
Wavelength Rerouting in Survivable WDM

Networks

Yingyu Wan and Weifa Liang

Department of Computer Science
The Australian National University

Canberra, ACT 0200, Australia

Abstract. One limitation of all-optical WDM networks is the wave-
length continuity constraint imposed by all-optical cross-connect switches
that requires the same wavelength be used on all the links along a path.
With random arrivals and departures of connection requests, it happens
quite often that a new request has to be blocked due to the fact that there
are not enough available resources (e.g. wavelength) to accommodate
the request. Wavelength rerouting, a viable and cost-effective method,
which rearranges the wavelengths on certain existing routes to free a
wavelength continuous route for the new request, has been proposed to
improve the blocking probability. In this paper, we study a wavelength
rerouting problem in survivable WDM networks as follows. Given a con-
nection request, the problem is to find two link-disjoint paths from the
source node to the destination node with an objective to minimize the
number of existing routes that have to be wavelength-rerouted. We show
that the problem is NP-hard if different wavelengths are assigned to the
link-disjoint paths. Otherwise, a polynomial time algorithm is proposed.

1 Introduction

A Wavelength Division Multiplexing (WDM) network consists of optical wave-
length routing nodes interconnected by point-to-point fiber links in an arbitrary
topology. On each fiber link, the fiber bandwidth is divided into multiple fre-
quency bands (wavelengths) so that several connection requests can be realized
over it at the same time, as long as each uses a different wavelength. There are
two types of WDM networks, one allows wavelength conversion at its nodes and
the other does not. In a network without wavelength conversion, the realization
of a connection request is subject to the wavelength continuity constraint that
the same wavelength is used on all the links in the route for the request. This
constraint often reduces the wavelength utilization because a non-wavelength-
continuous route cannot be used even if it is available. This is especially severe in
a network with random arrivals and departures of requests. Although wavelength
conversion can potentially allow the network to accommodate more requests, it
is expected that the wavelength converters at nodes are expensive in the near
future. Hence, most existing work assumes that no wavelength conversion in the
network is allowed. This assumption will be adopted by this paper as well.



To alleviate the inefficiency brought by the wavelength continuity constraint,
a viable and cost-effective method called rerouting has been proposed, which is
described as follows. Whenever a new request arrives, if there is no wavelength-
continuous route for it, rearrange a certain number of existing routes to free a
wavelength for the request. There are two ways to rearrange an existing route.
One is “fully rearranging”, which is to find a new route with another wavelength
to replace the old route. This is also referred to as nonblocking rearrangement.
Another is “partially rearranging”, which keeps the original route but reassigns
a different wavelength to the links in the route. This latter one is referred to as
wavelength rerouting. Examples of nonblocking rearrangement and wavelength
rerouting can be found in [1–3] and [4–8] respectively. While rerouting can
be used to improve the bandwidth utilization, transmission on each rerouted
route must be temporarily shut down to prevent data from being lost during the
rerouting processing. This causes a low or even zero throughput on those be-
ing rerouted traffic. The throughput loss is particularly prominent in all-optical
networks wherein each routing path is expected to carry gigabits of data flow
per second, and hence even a tiny period of outage on a single route will cause
significant data loss. Thus, to minimize this disruptions (i.e., the number of
rerouted routes) is of paramount importance for rerouting in all-optical WDM
networks. It is a general belief that nonblocking rearrangement is much harder
than wavelength rerouting because in the former not only a new route for a con-
nection request needs to be built but also another available wavelength needs
to be assigned to each of the links in the new route. Despite the fact that non-
blocking rearrangement may improve the blocking probability significantly, it
leads to a much longer disruption than expected. In particular in an arbitrary
topology network, it is very difficult to make a nonblocking rearrangement for a
new request with the minimum disruption. In reality, most known works on non-
blocking rearrangement are carried out on special topology networks like rings
and tori [2]. On the other hand, the survivability of routing is a critical design
problem for high-speed WDM networks. To protect a mission-critical connec-
tion from a single link failure, a common solution is to find a pair of link-disjoint
paths from a source node to a destination node. One of the paths serves as the
active path (or AP) which will be used for the data transfer actually. The other
serves as the backup path (or BP) once the active path is disconnected due to a
link failure on it. When a mission-critical request arrives, if there are not enough
wavelengths in the network to find the AP and BP pair for the request, it is
possible (sometimes necessary) to reroute a certain number of existing traffic to
free a wavelength for the request.

