordering [3,6]. This method is vague, incomplete and does not provide 
information about the nature of reordering. Consider two packet sequences (1,3,4,2,5) 
and (1,4,3,2,5). It is possible to interpret the out-of-orderliness of packets differently 
in these cases, for example, packets 2, 3 and 4 are out-of-order in both the cases or 
only packet 2 is out-of-order in the first sequence, while packets 2 and 3 are out-of-
order in second case or packets 3 and 4 are out-of-order in both the cases. Even with a 
convention such as only late packets are considered reordered, the measure is 
insufficient [15]. Percentage does not capture the amount by which a packet is out of 
order.  The amount of displacement of a packet directly influences the complexity of 
hardware/software to recover from the reordering. In the case of a sequence such as 
(1,3,4,2,5), if buffers are available to store packets 3 and 4 while waiting for packet 2, 
it is possible to recover from the reordering. However, there may be cases where the 
application requirement is such that arrival of packet 2 after this delay renders it 
useless. For such cases, we could place a threshold that treats any packet that is more 
than 2 places late as lost.  While one can argue that a good packet reordering measure 
should capture such effects, a counter argument can also be made that packet 
reordering should be measured strictly with respect to the order of delivery and should 
be application independent. A framework for metrics presented in [13] states that 
“The metrics must be useful to users and providers in understanding the performance 
they experience or provide.”  

A metric for capturing out-of-order nature of a packet sequence ideally should have 
the following properties: 
1. Simplicity: The measure should be simple, yet contain enough information to be 

useful.  
2. Orthogonality: Metric should, to the extent possible, be independent or orthogonal 

to other phenomena that affect the packet streams, e.g., packet loss and duplication.  



4      Nischal M. Piratla, Anura P. Jayasumana, and Abhijit A. Bare 

3. Differentiability: Metric should provide insight into the nature of reordering, and 
perhaps even into possible causes. It should capture both the amount and extent of 
reordering. 

4. Usefulness: Rather than being a mere representation of the amount of reordering in 
a packet stream, reorder metric must be useful to the application and/or resource 
management schemes. For example, it may allow one to determine the size of 
buffer that is required to recover from reordering. 

5. Evaluation complexity: The metric should be computable in real-time. In 
evaluating reordering in an arbitrarily long sequence, one should be able to keep a 
running measurement, without having to wait till all the packets have arrived.  The 
memory requirement, i.e., the amount of state information, should not grow with 
the length of the sequence (N) and the computation time should be O (N). 

6. Robustness: Reorder measurement should be robust against different network 
phenomena and measurement peculiarities such as a very late arrival of a duplicate 
packet or a burst of losses. 

7. Broader Applicability: A good metric would have applicability beyond just 
characterizing the nature of reordering in a given sequence of packets. For 
example, a good metric may allow one to combine the characteristics of individual 
networks to predict the reorder behavior of the cascade of these networks. 
Regeneration of a sequence that follows the measure is also a very useful 
application. 

Recently, Internet Engineering Task Force (IETF) has presented a few metrics for 
reordering [8,11]. The metrics in [11], a work in progress, are classified into sample 
metrics and receiver assessment metrics. Sample metrics are defined on a sample of 
sequence numbers and percentage reordering can be an example of such a metric. 
However, these metrics fail to meet many of the criteria mentioned above, especially 
those related to differentiability, usefulness and robustness. The receiver assessment 
metric mainly relies on n-reordering, which looks only at few late packets. For 
sequence (1,4,5,2,3,2); the n-reordering method treats 1, 4 and 5 as 0-reordered. Since 
2 is late by 2 places, it is 2-reordered but 3 is 0-reordered whereas duplicate 2 is 1-
reordered. Besides the ambiguity in the definition, this metric is not orthogonal to 
duplication. In addition, the metric uses a buffer to store current arrivals to compute 
the n-reordering of the future arrivals leading to larger buffer requirements for higher 
amount of reordering. The reorder metric proposed in [1] measures the occupancy 
density of the reorder buffer, and as such will be referred to as Reorder Buffer-
occupancy Density (RBD) [8]. 

