
Performance of Server Selection Algorithms for
Content Replication Networks?

David Starobinski1 and Tao Wu2

1 ECE Dept., Boston University
staro@bu.edu

2 Nokia Research Center Boston
tao.wu@nokia.com

Abstract. In this paper, we investigate the problem of optimal server selection
in “content replication networks,” such as peer-to-peer (P2P) and content deliv-
ery networks (CDNs). While a number of server selection policies have been
proposed or implemented, understanding of the theoretical performance limits of
server selection and the relative performance of existing policies remains limited.
In this paper, we introduce a mathematical framework, based on theM/G/1
Processor Sharing queueing model, and derive closed-form expressions for the
optimal server access probabilities and the optimal average delay. We also an-
alyze the performance of two general server selection policies, referred to as
EQ DELAY and EQLOAD, that characterize a wide range of existing algo-
rithms. We prove that the average delay achieved by these policies can theo-
retically be as much asN times larger than the optimal delay, whereN is the
total number of servers in the system. Furthermore, simulation results obtained
using ourM/G/1-PS workload model and the ProWGen Web workload gener-
ator show that the optimal policy can reduce the average delay of requests by as
much as 30% as compared to EQLOAD and EQDELAY, in realistic scenarios.
They also show that the optimal policy compares favorably to the other policies
in terms of fairness and sensitivity to traffic parameters.

1 Introduction

Content replication has emerged as one of the most useful paradigms for the provision
of scalable and reliable Internet services [1]. With content replication, the same data
(e.g., Web pages, MP3 files, etc.) is stored at multiple geographically distant servers.
Request by clients are then forwarded to one of these servers, usually the one that min-
imizes the delay perceived by the client. Because of its inherent scalability and fault-
tolerance, content replication has become the cornerstone of most modern networking
architectures, including content delivery networks (CDNs) and peer-to-peer (P2P) net-
works [2, 3].

One of the key issues arising with content replication is that of server selection. In
most of the existing network architectures, a number ofserver-selection nodes(e.g.,

? This work was supported in part by NSF CAREER award ANI-0132802 and DOE Early Career
Principal Investigator award DE-FG02-04ER25605



2

request redirection routers in CDNs [2] or supernodes in P2P networks [3]) are re-
sponsible for aggregating incoming client requests and forwarding them to one of the
servers. The main question within this context is to determine the optimal server selec-
tion policy that minimizes the overall average delay of requests in the network. We note
that this problem is fundamentally different from traditional load-balancing problems,
which usually assume that all the servers are co-located [4].

Obviously, because server response time is an increasing function of the load, the
best solution to the server-selection problem is usually not the one that directs all the
requests to a single server (e.g., the fastest), which would slow down or even crash
the server [5]. Thus, a number of server selection policies have been proposed in the
literature or implemented in commercial products to better balance the load over the
servers. Generally speaking, these policies fall within one of the following two cate-
gories: 1) Equal load (EQLOAD), where the access probabilities to the servers are set
so that all servers have the same utilization; round-robin, or weighted-round-robin for
heterogeneous servers [4], and certain adaptive algorithms such as Least Loaded [6]
and WebSeAl [7], are examples of policies following this approach. 2) Equal delay
(EQ DELAY), where the access probabilities are set so that the average delay at all the
selected servers is equal or at least on the same order. The intuition behind this approach
is to avoid forwarding request to very slow servers, as may happen with EQLOAD.
SPAND [8] and the application layer anycast architecture of [5] implement variations
of this approach.

In the absence of any analytical benchmark, it is unclear whether the aforemen-
tioned policies perform optimally and, if not, how well they perform compared to the
optimal policy. Our goal in this paper is to address these fundamental questions and
explore the strength and limitations of existing server selection policies. To this end,
we model the behavior of the servers using anM/G/1-PS (Processor Sharing) queu-
ing framework [9]. Using this framework, we formulate our problem as a constrained
non-linear optimization problem. We show that the problem at hand has enough special
structure for allowing the derivation ofclosed-formexpressions for the optimal server
access probabilities and the optimal average delay. Using a similar analytical proce-
dure, we also derive expressions for the access probabilities and average delay of the
EQ LOAD and EQDELAY policies.