Lee and Li [5] first introduced the wavelength rerouting concept by study-
ing the unicast routing problem with the objective to minimize the disruption
incurred due to wavelength rearranging. For an undirected WDM network of n
nodes, m physical links and w wavelengths on each link, they proposed a wave-
length rerouting scheme called Parallel Move-To-Vacant Wavelength-Retuning
(MTV-WR), which has the following advantages. First, it facilitates control be-
cause the old and new routes of rerouted traffic share the same switching nodes.



Second, it reduces the calculation because only the wavelengths on the links of
existing routes need to be changed. Third, it significantly reduces the disrup-
tion period. An algorithm for implementing the MTV-WR scheme has also been
proposed, which takes O(n3w + n2w2) time per unicast request [5]. Mohan and
Murthy [6] later provided an O(n2w) time improved algorithm for the problem.
Caprara et al [7] studied the unicast routing problem in a directed WDM network
by showing that the problem is not only NP-hard but also hard to approximate.
Instead, they proposed an approximation algorithm. Wan and Liang recently [8]
studied the wavelength rerouting for multicast requests in both undirected and
directed networks. The two link-disjoint paths problem in a weighted graph with
the objective to minimize the sum of the lengths (costs) of the two paths was
well studied and can be solved in polynomial time [9]. If the objective is to min-
imize the length of either the longer one or the shorter one of the two paths, the
problem was shown to be NP-hard [10, 11].

In this paper, our focus will be on wavelength rerouting in an arbitrary
topology WDM network for link-disjoint paths routing. In particular, given a
connection request, the problem is to find two link-disjoint paths for it such that
the number of existing routes that need to be rerouted is minimized. Notice that
the problem that we study here is different from those previous works [9–14]
that use different cost metrics. We show that the problem of concern is NP-
hard if different wavelengths need to be assigned to the two paths. Otherwise,
a polynomial time algorithm is devised, which takes O(m5 log n) time, where m
and n are the number of links and nodes in the network.

The rest of this paper is organized as follows. In Section 2 we define the
network model and provide an overview of the wavelength rerouting scheme for
link-disjoint paths routing. In Section 3 we provide an NP-hard proof of the
problem. In Sections 4 we propose a polynomial algorithm.

2 Preliminaries

Network Model: An undirected WDM network M = (N, L) without wave-
length conversion is considered, where N is the set of communication nodes and
L the set of communication links. The bandwidth of each link is divided into
a set of w wavelengths Λ = {λ1, λ2, · · · , λw}. It is assumed that each node has
sufficient optical transmitters and receivers so that no connection request will be
blocked due to lack of such resources. A connection request is denoted by a pair
(s, t), where s is the source node and t is the destination node. At the time a
request arrives, on a given link e ∈ L there may be some wavelengths unavailable
due to that they have been occupied by the other existing routes. Denote by Λe

(⊆ Λ) the set of available wavelengths on link e. Let P be the set of existing
routes (lightpaths). Depending on the wavelengths used by the lightpaths, P can
be partitioned into w disjoint subsets P1,P2, · · · ,Pw, where the links in each
path in Pi is assigned wavelength λi, 1 ≤ i ≤ w. If two paths share at least
one link, the paths are said to link-intersect with each other, otherwise they are
link-disjoint. Obviously, any two lightpaths in set Pi are pairwise link-disjoint.



Wavelength Rerouting Scheme for Link Disjoint Paths

1. For each wavelength λi ∈ Λ do
1.1 For each lightpath P ∈ Pi, if there is another available wavelength λj ∈ Λ (i 6= j)

on each link in P , i.e., ∀e ∈ E(P ), λj ∈ Λe, then P can be assigned wavelength λj ,
and P is said to be tunable. Otherwise, P is said to be untunable. Let P′

i be the
subset of Pi containing all the tunable lightpaths, and P′′

i = Pi − P′

i.
2. Find a pair {APi, BPj} of lightpaths between s and t with minimum cost such that

(i) APi and BPj are link-disjoint;
(ii) wavelength λi (λj) is assigned to each link in APi (BPj);
(iii) APi (BPj) does not link-intersect with any lightpath in P′′

i (P′′

j );
(iv) the cost is defined as |{P ∈ P′

i : P ∩ APi 6= ∅} ∪ {P ∈ P′

j : P ∩ BPj 6= ∅}|, where
P ∩ APi 6= ∅ or P ∩ BPj 6= ∅ mean that P link-intersects with APi or BPj .