3   Analysis of Reordered Sequences 

In this section, we develop a general formulation for characterizing packet reordering, 
and define Reorder Density (RD). We then evaluate the reorder response of a cascade 
of networks in terms of the reorder responses of the individual subnets. 
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3.1   Representation of Reordering 

Without loss of generality, consider a sequence of packets (1,2…N) transmitted over 
a network. A receive_index (1,2…) is assigned to each packet as it arrives at the 
destination. Lost and duplicate packets are not assigned a receive_index. First 
consider the case in which no losses or duplication of packets occur in the network. If 
the receive_index assigned to packet m is (m + ), with  ≠ 0, we say that a 
reorder event has occurred, and this event is denoted by . In the absence of 
reordering the sequence number of the packet and the receive_index are same, i.e., 

 = 0  for each packet. A packet is late if  > 0, and early if  < 0. Thus, packet 
reordering of a sequence of packets is completely represented by the union of reorder 
events, R, referred to as the reorder set: 

md md
r(m, )md

md md md

R {r(m, ) | 0m m
m

d d }= ≠U  

Table 1. (a), (b) and (c) Examples of reordered sequences with corresponding R. 

Arrived Sequence 1 2 3 5 4 6 8 7 
Receive_index 1 2 3 4 5 6 7 8 
Displacement 0 0 0 -1 1 0 -1 1 

   (a) No losses or duplicates      R = {(4,1), (5,-1), (7,1), (8,-1)} 
 

Arrived Sequence 1 2 5 3 6 7 8 9 
Receive_index 1 2 3 5 6 7 8 9 
Displacement 0 0 -2 2 0 0 0 0 

                   (b) Packet 4 is lost           R = {(3, 2), (5, -2)} 
 

Arrived Sequence 1 2 6 4 3 5 3 3 
Receive_index 1 2 3 4 5 6 - -
Displacement 0 0 -3 0 2 1 - - 

                  (c) Packet 3 is duplicated          R = {(3, 2), (5, 1), (6, -3)} 
 

If there is no reordering in a packet sequence then R = {φ}. Conventionally, we 
represent R with non-decreasing order of m. Table 1(a)-(c) show the examples of the 
arrived sequence (sequence number), assigned receive_index and displacement, as 
well as the corresponding reorder sets for three cases: a) without losses or duplication, 
b) with loss, and c) with duplication of packets.  
 
Lemma 1: In the absence of losses and duplicates, the sum of displacements of all 
packets in a sequence is equal to zero, i.e. 0id =∑ . 
 
Proof: Consider a packet sequence of size N: (1,2 …N). If denotes the displacement 
of packet due to reordering, then the new positions of the packets 1,.. N are: 

id
thi

1 2(1 ),  (2 ),  ..,  ( )..,  ( )i Nd d i d N d+ + + +  
Since the number of positions at the sender and receiver are equal, the sum of 
receive_indices is the sum of integers from 1 to N. Therefore we have, 
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1 1 1

( )
N N N

i
i i i

i i d
= = =

= + ⇒∑ ∑ ∑ id  (Q.E.D.) 

Next, consider the case where packets may be lost or duplicated in transit. Assume 
that the loss of a packet can be detected at the receiver. We skip the receive_index 
corresponding to the sequence number of the lost packet, i.e., if packet ‘e’ is lost, then 
the receive_index = e is not assigned. In case of duplicates, we consider only the first 
copy of the packet at the receiver end, and discard the duplicate, i.e., the duplicate is 
not assigned a receive_index. These two cases are illustrated in Tables 1 (b) and (c) 
where the packet with sequence number 4 is lost and the packet with sequence 
number 3 is duplicated respectively. How to detect the loss of packets on the fly to 
skip the receive_index and deal with duplicate packets in a measurement 
environment, is addressed in subsection 3.4 below and [8] in detail. 
 
Lemma 2: When lost and duplicate packets are detected and receive_index is 
assigned as specified, Lemma 1 holds true, i.e., 0id =∑ . 
 
Proof: Consider the case where packet ‘ ’ is lost and ‘ ’ is duplicated. Since we 
ignore the duplicate copy of , no index is assigned to the duplicate of that packet. 
As the index ‘ ’ is reserved for the lost packet, it is not used in the (N-1) receive 
indices. Thus, the sum of (N-1) receive_index values assigned at the receiver is 

e j
j

e

1, 1

( ) ( )
N N

i
i i e i

i d i e
= ≠ =

+ = −∑ ∑ ⇒ 0id =∑  (Q.E.D). 

3.2   Reorder Density (RD) 

RD is defined as the discrete density of the frequency of packets with respect to their 
displacements, i.e., the lateness and earliness from the original position. Let  
denote the set of reorder events in R with displacement equal to , i.e., 

[ ]S k
k

[ ] {r(m, ) | }m mS k d d k= =  . 

