
Efficient deployment of honeynets for statistical and
forensic analysis of attacks from the Internet

Stephan Riebach, Erwin P. Rathgeb, Birger Toedtmann

University Duisburg-Essen
Computer Networking Technology Group

Institute for Experimental Mathematics
Ellernstr. 29

45326 Essen, Germany
Phone: +49 201 183-7636, Fax: +49 201 183-7673

(riebach,erwin.rathgeb,btoedtmann)@exp-math.uni-essen.de

Keywords: Security, Forensics, Honeypots, Honeynets

Abstract: The use of honeynets as a means to detect and observe attacks
originating from the Internet as well as to allow forensic analysis is a technique
that has received increasing attention in the research community. However, it
has not yet been investigated how effective honeynets are and to what extent
their efficiency can be actively improved. Therefore, after a short introduction
to the honeynet concept and its implementation options, a case study will be
presented providing some insight into this issue. For this case study, a honeynet
has been implemented and a multilevel escalation strategy has been defined and
employed to clarify to what extent the detected attacks represent just the
“average” level of malware activity and to what extent honeynet owners can
actively attract attacks or even influence specific types of attacks.

1 Introduction

Along with the increasing penetration of powerful personal computers and the rapid
evolution of the internet, the issue of malware and hacker attacks has exploded at the
same pace. To cope with this issue, appropriate protection tools, like e.g. firewalls or
intrusion detection systems (IDS) are available for all segment sizes, starting from
single PCs at home to large corporate networks. However, there is always a tradeoff
between security and effort expended, against usage restrictions. In order to be able to
balance these conflicting issues for a given scenario, a sound and fairly detailed risk
assessment is crucial – both with respect to the probability of specific incidents and
with respect to their sophistication. The latter is important, as the threats encountered
in today’s networks range from blind, fully automated worm and virus activities, via
attacks with prefabricated scripts requiring no specific knowledge to highly specific
and targeted attacks by expert hackers.

For obvious reasons, it is rather difficult to perform systematic measurements and
observations in this area in real life production networks. Therefore, artificial

2 Stephan Riebach, Erwin P. Rathgeb, Birger Toedtmann

networks specifically set up to observe and document attack activities for offline
analysis have been proposed which are now commonly known as “honeynets”. Over
the last few years, this concept has been evolved and refined significantly and is
becoming more widely used now. The information gathered in honeynets has already
proven quite useful in the forensic analysis of attack activities and has provided
valuable insight into various attack mechanisms.

After some intrusions in our own network, and based on the positive results published
so far, we have implemented a honeynet in order to evaluate this concept. In addition
to actually developing an understanding about the frequency and sophistication of
attacks threatening our network, our goal was also to gain some insight into the
factors determining the “efficiency” of a honeynet, i.e. its ability to actually attract
attacks. This is especially interesting if the honeynet is used not to gather information,
but instead as a decoy to divert attackers away from a production network operating
in parallel. Even though a white paper [HON04] suggests that it is sufficient to just
activate the honeynet as it will be found and attacked without further activities
necessary, we wanted to find out to what extent the attractivity of a honeynet can
possibly be influenced by the honeynet owner. Therefore we defined a phased
escalation strategy which increasingly exposed our honeynet to the internet and
observed the results in a field study whose first results will be presented in this paper.

After a short review of the honeynet concept in general and its various
implementation options, we will describe our honeynet setup in some detail. We will
also define and motivate the various steps of our escalation study before presenting
some results with respect to the quantity and quality of the detected attack activities as
well as with respect to the escalation study in particular.

2 Honeynets – Goals, Concepts and Implementation

The term “honeynet” was coined by a group of security experts organized in the
“Honeynet Project” (www.honeynet.org). This group promotes the development and
application of honeynet concepts and is the main source of the definitions used in this
section.

The basic idea that led to the development of honeynets was to detect, observe and
document the activity of hackers inside a computer network. Honeynets are highly
specialized, artificial networks which have to be kept strictly separate from the actual
production networks, have no real users – and thus no real traffic activity – and don’t
contain any real information (user data). To be able to observe attacks, honeynets
have to be vulnerable to a certain extent which means that they cannot be strictly
protected by firewalls and that their systems should at least show some of the
common vulnerabilities. Honeynets are highly controlled which means that elaborate
monitoring and logging facilities capture and document all activity to provide
comprehensive data for forensic analysis. Because they are artificial, all traffic in a
honeynet is by definition suspicious, and traffic originating from a host in a honeynet
is an indication that this system has likely been taken over.