3. If no such a pair exists, then the request (s, t) cannot be supported by the
wavelength rerouting scheme and will be rejected. Otherwise, the request (s, t)
can be realized by rerouting a certain number of existing traffic.

Fig. 1. Overview of the wavelength rerouting scheme

For the sake of convenience, denote by E(P ) and V (P ) the sets of links and
nodes in a path P respectively in the rest of the paper.
Overview of the Wavelength Rerouting Scheme: To accommodate a new
connection request (s, t) with the survivability requirement, we need to find two
link-disjoint lightpaths (a link-disjoint AP and BP pair) in the current network
between s and t, and the wavelength continuity constraint on both AP and BP
is imposed. This can be achieved by two phases. Phase 1: find a link-disjoint
AP and BP pair between s and t, using only those available wavelengths. Phase
2: find a link-disjoint AP and BP pair with rerouting some existing lightpaths
if Phase 1 fails. Phase 1 is to find two link-disjoint paths using an available
wavelength, which has been studied extensively [12–14]. We therefore focus on
Phase 2. If Phase 1 fails, it means that there does not exist two link-disjoint paths
in the network using only the available wavelengths, and a wavelength rerouting
scheme is adopted, which is described in Fig. 1. The scheme first partitions each
set Pi into two subsets, one containing tunable paths and the other containing
untunable paths, then aims to find two link-disjoint paths for the new request
(s, t) which link-intersect with the tunable paths only. At Step 2 of the scheme, to
minimize the total cost of the two paths is equivalent to minimize the disruption
for rerouting. This step can be implemented by finding a candidate solution
with the minimum cost for every possible pair of λi and λj (1 ≤ i, j ≤ w) and
choosing one with the minimum cost from these candidate solutions. Depending
on whether or not i = j, two combinatorial optimization problems arise from
Step 2. (i) If i 6= j, a graph G = (V, E) can be constructed as follows. V = N
and E = Ei ∪ Ej , where Ei = {e ∈ L | λi ∈ Λe or ∃P ∈ P′

i, e ∈ E(P )} and
Ej = {e ∈ L | λj ∈ Λe or ∃P ∈ P′

j , e ∈ E(P )}.

Definition 1 (Minimum Disruption Link-Disjoint Paths 1, MDLDP1).
Given an undirected graph G = (V, E) with E = E1 ∪E2, a collection P1 of link-



disjoint paths satisfying that ∀P ∈ P1, E(P ) ⊆ E1, another collection P2 of
link-disjoint paths satisfying that ∀P ∈ P2, E(P ) ⊆ E2, a source node s and a
destination node t, the objective is to construct two link-disjoint paths AP and
BP between s and t such that E(AP ) ⊆ E1, E(BP ) ⊆ E2 and the sum of the
number of paths in P1 link-intersecting with AP and the number of paths in P2

link-intersecting with BP is minimized.

(ii) Otherwise (i = j), a graph G = (V, E) can be constructed as follows. V = N
and E = {e ∈ L | λi ∈ Λe or ∃P ∈ P′

i, e ∈ E(P )}.

Definition 2 (Minimum Disruption Link-Disjoint Paths 2, MDLDP2).
Given an undirected graph G = (V, E), a collection P of paths which are pairwise
link-disjoint, a source node s and a destination node t, the objective is to con-
struct two link-disjoint paths AP and BP between s and t such that the number
of paths in P that link-intersect with them is minimized.

3 NP-Hard Proof of MDLDP1

We prove that MDLDP1 is NP-hard by a reduction from the following problem.
Link Disjoint Path Problem in Graphs with Red, Green, Blue Links (LDPPRGB)
Instance: A graph G = (V, E), where each link e ∈ E is colored red, blue or green;
a source node s and a destination node t.
Question: Is it possible to establish two link-disjoint paths between s and t such
that one of the paths uses only the red and green links and the other uses the
blue and green links?