Let  be the cardinality of set .  Thus, RD[ k ] is defined as | [  
normalized with respect to the total number of received packets (

| [ ] |S k [ ]S k ] |S k
N ' ). Note that N '  

does not include duplicates or lost packets. RD[0] corresponds to the packets for 
which receive index is the same as the sequence number.  Thus 

RD[ ] = | [  for ≠ 0 and RD[0] = 1 - k ] | / N 'S k k
0

| [ ] | / N '
k

S k
≠
∑  

A reorder histogram function, where | [  is used directly without normalization, 
may prove useful for certain applications, where the actual number of packets that is 
reordered is given. The results presented in this paper can easily be modified to cover 
such a case.  

] |S k
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Lemma 3: Reorder Late/Early density function (RD) satisfies ( *RD[ ]) 0

k

k k =∑  

Proof:  Since RD [k] implies that there are  packets with displacement k, 
the sum of displacements of packets is given by  

'* [ ]N RD k

 
( *N'*RD[ ]) N'* ( *RD[ ]) m

k k

k k k k=∑ ∑
m

d= ∑ = 0 (from Lemma 2) (Q.E.D) 

3.3   Reorder Response of Networks 

The characterization of reordering in a sequence of packets in the form of RD, in 
addition to capturing the out-of-orderliness of a packet sequence accurately, also 
allows us to model networks with respect to reordering introduced by sub-networks 
forming the network. 

First note that RD corresponding to a sequence of in-order packets is a unit impulse 
(at k = 0). Consider sending this sequence of packets through a network. RD of the 
sequence observed at the output corresponds to the reordering introduced by the 
network, and hence we call it the reorder response (J[k]) of the network. Note that  
(J[k]) is defined with respect to an input and an output of a network. Thus each 
input/output port pair of the network has a corresponding reorder response. J[k] of a 
network in which there is no reordering corresponds to a unit impulse at k=0. J[k] can 
also be interpreted as the probability that a certain packet gets displaced by k.     

The reorder response of a network captures the effect of the network on a 
sequence of packets flowing from the source port to the destination port of interest. 
Since a network is a time-varying and highly dynamic environment, it may not be 
possible to characterize the network completely using a single reorder response 
function. In fact, the reorder response will be a function of many factors including the 
background or cross traffic in the network, and statistical characteristics of the inter-
packet gap.  We hypothesize however that a reorder response exists for a network 
operating under stationary conditions and a given inter-packet gap distribution, 
provided the reordering introduced by the network is not dependent on the sequence 
number of the packet. This excludes, for example, a node that looks at the packet 
sequence number and puts the packets in a certain order. In fact, a set of 
measurements that we have carried out supports this hypothesis [15]. Thus the 
following discussion applies only to networks operating under stationary conditions, 
i.e., statistical characteristics of the network and packet sequence do not change with 
time. This excludes, for example, a node that looks at the packet sequence number 
and puts the packets in a certain order. We expect that a theory developed for 
reordering in networks under such stationary conditions will lead the way towards a 
more general solution in future.  
 
Theorem: The reorder response J[k] of a network formed by cascading two subnets, 
with reorder responses J1[k] and J2[k]  respectively, is given by the convolution of 
J1[k]   and  J2[k]  , i.e.,  J[k]  = J1[k]   * J2 [k].  
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Proof: Consider an arbitrary packet with sequence number ‘m’ that enters the 
cascade of two networks. It undergoes a displacement in Net-1, corresponding to 
the event . Thus, packet m occupies the position of m′ as it enters Net-2, 
with m′  = m + . When the packet with sequence number m′ enters Net-2, it 
undergoes a displacement in Net-2. The overall displacement of the packet 

(1)
md

(1)r(m, )md
(1)
md

(2)
md md   = 

+ (1)
md (2)

md , 

The corresponding reorder event is  (1) (2)r(m, ) = r(m,  + ).m md d dm

The probability distribution of  and are given by reorder responses of Net-1 
J

(1)
md (2)

md

1[k], and Net-2 J2[k], respectively.  Since = + , and the packet 
reordering is considered to be independent of the sequence number, the probability 
density distribution of  is given by the convolution of the distributions of and 

md (1)
md (2)

md

md (1)
md

(2)
md , i.e., J1[k]* J2 [k]   (Q.E.D) 

3.4   Evaluation of RD at the receiver 

Here we describe the evaluation of RD at the receiver. Lost packets and duplicates are 
taken into account by skipping the receive_index corresponding to lost packets, and 
not assigning a duplicate packet a receive_index. However, this process needs 
detection of losses and duplicates, both of which provide implementation challenges. 