Efficient deployment of honeynets for statistical and forensic analysis of attacks from the Internet 3

In addition to the “honeypot” computers to be scanned, probed or attacked, a “data
capture” function is required to make the honeynet useful. In addition to storing all
data packets for offline forensic analysis, online monitoring with host and network
based Intrusion Detection Systems (IDS) is useful to provide immediate notification
about ongoing attacks as well as a basis for targeted forensic analysis. The data
capture function can be distributed among several computers (including also the
honeypots) or concentrated in a centralized device.

Because honeynets are intentionally vulnerable, so called “data control”
mechanisms must be implemented to ensure that intruders cannot misuse
compromised honeypots for further attacks. There are several ways to perform data
control, e.g., limiting the outgoing bandwidth, restrictive outgoing packet filtering or,
adding packet loss and high delays to outgoing connections [HON01]. Because it is
particularly important that only the honeypots are visible and accessible for intruders,
the data control and capture functions have to be hidden from intruders in order not to
reveal the honeynet character of the network. In addition they have to be protected
against any manipulation.

The honeynet concept has evolved significantly over the past few years, in particular
with respect to implementing data capture and control functions [HON03a]. There is a
broad spectrum of realization options for honeynets ranging from software emulating
specific aspects of operating systems, applications and services (e.g. Honeyd, see
www.honeyd.org) to real networks with hosts providing real services and
applications. Whereas simple emulations allow only limited interaction, honeynets
with live systems allow full interaction. However, the latter require significantly more
effort for setup, configuration and maintenance.

3 Honeynet setup for the case study

Fig. 1. The honeynet setup for the case study

Internet
0.0.0.0

Institute’s production
network

Data control
Firewall

RedHat Linux 7.3 Windows XP

receive only

Windows 2000

Control computer
Mandrake Linux 9.1

SUN Solaris 9

Windows 2000

4 Stephan Riebach, Erwin P. Rathgeb, Birger Toedtmann

In this case study, the honeynet architecture shown in Fig. 1 was used with
5 honeypots connected via a 100baseT hub. The honeynet was connected to the
internet via a router (dual homed Linux machine) providing the data control function.
We used packet filtering and additional bandwidth limitations for the outgoing traffic
to avoid enabling successful attacks to be launched from compromised honeypots.

The control computer was set up with two network interfaces. A modified network
cable was used to connect one of these interfaces to the honeynet. By modifying the
cable as described in [ICO02], the control computer could receive all traffic from the
honeynet but could (physically) not transmit any packets towards the honeynet.
Therefore, it was fairly impossible for intruders in the honeynet to detect the presence
of this machine and subsequently to attack it. Furthermore, the log data and reports
collected on this machine could not be modified from the honeynet, preventing
attackers from covering their tracks. Due to these precautions, it was possible to
connect the other interface of the control computer to a production network for
maintenance and remote data retrieval.

3.1 The Honeypots

As shown in Fig. 1, 2 of the honeypots were configured with Windows 2000
operating system , 1 with Windows XP, 1 with RedHat Linux 7.3 and the last with
Solaris 9. This mix of operating systems was chosen because it is fairly typical for our
production networks. Microsoft’s operating systems are commonly used in the client
desktop environment (CDE), with the migration from Windows 2000 to Windows XP
starting at the time of our experiments. Unix-based systems (Linux and SUN Solaris)
are also used in the production network for personal desktops and typically also as
servers providing common services, e.g. http, ftp or nfs.

With respect to the vulnerability of the honeypots we updated to a patch level which
was fairly typical for an environment where there is only limited central
administration of the systems and the users have to take responsibility for their
systems themselves. This means that the systems were not deliberately kept
completely unmaintained and vulnerable to make the honeynet character of the
network not too obvious. However, not all currently available security patches had
been installed to also give also attackers using standard exploits (prefabricated attack
scripts) a chance for success. The Windows systems, e.g., got upgraded with the
current service pack and the patch for the RPC security leak published in July 2003.