Our major theoretical findings in this paper are as follows. First, our analysis reveals
that both EQLOAD and EQDELAY perform sub-optimally. Second, assuming that the
system consists of a total ofN servers, we prove that the average delay achieved with
these policies can be as much asN times larger than the optimal average delay. Finally,
although EQDELAY may achieve a much lower average delay than EQLOAD at low
load, we prove that these policies perform identically at high load.

We illustrate our analytical results with an extensive number of numerical examples
and simulations. Specifically, numerical results obtained using ourM/G/1-PS work-
load model show that, in realistic network configurations, the optimal policy can re-
duce the average delay by as much as 30% as compared to EQLOAD and EQDELAY.
Moreover, simulation results obtained using the ProWGen Web workload generator [10]
show similar performance gain for synthetic traces exhibiting temporal locality (i.e.,
temporal correlation) in the popularity of files. Other simulation results show that the



3

fairness properties of the optimal policy are comparable or even better than those of the
two other policies.

The remainder of the paper is organized as follows. In Section 2, we introduce our
model and notations. In Section 3, we derive the optimal server selection policy and
obtain a closed-form expression for the optimal average delay. In Section 4, we analyze
the EQDELAY and EQLOAD policies and compare their performance with that of
the optimal policy. In Section 5, we present our simulation results and we conclude the
paper in Section 6.

2 Model and Problem

2.1 Model and Notations

We consider a network consisting ofM server-selection nodes andN servers. We as-
sume that each server-selection nodej generates requests following a Poisson process
with rateλj . Further, we assume that the requests generated by different server-selection
nodes are independent. Therefore, the aggregate request process is also Poisson with
rateλ =

∑M
i=1 λi. Each server-selection node assigns request to serveri with proba-

bility pi, independently of other requests. Therefore, the arrival process to each server
i, i = 1, 2, . . . , N , is an independent Poisson process with ratepiλ. We note that mea-
surements of request arrivals to Web servers have been shown to match well a Poisson
process, at least over small to moderate timescales [9]

We denote the service capacity of each serveri by Ci. The file size distribution
is arbitrary but identical at all the servers. We denote the mean file size byx̄. The
mean service rate of requests is denoted byµi = Ci/x̄. We assume that each server
implements aProcessor Sharing(PS) scheduling policy, where all the requests share
the service capacity equally and continuously [11]. Processor Sharing is an idealization
of the round-robin policy implemented by most existing Web servers, whereby each
request is given an equal share of the service capacity [12]. Finally we assume that
network delays are negligible compared to the delay that a request experienced at the
server. This assumption is in line with recent measurement studies which have shown
that, with over-provisioning, delays across backbones are now mostly dominated by
speed-of-light delays with minimal queueing delay in the routers [13, 14].

Under the above assumptions, each server behaves as anM/G/1-PS queue. The
average delay of a request forwarded to serveri is therefore given by the following
expression [11]

T i(pi) =
1

µi − piλ
. (1)

We note that the average delay depends on the file size distribution only through its
mean.

Let p = (p1, p2, . . . , pN )′ denote the service access probability vector. Then, for a
given vectorp, the average delay of a request in the system is

T (p) =
N∑

i=1

piT i(pi) =
N∑

i=1

pi

µi − piλ
. (2)



4

Note that any feasible vectorp must satisfy several conditions. First, to be a legit-
imate probability vector, the coordinates ofp must be non-negative and sum to one,
that ispi ≥ 0 for all i and

∑N
i=1 pi = 1. In addition, the coordinates ofp must satisfy

the individual stability conditions, i.e.,pi < µi/λ, to guarantee that the arrival rate of
requests is smaller than the service rate at each serveri. We denote byP the set of
vectorsp that satisfy all the above constraints.