When can a packet be considered lost? One possibility is to consider it lost if it does 
not arrive when it is expected, but if it arrives later, go back and make appropriate 
corrections. At the other extreme, one can wait till the end of the received sequence to 
declare a packet as lost. However this requires keeping track of all received packets, 
as well as applying corrections to computations performed so far. Both these 
approaches are memory consuming, and also preclude real-time evaluation of the 
metrics. Maintaining a threshold DT and an early arrival buffer addresses this 
problem. If a packet is not received within DT packets from where it is expected, it is 
considered lost. A packet is classified as a duplicate on its arrival, if it already exists 
in early arrival buffer or current DT window or the packet number is less than current 
receive_index. With the use of threshold DT, since it is not known whether a packet is 
lost until DT packets are received, real-time RD evaluation may be done in one of two 
ways: 
1. Go-back DT: In this method, the rules are applied at each arrival. If a packet that 

was supposed to arrive DT places ago does not arrive, then this sequence number is 
removed from the receive_index, and RD is recomputed for the previous DT steps. 
Consider a received sequence (1,3,4,5,6,7,2) and DT = 3. As soon as 5 arrives, 2 is 
classified as lost and we go back and correct the previous DT receive_indices and 
displacements. When 2 actually arrives later, we do not assign receive_index to 
this arrival, i.e., consider it as lost and discard the packet. This method requires 
recording the previous DT packet numbers, and additional processing as we 
recomputed offsets when a packet is lost. However, if the amount of reordering is 
low, the overall computation is quicker than the next method. 
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2. Stay-back DT: Here the computation lags by DT packets, i.e., the packet with 
receive_index i is not used in the evaluation until DT more packets have arrived 
after that.  Thus, we do not correct or adjust any displacements. This method also 
requires buffering of the next DT arrivals. 

A small DT value is used in above illustrations of the concept for convenience. It may 
be set much higher for practical measurements. A larger threshold value results in 
higher memory requirements for these implementations. However, the computation 
complexity in both cases is of the order N, where N is the size of the received 
sequence. Use of the threshold DT also improves the robustness of RD. For example, 
if a packet was late by a large number say 1000, then the next 1000 packets would be 
shown as early in the absence of a threshold. By using a threshold, we can eliminate 
such large impacts on RD due to a single reordering event. Furthermore, it allows us 
to recover from conditions such as a large number of missing or duplicate packets. 
We have not completely described this aspect in the present paper. Perl scripts and 
algorithms are available in [14].  

4   Measurements and Results 

This section presents measurement-based results to illustrate and characterize the 
reordering in networks using the RD concept.  To measure reordering, using RD, 
multiple files were downloaded to a host on subnet 129.82.x.x (in Colorado, USA) 
from different sites around the world. To make sure that the connection is not short-
lived, sites with downloadable files of sizes more than 2MB were chosen. Using 
IP2Location software and ping results, we obtained the geographical location, the 
average one-way delay value (D) and approximate standard deviation of the delay 
(SD). We are presenting only 3 of 10 sets of measurements [15] here, corresponding 
to a range of end-to-end delays. TCP based applications namely; HTTP and FTP were 
used for servers in USA (209.211.x.x) and Italy (62.94.x.x) respectively. Data 
collected from them had D = 45.5 ms and 81.9 ms, and SD = 0.81 ms and 0.19 ms 
respectively. From host on subnet 130.105.x.x, a media file was played and packets 
had D = 95.4 ms and SD = 0.17 ms. Using ‘tcpdump’ tool to collect the information 
of received data, the TCP and RTP sequence numbers were mapped to (1,2 …). Fig. 1 
shows the observed RDs, which is also the reorder response of the network, from 
these sites. (Vertical axis is broken to increase the clarity of diagrams). 

RD provides a comprehensive measure of reordering and we can draw a number of 
inferences from these measures: (i) Net-1 has the smallest average delay, but due to 
larger deviations, the amount of reordering is comparatively high. Conversely, 
looking at the shape of RD, we can comment on the delay deviations in the network. 
The wider the RD spread, the higher the variance in delay. (ii) For Net-1 it is evident 
that the network deviates from the normal expectation, as large number of packets 
arrives reordered. Knowing the corresponding RD, we can tune this network by 
allocating a larger buffer size to recover from reordering in UDP application or 
increasing the number of duplicate ACKs to wait before fast retransmit with TCP [10, 
12]. (iii) For Net-2, the application can recover from reordering by having a buffer 
size equal to 2 packets.  Although Net-2 has approximately 2% more reordering than 
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Net-3, applications using Net-2 will perform better due to lower displacements of 
reordered packets. (iv) In the case of Net-3, the RD has a discontinuity. One percent 
of the packets can be as late as 4 positions. It is possible that due to phenomenon like 
packet stripping in a network, these packets take an alternate path. Here, instead of 
using triple-ACK for fast retransmit; we could use 2-ACK, given the effect of 1% 
reordering on performance is acceptable or use 4-ACK to account of all reordered 
packets. 
 