Because of the heterogeneous operating systems, different Host Intrusion Detection
Systems (HIDS) had to be used. The freeware tool “Tripwire” [TRIP04] was installed
on the Linux system1, “AIDE” [LETH04] was installed on the Solaris system.
Because there was no appropriate freeware HIDS available for Windows the software
“InstallWatch” was used there as an alternative. This software is originally intended
to monitor installation routines on Windows systems. Therefore, it maintains a
database of all system files, the registry and other user selected files and reports the

1 “Tripwire” is no freeware for Solaris and Windows

Efficient deployment of honeynets for statistical and forensic analysis of attacks from the Internet 5

changes after completing an installation. By installing small programs in regular
intervals, a so called “poor man Tripwire system” [FLOYD00] is realized. Since the
honeypots were not accessible remotely from the production network for security
reasons the log files of all HIDSs were collected manually in regular intervals.

Complete images of the software installations of all honeypots were saved for all
phases of the escalation study. Therefore, a compromised system could be restored to
its original state with minimum effort. Before cleaning up a compromised system, we
also saved a complete image for offline analysis and possible reinstallation for further
observation.

3.2 Traffic monitoring and data capturing

The control computer was responsible for monitoring and capturing all network traffic
in the honeynet. For traffic monitoring, the Network Intrusion Detection System
(NIDS) “SNORT” [ROE04] was installed to identify known attack signatures in the
honeynet traffic continuously and in real time. The SNORT log files were
automatically archived once a day. Since they contain all incidents in chronological
order only, they were automatically processed locally on the control computer by
“SnortSnarf” [SIL03] which produced formatted statistical reports providing, e.g., an
overview of the 10 most frequent targets, sources and attack signatures as well as
statistics on all detected attack signatures sorted by severity classification and
frequency. These statistics presented in HTML were automatically published on a
web server on the control computer and could be remotely inspected from the
production network. In addition, the major statistics files were automatically sent to
the honeynet operator once a day.

For data capturing, the software utility “tcpdump” [TCP04] was deployed. With
tcpdump all data traffic occurring in the honeynet was saved into daily dump files
including all protocol overhead (addresses, etc.) from OSI layer 2 upwards. This high
volume data could be retrieved remotely from the production network for offline
analysis and archiving. To assure the permanent availability of these vital honeynet
components, SNORT and tcpdump were monitored by using “Daemontools”
[BER02] and automatically restarted after irregular shutdowns to avoid data loss.

3.3 Maintenance and data analysis

During normal operation, the honeynet generated roughly 1 Mbyte of SNORT log
data and 75 Mbyte of tcpdump logs per day. This raw data was completely archived
for statistical and forensic analysis. The statistical evaluation was highly automized as
described above. The port scan log files generated were transformed into the CSV-
format for detailed analysis in MS Excel. The automatic formatting and publishing of
the SNORT logs allowed for a quick inspection and gave indications about potentially
successful attacks which were then followed up. In addition, the Host Intrusion
Detection Systems (HIDS) of the honeypots were collected and inspected on a daily
basis so that a compromised honeypot could be identified rather quickly. In addition,

6 Stephan Riebach, Erwin P. Rathgeb, Birger Toedtmann

sporadic in-depth control and analysis of the honeypots was performed, to minimize
the probability of undetected attacks.

Manual forensic analysis was performed in several cases where successful (non-
automated) attacks could be detected. For manual inspection of the tcpdump log data,
the programs “tcptrace” [OST04] was used to identify successful TCP connections
related to successful attacks. “Ethereal” [ETH04] was then used to fully decode the
packets of interesting connections up to the application level.

4 The phased escalation strategy

The experience reported by honeynet operators indicates that it is sufficient to just
connect a honeynet to the internet and it will be found and attacked almost
immediately [HON01]. We wanted to find out if the operator of a honeynet can
actively influence the frequency and type of attacks. Therefore, we defined a four step
escalation strategy for making our honeynet visible in the internet as follows:

In phase 1, the honeypots just had a basic installation of the operating system and
offered only the services activated by default. Only the Linux honeypot was running a
DNS server for name resolution in the local network; this server did not communicate
with name servers outside the honeynet. The honeynet was then connected
permanently to the internet without generating any outgoing traffic.

In phase 2 the goal was to actively announce the existence of the honeynet in the
internet. To achieve this, the host names were registered in the DNS servers of the
university computing center and the zone transfer was activated in the local DNS
server of the honeynet. In addition, a realistic domain name was registered for the
honeynet. However, no specific services were offered by the honeypots and no
outgoing traffic was generated.

In phase 3, we wanted to find out if the services offered by the honeypots would
influence the attack patterns. In this phase we installed and activated commonly used
services on the honeypots. Still, we didn’t actively generate outgoing traffic.