LDPPRGB was shown to be NP-hard by a reduction from the 3SAT problem
in [14]. Given an instance of LDPPRGB, a corresponding instance of MDLDP1
can be constructed as follows. Let G(V, E) be the graph with n = |V | nodes
and m = |E| links in the given LDPPRGB instance. Define V ′ = V . Let E′

1 be
the set of links in E colored red or green, E ′

2 the set of links in E colored blue
or green, and E′ = E′

1 ∪ E′

2. For each link e ∈ E colored red, define a red path
consisting only of link e. For each link e ∈ E colored blue, define a blue path
consisting only of link e. Let P ′

1 be the set of red paths and P ′

2 the set of blue
paths. Then G′ = (V ′, E′), P ′

1, P
′

2 and (s, t) form an instance of MDLDP1.
If there is a feasible solution AP and BP for the MDLDP1 instance, there

is also a feasible solution for the LDPPRGB instance because E(AP ) ⊆ E ′

1 and
E(BP ) ⊆ E′

2. This reduction can be implemented in polynomial time, MDLDP1
thus is NP-hard, following that LDPPRGB is NP-hard.

Theorem 1. MDLDP1 is NP-hard.

4 A Polynomial Time Algorithm for MDLDP2

In this section we first give the structure properties of an optimal solution for
MDLDP2. We then propose a polynomial time algorithm for the problem.



4.1 Structure properties

Let {AP, BP} be a feasible solution for an instance of MDLDP2. Define the cost
of the solution as c(AP, BP ) = |{P ∈ P : P link-intersects with AP or BP}|.
For the convenience of description, we assume that {AP, BP} is laid out in a
plane with s and t on the left end and right end of AP and BP respectively which
is illustrated in Fig. 2(a). Each path Pi ∈ P may link-intersect with {AP, BP}
or not. If Pi link-intersects with AP , define by Ai = Pi ∩ AP = {P a

i,1, P
a
i,2, · · · }

the set of maximal subpaths shared by Pi and AP , where the “maximal subpath”
means that there is no other shared subpath between Pi and AP which properly
includes it. Without loss of generality, let P a

i,1, P
a
i,2, · · · be indexed in the order

from left to right along AP , i.e., a subpath closer to s has a smaller index
and a subpath closer to t has a larger index. Bi = Pi ∩ BP = {P b

i,1, P
b
i,2, · · · }

can be defined similarly. If Pi link-intersects with only either AP or BP but
not both of them, Pi is called single-intersected. Otherwise, Pi is called double-
intersected. If Pi is single-intersected and either |Ai| = 1 or |Bi| = 1, Pi is
called trivial-intersected. If Pi is double-intersected, define an ordered relation
on Ai ∪ Bi based on the order those subpaths appearing in Pi. To do so, first
define a direction along Pi from one endpoint to another endpoint. For every
two subpaths Pi,j , Pi,k ∈ Ai ∪Bi in Pi, if Pi,j appears before Pi,k in the defined
direction, Pi,j is a predecessor of Pi,k, denoted by Pi,j ≺ Pi,k, and Pi,k is a
successor of Pi,j , denoted by Pi,k � Pi,j . Denote by prec(Pi,j) and succ(Pi,j)
the immediate predecessor and immediate successor of Pi,j respectively if they
do exist. If a double-intersected path Pi satisfies two conditions: C1: For any
P a

i,j ∈ Ai, prec(P a
i,j) ∈ Bi and succ(P a

i,j) ∈ Bi if they exist. For any P b
i,j ∈ Bi,

prec(P b
i,j) ∈ Ai and succ(P b

i,j) ∈ Ai if they exist. C2: P a
i,1 ≺ P a

i,2 ≺ · · · and

P b
i,1 ≺ P b

i,2 ≺ · · · , or P a
i,1 � P a

i,2 � · · · and P b
i,1 � P b

i,2 � · · · . Then, Pi is called
regular-intersected. Such an example is given in Fig. 2(b). Assume that both Pi