The setP is non-empty if and only if theaggregate stability conditionλ <
∑N

i=1 µi

is satisfied. To see this, defineµ =
∑N

i=1 µi. If the aggregate stability condition holds,
then the probability vectorp = (µ1/µ, µ2/µ, . . . , µN/µ)′ is always feasible. On the
other hand, if the aggregate stability condition does not hold, then the individual stabil-
ity can never all be simultaneously satisfied. Therefore, we will assume from now and
on that the aggregate stability condition always holds.

3 Derivation of the Optimal Policy

In this section, we determine the optimal vectorp∗ that minimizes the average delay
expression in Eq. (2). Specifically, our problem can be formally stated as follows:

Problem 1 (OPT).Find the optimal server access probability vector

p∗ = arg min
p∈P

T (p).

Problem 1 has already been the subject of studies in the literature under the general
context of load sharing in queueing networks [15, 16] as well as flow assignment [17].
However, our contribution here is to provideclosed-formexpressions for the optimal
server access probabilities for the specific case ofM/G/1-PS servers. These expres-
sions will be used to prove our main result (Theorem 4 in Section 4).

As a first step to obtain the optimal server access probabilities, we note that there
exists a unique solution to Problem 1, sinceT (p) is strictly convex overP. Next, in or-
der to solve the constrained optimization problem, we make use of Lagrange multiplier
techniques [18]. We start by defining the Lagrangian function

L(p, l,m) = T (p) + l(
N∑

i=1

pi − 1)−
N∑

i=1

mipi

=
N∑

i=1

pi

µi − piλ
+ l(

N∑

i=1

pi − 1)−
N∑

i=1

mipi, (3)

wherel andm = (m1,m2, · · · ,mN ) are the so-called Lagrange multipliers. The La-
grange multiplierl enforces the equality constraint

∑N
i=1 pi = 1, while the multipliers

mi enforce the inequality constraintspi ≥ 0. In the sequel, we denote byI(p) the set
of inactiveservers to which requests are never forwarded, that is,I(p) = {i | pi = 0}.

SinceT (p) is strictly convex and the set of constraints is convex as well, the Karush-
Kuhn-Tucker (KKT) conditions stated below are both necessary and sufficient for the
existence of a global minimump∗, assuming that the individual stability conditions are
satisfied (see Proposition 3.3.4 in [18]).



5

Theorem 1 (KKT) Let p∗ be the optimal solution of Problem 1. Then, there exist
unique Lagrange multipliersl∗ andm∗ = (m∗

1,m
∗
2, · · · ,m∗

N ), such that

1. ∇pL(p∗, l∗,m∗) = 0,
2. m∗

i = 0, ∀i 6∈ I(p∗),
3. m∗

i ≥ 0, ∀i ∈ I(p∗).

Without loss of generality, we can assign the server indices so thatµ1 ≥ µ2 ≥ · · · ≥
µN . We now observe that in the optimal solution, a faster server should always serve a
larger fraction of requests than a slower server. Therefore, the access probabilities must
satisfy the following orderingp∗1 ≥ p∗2 ≥ · · · ≥ p∗N . As a result, the set of inactive
serversI(p∗) must be one of the following:∅, {N}, {N − 1, N}, . . . , {2, 3, . . . , N}.

Let us denote the slowest active server in the optimal solution asN∗, that is,I(p∗) =
{N∗+1, N∗+2, . . . , N}. The following theorem establishes the value ofN∗ and pro-
vides a closed-form expression for the optimal solutionp∗. This theorem is proven by
showing that the optimal solution satisfies all the KKT conditions stated in Theorem 1
as well as the individual stability conditions. Due to space limitation, the proof is omit-
ted here but can be found in our technical report [19].