In phase 4, we installed Peer-to-Peer (P2P) file sharing applications (KazaaLite) on
two of the Windows machines to evaluate if active participation in file sharing
networks would have any impact on the attack patterns. To stimulate access to our
honeypots, we provided some content for download. In order not to violate any
copyright laws, we fabricated fake content by generating files of a predefined size
filled with random numbers. These files were then converted to valid MP3 files by
using the LAME (http://lame.sourceforge.net) MP3 encoder and named according to
current top10 hits.

Efficient deployment of honeynets for statistical and forensic analysis of attacks from the Internet 7

5 Results of the case study

In our case study each of the phases had a duration of three weeks. After completion
of a phase, the recorded data was statistically evaluated. This analysis was mainly
based on the SNORT log-files. SNORT classifies attack signatures into severity
levels. In the following we distinguish between:

• Alarm: dangerous and harmful attacks (SNORT priority 1)
• Warning: suspicious signatures potentially preparing attacks (priority 2)
• Notice: unusual traffic not identified as dangerous (priority 3)

5.1 Attacking frequency

Since the first day the honeynet was running, activity could be detected confirming
the statement that a honeynet will be found and attacked without further actions
needed and that no significant “warmup” phase is required before starting statistical
measurements. The honeypots have been scanned, probed or attacked every day with
fluctuating intensity. Fig. 2 shows a typical summary of the recorded incidents. There
is no obvious correlation between the intensity of alarms and warnings indicating the
majority of attacks are blind, single phase attacks carried out without first scanning
and fingerprinting the target (which would generate correlated warnings). One of our
assumptions was that the attacking frequency would increase with the uptime of the
honeynet because it becomes more widely known. However the measurements show
that this is not the case and that external factors (malware activity) clearly define the
attack frequency. Outbreaks of worm activities reported during the study could clearly
be correlated to the measured attack intensity.

0

50

100

150

200

250

300

350

400

9-F
eb

12
-Feb

15
-Feb

18
-Feb

21
-Feb

24
-Feb

5-M
ar

9-M
ar

14
-M

ar

17
-M

ar

25
-M

ar

28
-M

ar

31
-M

ar
4-A

pr
7-A

pr

10
-A

pr

Alarms
Warnings

Fig. 2. Typical summary of the honeynet measurements from Feb. to Apr. 2004

8 Stephan Riebach, Erwin P. Rathgeb, Birger Toedtmann

5.2 Differences per operating system

In the next steps of the analysis the distribution of attacks among the honeypots was
evaluated. Fig. 3 shows an aggregation of all attack signatures (priority 1-3) detected
over the complete study period and their allocation to the honeypots. In each of the
phases the Win2000 hosts were the primary targets of attack signatures, followed by
the WinXP host. In all phases there were significantly less incidents reported for the
UNIX systems Linux and Solaris.

10.0.0.30
(Solaris)

< 1%

10.0.0.21
(Linux)

3%
10.0.0.66
(Win XP)

4,41%
10.0.0.77

(Win 2000)
40,27%

10.0.0.20
(Win 2000)

52,36%

Fig. 3. Percentage of attack signatures per operating system2

The fact that nearly 97% of all signatures are targeted towards Windows systems was
not unexpected since it makes sense to concentrate the effort to develop attacks on the
clearly dominating operating systems. However, the conclusion that windows systems
are significantly more insecure cannot be derived from these measurements as will be
shown in the following.

5.3 Classification of attack signatures

We found a significant difference in the number of attack signatures per attack source
(IP address of attacking host) between the Windows systems (average of 1) and the
UNIX systems (average of 3). This led to the assumption that Windows attacks tend
to be more blindly executed without first probing the target to prepare the attack.
Since multi-phase attacks are more difficult to implement, single-phase attacks are
probably automated to a larger extent. To validate this assumption the detected attack
signatures were analyzed in more detail. By using the information provided by the
“SANS Internet Storm Center” [http://isc.sans.org] the attack signatures of several
active internet worms, especially MS-Blaster, Randex and SLAMMER have been
identified. As a result, 81.2% of all alarms could be identified as automated worm
attacks against Windows systems as shown in Fig. 4.

Only 1925 alarm signatures (18.8% of all detected alarms) were not worm related and
thus potentially involve active human interaction. Since all of the worms try to exploit
the same well known system vulnerability of Windows, all of the worm attacks can be

2 We used a public Class-C network for our honeynet, whose address we do not publish here

for security reasons.