 

iP  

s  t  

AP  

BP  

 

1,
a

i kP  
1,

a
j lP  

2,
b
j lP  

2,
b

i kP  

iP  jP  

s  t  

AP  

BP  

Fig. 2. (a) Regular-intersected path; and (b) Pi and Pj cross with each other

and Pj are double-intersected. If there are two subpaths P a
i,k1

, P b
i,k2

in Pi and two

subpaths P a
j,l1

, P b
j,l2

in Pj such that (i) prec(P a
i,k1

) = P b
i,k2

or succ(P a
i,k1

) = P b
i,k2

,

(ii) prec(P a
j,l1

) = P b
j,l2

or succ(P a
j,l1

) = P b
j,l2

, (iii) P a
i,k1

is on the left side of P a
j,l1

in AP and P b
j,l2

is on the left side of P b
i,k2

in BP , then Pi and Pj are called
crossing with each other. Then, we show that there is an optimal solution that
meets the following properties.



 

s  t  ,1
a

iP  , i

a
i lP  

AP  

BP  

iP  

s  t  

'AP  

'BP  

(a) (b) 

Fig. 3. Transformation to trivial-intersected path

Property 1. Any single-intersected path is also trivial-intersected.
Property 2. Any double-intersected path is regular-intersected.
Property 3. No two double-intersected paths cross with each other.

Lemma 1. For a feasible solution {AP, BP}, if any properties 1,2 and 3 is not
met, then there is another feasible solution {AP ′, BP ′} such that c(AP ′, BP ′) ≤
c(AP, BP ) and these three properties are met at the same time.

Proof. The basic idea is to modify the solution step by step until all the prop-
erties are met. If Property 1 does not hold, without loss of generality, assume
that Pi is single-intersected and |Ai| > 1. Let li be the maximum index in Ai.
Let P a

i,1 and P a
i,li

be the leftmost and rightmost subpaths of Pi in AP respec-
tively. A new path AP ′ can be constructed as follows (see Fig. 3). It starts from
s and traverses along AP . When it passes through P a

i,1, it traverses along the
links in Pi to P a

i,li
. It then traverses from P a

i,li
along AP to t. Because Pi is

single-intersected, AP ′ and BP are link-disjoint. Let BP ′ = BP . A new feasible
solution {AP ′, BP ′} is obtained. It is obvious that c(AP ′, BP ′) ≤ c(AP, BP )
and Pi is trivial-intersected. If there are more than one single-intersected but non-
trivial-intersected paths, repeat this procedure until each single-intersected path
is trivial-intersected. If Property 2 does not hold, let Pi be double-intersected
but non-regular-intersected. If Condition C1 does not hold, without loss of gen-
erality, assume Pi,j ∈ Ai and succ(Pi,j) ∈ Ai. Following the similar argument as
for Property 1, Pi,j and succ(Pi,j) can be merged into a subpath by a shortcut
through the part of Pi between Pi,j and succ(Pi,j).

Now assume that Condition C1 but Condition C2 holds. Consider P a
i,1 and

P b
i,1 first. If the subpaths prec(P a

i,1), succ(P a
i,1), prec(P b

i,1) and succ(P b
i,1) exist

at the same time, then prec(P a
i,1) ∈ Bi, succ(P a

i,1) ∈ Bi and prec(P b
i,1) ∈ Ai,

succ(P b
i,1) ∈ Ai. At least one of prec(P a

i,1) and succ(P a
i,1) is on the right of

P b
i,1 because P b

i,1 is the leftmost subpath on BP , denoted by P b
i,k . At least one

of prec(P b
i,1) and succ(P b

i,1) is on the right of P a
i,1 because P a

i,1 is the leftmost
subpath on AP , denoted by P a

i,j . As shown in Fig. 4, a new feasible solution
{AP ′, BP ′} can be obtained as follows. Traverse along AP from s to P a

i,1, then

traverse along Pi to P b
i,k , finally traverse along BP from P b

i,k to t. Denote by AP ′

the resulting path. BP ′ can be obtained similarly. Repeat this procedure until
at least one of the four subpaths prec(P a

i,1), succ(P a
i,1), prec(P b

i,1) and succ(P b
i,1)

does not exist. Without loss of generality, assume prec(P a
i,1) does not exist. If