Theorem 2 The optimal solutionp∗ to Problem 1 can be obtained as follows. Define

αi =
µi

λ
−

(∑i
j=1 µj − λ

)√
µi

λ
∑i

j=1

√
µj

0 ≤ i ≤ N. (4)

Then,

1. N∗ is the maximum indexi for whichαi > 0.
2. I(p∗) = {N∗ + 1, N∗ + 2, . . . , N},
3. p∗i = µi

λ −
hPN∗

j=1 µj−λ
i√

µi

λ
PN∗

j=1
√

µj
∀i 6∈ I(p∗),

4. p∗i = 0 ∀i ∈ I(p∗).

We have developed an efficient algorithm based on Theorem 2 to determineN∗

andp∗. This algorithm requires the computation of onlyN expressions. It starts by
assumingI(p∗) = ∅, that is, serverN is the slowest active server. IfαN > 0, then
the assumption is valid and the coordinates ofp∗ are set using the expressions given in
Theorem 2. However, ifαN ≤ 0, then the assumption is not valid and it must be the
case thatp∗N = 0. The algorithm proceeds by repeating the same procedure with the
setsI(p∗) = {N− i+1, N− i+2, . . . , N}, i = 1, 2, . . ., until an indexi is found such
thatαi > 0, at which pointN∗ is determined. The access probabilitiesp∗i , i 6∈ I(p∗),
are then computed using Theorem 2. The pseudo-code for this algorithm can be found
in [19].

We can now determine the average delay achieved by the optimal policy, by substi-
tuting the derived expression ofp∗ into Eq. (2):

T (p∗) =
N∗∑

i=1

p∗i
µi − p∗i λ

=

(∑N∗

i=1

√
µi

)2

λ
(∑N∗

i=1 µi − λ
) − N∗

λ
. (5)



6

4 Performance Analysis of the EQDELAY and EQ LOAD
Policies

In this section, we evaluate the performance of the EQDELAY and EQLOAD poli-
cies. We derive the server access probabilities of each policy. Using these results, we
show that at high load, when all the servers are active, EQDELAY and EQLOAD
achieve the same average delay. We also prove our main result that the average delay of
EQ DELAY and EQLOAD can be as much asN times larger than the optimal average
delay, whereN denotes the total number of servers in the system.

4.1 General Solution for EQ DELAY

The goal of the EQDELAY policy is to set the probability access vector such that
the average delay at all the active servers is the same and minimal. To formalize the
problem, define the set

S = {p | T i(pi) = T j(pj) ∀i, j 6∈ I(p)}. (6)

We can then formulate the optimization problem for the EQDELAY policy as follows:

Problem 2 (EQ DELAY).Find the server access probability vector

p̂ = arg min
p∈(P∩S)

(
T (p)

)
.

As with Problem 1, it is fairly easy to verify that the set of inactive serversI(p̂) must
be one of the following:∅, {N}, {N − 1, N}, . . . , {2, 3, . . . , N}. Denote the slowest
active server in the minimal solution of Problem 2 asN̂ . The following theorem, which
is the analog of Theorem 2, provides expressions forN̂ andp̂:

Theorem 3 The solution̂p to Problem 2 can be obtained as follows. Define

βi =
λ + iµi −

∑i
j=1 µj

iλ
, 0 ≤ i ≤ N. (7)

Then,

1. N̂ is the maximum indexi for whichβi > 0.
2. I(p̂) = {N̂ + 1, N̂ + 2, . . . , N},
3. p̂i =

λ+N̂µi−
PN̂

j=1 µj

N̂λ
∀i 6∈ I(p̂),

4. p̂i = 0 ∀i ∈ I(p̂).

We note that the algorithm for the OPT policy in Section 3 can easily be modified to
computeN̂ andp̂.

The average delay of requests for the EQDELAY policy is obtained by inserting
the derived expression of̂p into Eq. (2)

T (p̂) =
N̂∑

i=1

p̂i

µi − p̂iλ
=

N̂
∑N̂

i=1 µi − λ
. (8)



7

4.2 General Solution for EQ LOAD

The EQLOAD policy aims at achieving the same utilization at each of the servers in
the system. The problem can be formally stated as follows:

Problem 3 (EQ LOAD).Find a server access probability vectorp̃ ∈ P such that

p̃i

µi
=

p̃j

µj
∀i, j = 1, 2, . . . , N.