Efficient deployment of honeynets for statistical and forensic analysis of attacks from the Internet 9

blocked by installing one software patch. Therefore, the vast majority of attacks on
Windows systems can obviously countered with minimum effort.

1925
1346

5958

8316

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

worm act ivit y ot her

Alarms

Warnings

Fig. 4. Classification of attack signatures

For Linux systems, no specific worm activities could be identified. For the operation
of a honeynet, the high number of identical worm attacks is only interesting for
statistical purposes. Therefore it would make sense to automatically count and then
filter out known worm signatures before generating the detailed reports, thus reducing
the data volume and enabling the honeynet operator to concentrate on the more
interesting attacks.

5.4 Impact of the escalation strategy on the attack frequency

One goal of the escalation study was to find out if there are methods to increase the
attractivity of the honeynet and to attract more attacks. After eliminating attack
frequency variations due to worm activity, the only configuration change deemed
significant was the full activation of the DNS server. After starting the local DNS
server and configuring the DNS reverse lookup on Dec. 16th 2003, the number of
alarms increased significantly, as shown in Fig. 5, although no other configuration
changes were made and no unusual waves of worm activity were reported. In
particular, the DNS configuration caused a rise of the Microsoft specific RPC attack
on port 135, so it can be assumed that this attack is correlated to DNS traffic.

The results of phase 4 were not quite as expected. The P2P search and download
processes produced an enormous amount of data traffic, but no correlation could be
detected between the P2P traffic and any attack signature. None of the IP addresses
used in the P2P communication was involved in any non-P2P signature. Furthermore
there was no temporal correlation between attacks and P2P traffic; also the overall
attack frequency didn’t increase significantly. From our results it can be concluded
that making the honeynet known in the DNS is useful whereas actively generating
traffic is not worthwhile and also clogs the log files with irrelevant data.

10 Stephan Riebach, Erwin P. Rathgeb, Birger Toedtmann

1 0 3 2 5 0 0 1 0 0

202 210

336 337 339
364

352
326

338 332

0

50

100

150

200

250

300

350

400

6-Dec-03 9-Dec-03 12-Dec-03 15-Dec-03 18-Dec-03 21-Dec-03 24-Dec-03

Alarms

Fig. 5. Number of alarms in phase 2

5.5 Impact of the escalation strategy on the attack diversity

As shown in Table 1, the attacks generating alarms concentrated on the system
services activated by default in the first two phases. In phase 3 when we activated http
and ftp services, the variety of attacks increased significantly and these services
became targets of specific attacks. However, the attacks were still unspecific in a
sense that a significant part of the attacks on the web server were targeted towards the
Microsoft IIS although only an Apache server was running. We also identified several
attack signatures and a significant amount of attacks on popular services and
applications not provided at all, e.g. SQL and SMTP servers. As a result, there seems
to be a clear correlation between the variety of the popular services provided by the
honeynet and the diversity of attack types.

 Phase 1 Phase 2 Phase 3 Phase 4
Appl. not provided - - 2 2
HTTP - - 3 4
FTP 1 - 5 5
System services (act.) 3 2 4 5
Total 4 2 14 16

Table 1. Number of different alarms per phase (grey fields mark provided services)

5.6 Usefulness for forensic analysis

In addition to statistical monitoring of attack activities, several distinct successful
attacks were identified, observed and analyzed. In one example, one of the Win2000
honeypots was infected with the worm W32.Randex.Q. Besides trying to spread by

Efficient deployment of honeynets for statistical and forensic analysis of attacks from the Internet 11

automatically probing vulnerabilities on Microsoft’s ports 135/tcp and 445/tcp, the
worm installed a backdoor and automatically reported it to a remote server
camouflaging the communication as IRC traffic (chat). Subsequently, various
activities indicating human interaction were performed on the compromised system
using different user names. Finally a program to send spam mails was installed and
activated. Due to the data control mechanisms employed in the honeynet, both worm
infection and spam distribution could be confined to the honeynet automatically.

Another attack specifically analyzed was a classical multi-phase attack. The attacker
first scanned the network with ICMP packets to find active computers and then
scanned on port 111/tcp to identify systems providing the RPC portmapper, which is
typical for UNIX systems. In the third step the attacker did a standard RPC query for
the “cachefsd” service on the Solaris honeypot to find out that this service is provided
on port 32775/tcp. Subsequently the attacker launched a buffer overflow attack for the
vulnerability known already since 2001. This proves that honeynets are efficient in a
sense that non-automated (interesting) attacks can be observed in fairly regular
intervals.