 

s  t  

,
a

i jP  AP  

BP  

,1
a

iP  

,1
b

iP  
,
b

i kP  

s  t  

,
a

i jP  'AP  

'BP  

,1
a

iP  

,1
b

iP  
,
b

i kP  
'AP  

'BP  

Fig. 4. Transformation to regular-intersected path

succ(P a
i,1) 6= P b

i,1, a similar transformation can be applied until succ(P a
i,1) = P b

i,1,

i.e., P a
i,1 ≺ P b

i,1. Next consider P b
i,1 and P a

i,2, apply the transformation again such

that P b
i,1 ≺ P a

i,2. Finally we have P a
i,1 ≺ P b

i,1 ≺ P a
i,2 ≺ P b

i,2 ≺ · · · . Condition
C2 now holds. If Property 3 does not hold, there exist two crossing double-
intersected paths Pi and Pj as shown in Fig. 4, by a similar transformation
as for Property 2, a new feasible solution {AP ′, BP ′} can be found as follows.
Traverse along AP from s to P a

i,k1
, then along Pi to P b

i,k2
, finally along BP

from P b
i,k2

to t. Denote by AP ′ the resulting path. Traverse along BP from s to

P b
j,l2

, then along Pj to P a
j,l1

, finally along AP from P a
j,l1

to t. Denote by BP ′ the
resulting path. Pi and Pj do not cross with each other for the resulting solution
{AP ′, BP ′}.

Repeat the above transformation to the routing paths until all of the three
properties in the resulting paths are met. Note that each transformation will
reduce the number of subpaths by one at least, so, the procedure terminates
after a certain number of transformations. Because each transformation does
not increase the cost of the resulting solution, the cost of the final solution is no
more than c(AP, BP ). �

We thus have the following theorem.

Theorem 2. There is an optimal solution for MDLDP2 which meets Proper-
ties 1,2 and 3.

4.2 A polynomial algorithm

We first consider a special case of the problem where there is an optimal solution
such that there is no double-intersected paths in P by presenting a polynomial
time algorithm for it. We then propose a polynomial algorithm for the general
case by removing the constraint.

No double-intersected path: Assume there is an optimal solution such that
there is no double-intersected paths in P . So, there are only single-intersected or
non-intersected paths in P . If this optimal solution does not meet Property 1,
then there is another optimal solution meeting Property 1, following Theorem 2.
Because all the paths in P that are link-intersected with the optimal solution
{AP, BP} are single-intersected, the paths that are link-intersected with AP
are different from the paths that are link-intersected with BP . Moreover, all
the single-intersected paths are trivial-intersected. For a path P in P that is



trivial-intersected with AP , if we traverse AP from the source node to the des-
tination node, we will enter and leave P once and only once, which means that
P can be treated like a link for AP . Based on this observation, we propose
an algorithm MDLDP-S(G,P ,s,t), which proceeds as follows. It first constructs
an auxiliary graph by compressing each path in P into a single directed link.
Specifically, for each path P ∈ P , remove all links in P from G. Add two new
nodes entry(P ) and exit(P ). Add a directed link < entry(P ), exit(P ) > from
entry(P ) to exit(P ) and assign it weight 1. For each node v in P , add a directed
link < v, entry(P ) > from v to entry(P ) and a directed link < exit(P ), v > from
exit(P ) to v, and assign each of them weight 0. For those original undirected
links in G that do not appear in any P ∈ P , add them to the auxiliary graph
and assign them weight 0s. Denote by G′ = (V ′, E′) the resulting graph.

It then finds two link-disjoint paths {AP ′, BP ′} in G′ with the minimum
cost, using Suurballe’s algorithm. An optimal solution {AP, BP} in G is finally
derived from {AP ′, BP ′} by a reverse procedure of the above construction. That
is, for each directed link with weight 1 in AP ′ and BP ′, replace the link by the
corresponding path in P . It is easy to show that {AP, BP} is an optimal solution
for MDLDP2 in G. Obviously, the proposed algorithm takes O(m log n) time due
to the facts that there are at most m paths in P and the total number of links
in P is O(m). Thus, there are O(m) nodes and O(m) links in G′. The time
complexity of Suurballe’s algorithm is O(m log n).