The solution to this problem is straightforward and is given by

p̃i =
µi∑N

j=1 µj

∀i = 1, 2, . . . , N. (9)

The average delay for EQLOAD satisfies the following expression

T (p̃) =
N∑N

i=1 µi − λ
. (10)

4.3 Comparison

In this section, we compare the performance of the OPT, EQDELAY and EQLOAD
policies. Our first observation is that EQDELAY and EQLOAD have the same aver-
age delay when̂N = N , because Eq. (8) becomes identical to Eq. (10) in this case.
Therefore, EQDELAY and EQLOAD always perform comparably at high load, since
EQ DELAY must use all the servers to ensure stability in this regime. This result is
summarized by the following lemma.

Lemma 1. If N̂ = N , thenT (p̂) = T (p̃).

We next show, that for a given number of serversN , there exist arrival rate and
service rate parameters such that the ratio of the average delay of EQDELAY to that of
OPT approachesN . This situation occurs at high load, when̂N = N . Therefore, from
Lemma 1 the same result applies for the ratio of the average delay of EQLOAD to that
of OPT.

Theorem 4 For any givenN , there exist parametersλ andµi, i = 1, 2, . . . , N, such
thatT (p̃)/T (p∗) = T (p̂)/T (p∗) → N.

Proof. For anyN , we derive an example with a particular configuration of arrival rate
and service rates parameters such that the average delay ratio tends toN . Assume the
sum of service rates of all the servers is 1. Furthermore, assumeµ1 is close to 1 and
µ1 À µ2 = µ3 = · · · = µN . Thus,µi = 1−µ1

N−1 for 1 < i ≤ N . In addition, assume∑N−1
i=1 µi < λ < 1. ThenN∗ = N̂ = N andT (p̃) = T (p̂). The ratio of Eq. (8) to

Eq. (5) yields

T (p̂)
T (p∗)

=
Nλ(∑N∗

i=1

√
µi

)2

−N
(∑N

i=1 µi − λ
) ≥ Nλ(∑N

i=1

√
µi

)2

=
Nλ(√

µ1 +
√

(N − 1)(1− µ1)
)2 . (11)



8

Note that for any givenN , the expression(N−1)(1−µ1) appearing in the denominator
of Eq. (11) becomes arbitrarily small asµ1 → 1. Sinceµ1 < λ < 1, we also have that
λ → 1 asµ1 → 1. Therefore, Eq. (11) becomes arbitrarily close toN asµ1 → 1 and
the theorem is proven.2

5 Simulations

In this section, we perform extensive simulations to validate and compare the OPT pol-
icy versus EQDELAY and EQLOAD. We first consider the case where the workload
conforms to ourM/G/1-PS model. We assume that the file size (and hence the service
time) follows a heavy-tailed Pareto distribution with cumulative distribution function

F (x) = 1− 1
(1 + ax)b

x ≥ 0,

whereb is the Pareto tail index. This choice is justified by the large number of ex-
perimental studies which have shown that Web file size distributions follow a Pareto
distribution [20, 21]. Using this workload model, we compare the average delay and
standard deviation of the delay (which relates to fairness) of the three policies.

Next, we evaluate the performance of the three policies using synthetic traces gener-
ated by a Web workload generator, called ProWGen [10]. These traces exhibit temporal
locality in file popularity and, therefore, differ from theM/G/1-PS model. Our simu-
lations shows that OPT outperforms substantially the two other policies in this case as
well.

5.1 Average Delay

We first compare the average delay of requests with OPT, EQDELAY and EQLOAD
as a function of the aggregate loadρ, in the system which is defined asρ = λ/

∑N
j=1 µj .