6 Conclusion and Outlook

In this paper we presented a practical case study of using a honeynet in a university
environment. The study was performed over a period of several months to find out
how efficient honeynets are for attracting, detecting, observing and documenting
hacker activities within a computer network. In general, the honeynet concept proved
to be quite useful, but also required a significant and continuing effort for setup,
maintenance, supervision and analysis. The escalation strategy defined to identify
factors which can increase the efficiency of a honeynet, i.e. the number and diversity
of attack attempts per time period, led to the conclusion that the attack frequency is
dominated by external factors, e.g. worm activity. However, by making the honeynet
visible in the DNS system and by providing a comprehensive set of popular network
services, the attractiveness of the honeynet can be increased. The active generation of
traffic, e.g. by participating in P2P networks, however, seems to be counterproductive
since it didn’t attract more or more diverse attacks and made data analysis more
difficult due to the massive amount of irrelevant data stored.

We are currently implementing a virtual honeynet [HON03b] in order to compare it to
the classical setup with respect of efficiency and effort for implementation and
maintenance. In addition we are considering mechanisms to filter out high volume,
repeated and automated attacks to reduce the amount of stored data and to simplify
the analysis of more interesting and divers attacks. Furthermore, we will continue our
honeynet measurements in order to further investigate some effects we have observed.

12 Stephan Riebach, Erwin P. Rathgeb, Birger Toedtmann

References

[BER02] Bernstein, D.J.: Daemontools Homepage, http://cr.yp.to/daemontools.html
[ETH04] Official homepage for “Ethereal”, http://www.ethereal.com
[FLOYD00] „A poor-man Tripwire-like system on Windows 9x/NT”

http://www.geocities.com/floydian_99/poormantripwire.html
[HON01] The Honeynet-Project: “Know Your Enemy: Revealing the security tools,

tactics, and motives of the Black Hat community“, Indianapolis: Addison-
Wesley, 2001, http://project.honeynet.org

[HON03a] Honeynet-Project: “Know Your Enemy: Honeynets”
http://www.honeynet.org/papers/honeynet/index.html

[HON03b] Honeynet-Project: “Know Your Enemy: Defining Virtual Honeynets”
http://www.honeynet.org/papers/honeynet/index.html

[HON03c] Honeynet-Project: “Know Your Enemy: GenII-Honeynets”
http://www.honeynet.org/papers/gen2/

[HON04] Honeynet-Project: “Know Your Enemy: Honeynets in Universities”
http://www.honeynet.org/papers/edu/

[ICO02] Building a “sniffing cable” by IronComet Consulting,
http://www.ironcomet.com/sniffer.html

[LETH04] Lethi, Rami: “Advanced Intrusion Detection Environment”
http://sourceforge.net/projects/aide

[MOOR03] Moore, David: “The Spread of the Sapphire/Slammer Worm”
http://www.cs.berkeley.edu/~nweaver/sapphire/

[NOR01] Northcutt, S.; Novak J.: “IDS: Intrusion Detection-Systeme“,
Bonn: mitp-Verlag, 2001.

[NOR99] Northcutt, S.: “Network Intrusion Detection – An Analysts’s Handbook“,
Indianapolis: New Riders Publishing, 1999.

[OST04] Ostermann, Shawn: „Tcptrace – Official Homepage“
http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html

[PRO03] Provos, Niels: “A Virtual Honeypot Framework”, CITI Technical Report,
01.10.2003, http://www.citi.umich.edu/techreports/reports/citi-tr-03-1.pdf

[ROE04] Roesch, Marty; Caswell, Brian: “Snort homepage”, http://www.snort.org/
[SIL03] Offizial homepage for “Snort Snarf“,

http://www.silicondefense.com/software/snortsnarf/
[SPIT03a] Spitzner, Lance: “Open Source Honeypots – Learning with Honeyd” vom

20.01.2003, http://www.securityfocus.com/infocus/1659
[SPIT03b] Spitzner, Lance: “Open Source Honeypots, Part Two: Deploying Honeyd in

the Wild” vom 12.03.2003, http://www.securityfocus.com/infocus/1675
[TCP04] Official homepage for tcdump: http://www.tcpdump.org/
[TRIP04] Official homepage for Tripwire Open Source, http://www.tripwire.org/