-4 -3 -2 -1 0 1 2 3 4
0.0

0.1

0.6

0.8

1.0

R
D

Earliness/Lateness

 209.211.x.x (USA) - Net 1
 62.94.x.x (Italy) - Net 2
 130.195.x.x (New Zealand) - Net 3

Fig 1. RD based on measurements for Net-1, 2 and 3. (DT = 5) 
 
 
.  

                       A                                        B                                    C 

 

Net-X: 
D: 150ms 
SD: 7 ms

Net-Y 
D: 100ms 
SD: 4 ms

 

Fig 2. Emulated network topology to verify convolution theorem for RD 

To verify the convolution theorem for reordering, we emulated two networks using 
NISTNet on Linux boxes. The connectivity used is shown in Fig. 2. RDs were used as 
reorder responses for the networks. Net-X was emulated using mean (D) and standard 
deviation (SD) of delays as 150 ms and 7 ms respectively and Net-Y is emulated 
using D = 100 ms and SD = 4 ms. Packet streams of sizes 10,000 packets were sent 
from A to B and B to C separately. Another packet stream of 10,000 packets was sent 
from A to C on this cascade. Constant inter-packet gap (of 500µs) was maintained in 
each of the input streams. These emulators running on the workstations were then 
connected using a cross-cable. The RD computed in this case was compared to the 
result based on convolution of the RDs for A to B and B to C cases. This comparison 
is shown in Fig. 3. The mean square error (MSE) between the two was equal to 8.77e-
06, strongly validating the theorem. 

It is interesting to note that for the packet stream from A to C, even though the 
inter-packet gap at A was 500µs, by the time packets transit through B, the inter-
packet gap is no longer a constant. On the other hand, the reorder response for Net-Y 
used for convolution, shown in Fig. 3(a) corresponds to a constant inter-packet gap. 
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This indicates that the reorder response of a network, while dependent on the inter-
packet gap distribution in general, may not be highly sensitive to it. This is an aspect 
of reorder response that we continue to investigate. 

 

-6 -3 0 3 6 9 12
0.0
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0.6

-6 -3 0 3 6 9 12
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0.1
0.2
0.3
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(b)
Earliness/Lateness

 

 For Net-X (A to B)
 For Net-Y (B to C)

R
D

R
D

 From A to C
 Using convolution theorem

 
Fig. 3 (a) RD from A to B and B to C with separate streams (b) Verification of the 

theorem of convolution using network emulators for RDs as reorder responses 

5   Conclusions 

The existing metrics to measure reordering are vague and insufficient to characterize 
packet reordering. We have presented a formal method for representing out-of-order 
sequences of packets, and defined the reorder density (RD) metric. RD characterizes 
and measures packet reordering comprehensively, is simple, and orthogonal to losses 
and duplicates.  It captures both the amounts of packets affected and the magnitude of 
reordering, and can be used as the probability density function corresponding to the 
displacement of an arbitrary packet.  The metric can be evaluated in real-time as the 
packets arrive at a node. A threshold DT limits the complexity of implementation, by 
considering a packet that is late by DT to be lost. The computation complexity of the 
algorithm is O(N), where N is the number of packets in the sequence. The memory 
requirement for the implementation is proportional to DT.  The use of DT also makes it 
robust, allowing it to recover from cases such as very early or very late packets, and 
sequences of duplicates, or bursty losses. Further, the metric can be used to 
characterize the reordering introduced by a network, and under a fairly broad set of 
conditions, the reorder measurement of different subnets can be combined to predict 
the end-to-end reorder characteristics of a network.  Currently, sequence regeneration 
algorithm is available for RD measures [2]. 

Reorder response of a network depends on factors such as the network load, 
background traffic, and the distribution of the inter-packet gap.  At high sending rates, 
inter-packet gaps have negligible correlations, also validating convolution results 
[16]. Our present work includes measurements to understand packet reordering over 



12      Nischal M. Piratla, Anura P. Jayasumana, and Abhijit A. Bare 

the Internet in more detail. By keeping track of RD for an on-going connection, one 
can dynamically tune transport protocols to obtain superior performance.  
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