We fix the sum of the server rates to be 100 KB/s. We assume that the system consists
of N = 5 servers, with one of them eight times faster than the others. Thus, the fastest
server has service rate 66.67 KB/s, while the others have rate 8.33 KB/s. For the file
size distribution, we assume a Pareto distribution with tail indexb = 2.2. The mean file
size is 11 KB. Each simulation point represents the average over 50 runs. A simulation
run consists of0.5× 106 requests.

Figure 1 depicts the analytical results and simulation results for the average delay
using the OPT, EQDELAY, and EQLOAD policies. The analytical expressions are
obtained respectively from Eqs. (5), (8), and (10). As expected the simulation results
match the analytical expressions. The figure also displays 95% confidence intervals
which turn out to be very small (for this reason, we do not show them in other figures).

From Fig. 1, we observe that both OPT and EQDELAY perform much better than
EQ LOAD at low load. The reason is that, in this regime, OPT and EQDELAY forward
requests only to the fastest server, while EQLOAD always sends1/3 of the requests to
the slower servers. At high load, EQLOAD and EQDELAY achieve the same average
delay, as predicted by Lemma 1, and OPT performs significantly better than these two
policies. For instance, at loadρ = 0.9, the average delay of EQDELAY and EQLOAD
is approximately 30% higher than the optimal average delay.



9

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Aggregate Load

A
ve

ra
ge

 D
el

ay
 (

se
c)

OPT Sim
OPT Analysis
EQ_DELAY Sim
EQ_DELAY Analysis
EQ_LOAD Sim
EQ_LOAD Analysis

Fig. 1. Average delay: simulation and analysis

5.2 Standard Deviation of Delay and Fairness

An apparent advantage of EQDELAY is to serve each request with the same average
delay (at the cost of higher overall average delay). This might lead to the belief that it
exhibits better fairness properties than the other server selection policies. However, we
show that this is actually not the case, at least with respect to OPT.

In the following set of simulations, we evaluate the standard deviation of the delay
obtained with each policy. This metric has been recognized as one of the best ways to
measure fairness in queues [22]. We consider a system consisting ofN = 10 servers
with service rate vector (188.2 65.18 40.71 25.13 20.72 19.53 15.87 14.63 8.67 6.41)
KB/s. The Pareto tail index isb = 2.2 and the mean file size is 40 KB.

Figure 2 depicts the results. We observe that OPT and EQDELAY perform very
similarly, while the standard deviation of EQLOAD is noticeably higher at all utiliza-
tion values. A few comments are in order here. First, even though the average delay at
each server is the same for EQDELAY, the actual delay of a request is still a random
variable. In particular, this delay depends on the number of other requests concurrently
being served, which obviously varies over time. Therefore, the standard deviation of
EQ DELAY is non-zero and turns out to be on the same order as that of OPT. Second,
the standard deviation of EQLOAD is higher than that of EQDELAY, even at high
load. This result is somewhat surprising since the average delay of these two policies is
identical in this regime. This discrepancy is resolved by noting that the average delay of
requests at different servers is not the same for EQLOAD. Therefore, EQLOAD and
EQ DELAY are not statistically identical even at high load. Finally, we observe that the
standard deviation is quite high with all the policies. This is due to the extremely high
variability of the file sizes generated by the Pareto distribution.



10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

Aggregate Load

D
el

ay
 S

ta
nd

ar
d 

D
ev

ia
tio

n 
(s

ec
)

OPT
EQ_DELAY
EQ_LOAD

Fig. 2. Standard deviation of delay

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Aggregate Load

A
ve

ra
ge

 D
el

ay
 (

se
c)

OPT Sim
OPT Analysis
EQ_DELAY Sim
EQ_DELAY Analysis
EQ_LOAD Sim
EQ_LOAD Analysis

Fig. 3. Average delay with ProWGen traces

5.3 ProWGen Simulations

Our analyticM/G/1 Processor Sharing model and solutions are based on the as-
sumption that the service time of different requests is independent. On the other hand,
some experimental studies have shown that Web requests exhibits temporal locality, see
e.g. [23]. In this section, we examine how OPT, EQDELAY and EQLOAD perform
when request streams have short-term temporal correlation.

We use the Web workload generator ProWGen [10] to produce synthetic Web work-
load that exhibits temporal locality in file popularity. ProWGen, originally developed
for Web cache performance evaluation, models the file popularity using Zipf distribu-
tion, and file size distribution using a combination of lognormal body and a Pareto tail.
It can also model positive or negative correlation between file size and popularity if
needed. Furthermore, it can use an LRU stack to model request temporal locality.

In our simulations, we use default values for most ProWGen parameters, with the
Zipf slope of 0.75, the Pareto Tail index of 1.2, the lognormal mean of 7KB and the
standard deviation of 11KB, and the tail cutoff size of 10KB. We also have a “dynamic”
stack with a depth of 1000 requests to introduce temporal locality. Finally, the correla-
tion between file size and popularity is set to zero, which is consistent with literature
findings [24].

We find that a peculiarity of ProWGen is that popular files tend to be generated at
the end of the trace, and “one-timers” (files accessed only once) are more likely to be
generated earlier in the trace. To mitigate this artifact while still maintaining most of the
short-term temporal locality, we divide the trace generated by ProWGen into segments
each consisting of 4,000 requests and reshuffle the segments to obtain the trace used in
our simulations. We scale the mean file size to 40 KB, and use the same service rate
array as in Section 5.2. Each run contains about 550,000 requests, and the results are
averaged over 50 runs.

The simulation results are shown in Figure 3 together with analytical values based
on ourM/G/1-PS model.

We make the following observations from the results obtained in these experiments.
First, OPT still achieves the minimal average delay, which is substantially smaller than
that of EQLOAD or EQ DELAY at high load. Second, simulation results match the



11

analysis fairly well for OPT and EQLOAD, but poorly for EQDELAY. This is prob-
ably because of the temporal locality of ProWGen-generated traces. Even after the
reshuffling, the moving average file size can significantly deviate from the long-term
average. Since EQDELAY is very sensitive to load estimation errors [19], its perfor-
mance suffered the most in this dynamic environment.

6 Conclusions

In this work, we have investigated the problem of optimal server selection in content
replication networks. This problem has gained significant importance in recent years
with the deployment of large-scale content delivery and peer-to-peer network architec-
tures over the Internet. For this purpose, we have introduced a mathematical framework,
based on theM/G/1 Processor Sharing queueing model, which allowed us to provide
quantitative, yet non-trivial, insight into the performance server selection policies. We
have also provided justification to our modeling assumptions based on measurement
studies reported in the literature.

Based on our modeling assumptions, we have derived closed-form expressions for
the optimal server access probabilities and the optimal average delay. We have also pro-
posed a simple algorithm of linear computational complexityO(N) to compute these
probabilities, whereN denotes the total number of servers in the system.

We have also evaluated the performance of two widely deployed server selection
policies, generically referred to as EQDELAY and EQLOAD, that are representative
of a large class of existing algorithms. In particular, we have analytically proved that
the average delay of EQDELAY or EQ LOAD can be as much asN times larger than
the optimal delay. Thus, an important theoretical contribution of this work has been to
show that the performance difference between EQDELAY (or EQ LOAD) and OPT is
unbounded asN grows. This radical difference in performance can be observed at high
load and when the service capacity across servers is highly heterogeneous. Another
interesting finding from our analysis is that EQDELAY and EQLOAD have identical
average delay at high load, although their delay variance is different.

We have also conducted extensive simulations that demonstrated the significant su-
periority of OPT over EQLOAD and EQDELAY, especially at high load. In particular,
we have shown that OPT has the potential of reducing the average delay in this regime
by as much as 30%. We have also evaluated the degree of fairness of the three policies,
that was quantified by computing the standard deviation of the delay, and shown that
OPT performs comparably to EQDELAY and much better than EQLOAD.

The actual implementation of the OPT policy into real network settings is an impor-
tant area of research left for future work. However, our initial results in this paper are
extremely promising with this regard. In particular, we have shown that the performance
of OPT is not too sensitive to the workload model, as illustrated by our simulations re-
sults obtained with the ProWGen workload generator.

References

1. Obraczka, K., Danzig, P., DeLucia, D.: Massively replicating services in autonomously man-
aged, wide-area internetworks (1993) University of Southern California - Technical Report



12

No. 93-541.
2. Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Internet Comput-

ing 7 (2003) 68–74
3. Yang, B., Molina, H.G.: Designing a super-peer network. In: Proceedings of the 19th Inter-

national Conference on Data Engineering (ICDE), Bangalore, India (2003)
4. Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.: The state of the art in locally distributed

web-server systems. ACM Computing Surveys (CSUR)34 (2002) 263–311
5. Zegura, E., Ammar, M., Fei, Z., Bhattacharjee, S.: Application-layer anycasting: a server

selection architecture and use in a replicated web service. IEEE/ACM Transactions on Net-
working8 (2000)

6. Cisco: The global server load balancing primer. (http://www.cisco.com/en/US/products/hw/
contnetw/ps4162/productswhite paper09186a00801b7725.shtml)

7. Korilis, Y., Lazar, A., Orda, A.: Architecting noncooperative networks. IEEE Journal of
Selected Areas in Communications13 (1995) 1241–1251

8. Stemm, M., Katz, R., Seshan, S.: A network measurement architecture for adaptive applica-
tions. In: Proceedings of IEEE INFOCOM, Tel-Aviv,Israel (2000)

9. Villela, D., Pradhan, P., Rubenstein, D.: Provisioning servers in the application tier for e-
commerce systems. In: Proceedings of IWQoS ’04. (2004)

10. Busari, M., Williamson, C.: ProWGen: a synthetic workload generation tool for simulation
evaluation of Web proxy caches. Computer Networks38 (2002)

11. Kleinrock, L.: Queueing systems. Volume 2. Wiley (1976)
12. Apache: (http://www.apache.org/)
13. Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely, T., Diot,

C.: Packet-level traffic measurements from the Sprint IP backbone. IEEE Network Magazine
17 (2003) 6–16

14. Ranjan, S., Karrer, R., Knightly, E.: Wide area redirection of dynamic content by Internet
data centers. In: Proceedings of IEEE INFOCOM, Hong Kong, China (2004)

15. Tantawi, A., Towsley, D.: Optimal static load balancing in distributed computer systems.
Journal of the ACM32 (1985) 445–465

16. Kim, C., Kameda, H.: An algorithm for optimal static load balancing in distributed computer
systems. IEEE Transactions on Computers41 (1992) 381–384

17. Gerla, M., Kleinrock, L.: On the topological design of distributed computer networks. IEEE
Transactions on Communications25 (1977) 48–60

18. Bertsekas, D.: Nonlinear Programming. second edn. Athena Scientific (1999)
19. Starobinski, D., Wu, T.: Server selection for scalable internet services: Algorithms and

analysis. http://www.bu.edu/systems/research/publications/2004/2004-IR-0020.pdf (2004)
Boston University - Technical Report No. 2004-IR-0020.

20. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic: Evidence and possible
causes. IEEE/ACM Trans. on Networking5 (1997) 835–846

21. Starobinski, D., Sidi, M.: Modeling and analysis of power-tail distributions via classical
teletraffic methods. Queueing Systems (QUESTA)36 (2000) 243–267

22. Avi-Itzhak, B., Levy, H.: On measuring fairness in queues. Advances of Applied Probability
(2004)

23. Mahanti, A., Eager, D., Williamson, C.: Temporal locality and its impact on Web proxy
cache performance. Performance Evaluation42 (2000) 187–203

24. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-life distributions:
evidence and implications. In: Proceedings of IEEE INFOCOM ’99, New York, NY (1999)
126–134