General case: Recall that Theorem 2 shows that there is an optimal solu-
tion {AP ∗, BP ∗} meeting Properties 1, 2 and 3 simultaneously. Assume that
Pi1 , Pi2 , · · · , Pik

are all the regular-intersected paths in the order from left to
right according to their appearances in {AP ∗, BP ∗}. For each 1 ≤ j ≤ k, let aj

be the right node of the rightmost link Pij
intersects with AP ∗ and bj be the right

node of the rightmost link Pij
intersects with BP ∗. Obviously, a1, a2, · · · , ak and

b1, b2, · · · , bk are in the order from left to right in {AP ∗, BP ∗}. {AP ∗, BP ∗} then
can be partitioned into at most k + 1 pairs of link-disjoint paths by cutting at k
pairs of nodes (a1, b1), (a2, b2), · · · , (ak, bk), and each of these pairs of nodes is re-
ferred to as a partition-pair. Denote by {AP ∗

0 , BP ∗

0 }, {AP ∗

1 , BP ∗

1 }, · · · , {AP ∗

k , BP ∗

k }
the partitions of {AP ∗, BP ∗}.

Let a0 = b0 = s and ak+1 = bk+1 = t. For 0 ≤ j ≤ k, each {AP ∗

j , BP ∗

j } is a
pair of link-disjoint paths between aj , bj and aj+1, bj+1. For each {AP ∗

j , BP ∗

j },
there is at most one regular-intersected path, and the other link-intersected
paths are trivial-intersected. So, {AP ∗

j , BP ∗

j } can be found in polynomial time,
using Algorithm MDLDP-S. The optimal solution {AP ∗, BP ∗} can be obtained
by concatenating these {AP ∗

j , BP ∗

j }. Motivated by this observation, an algo-
rithm is proposed in Fig. 5. The algorithm first constructs an auxiliary graph
G′(V ′, E′), then computes a shortest path from s to t in the auxiliary graph,
finally constructs two link-disjoint paths in G. The construction of G′ is shown
in Fig. 6. In the construction, when calculate the weight of < s, Xu,v,P >, we
assume that (u, v) is a partition-pair and P is the regular-intersected path. So,
we remove all the links incident to u or v except those in P and remove P



Algorithm MDLDP-G(G,P,s,t)
Input: an undirected graph G, a set P of link-disjoint paths, a pair (s, t).
Output: {AP ∗, BP ∗}, a pair of link-disjoint paths in G between s and t, such that

the number of paths in P that link-intersect with AP ∗ and BP ∗ is minimized.
1. Construct a weighted directed auxiliary graph G′ = (V ′, E′);
2. Find a shortest path in G′ from s to t;
3. Construct two link-disjointed paths {AP ∗, BP ∗} in G between s and t

from the above shortest path.

Fig. 5. An algorithm for the general case of MDLDP

Construction of G′(V ′, E′)
1 V ′ = {s, t} and E′ = {< s, t >}, assign the directed link < s, t > a weight, which is

equal to the cost of the solution returned by MDLDP-S(G,P,s,t);
2 For each pair of nodes {u, v}, and each path P ∈ P, if u, v ∈ V (P ), a partition-node

Xu,v,P is added to V ′;
3 For each partition-node Xu,v,P do
3.1 Construct a graph G′′ = (V ′′, E′′): V ′′ = V ∪ {t′′}, E′′ = E, remove all the links

incident to u or v from E′′, except those links in P . E′′ = E′′ ∪ {(u, t′′), (v, t′′)};
3.2 Add a new link {< s, Xu,v,P >} into E′, and assign it a weight equal to the cost of

the solution returned by MDLDP-S(G′′,P \ {P},s,t′′) plus one;
4 For each partition-node Xu,v,P do
4.1 Construct a graph G′′ = (V ′′, E′′): V ′′ = V ∪ {s′′}, E′′ = E, remove all the links

in P from E′′. E′′ = E′′ ∪ {(s′′, u), (s′′, v)};
4.2 Add a new link {< Xu,v,P , t >} into E′, and assign it a weight equal to the cost of

the solution returned by MDLDP-S(G′′,P \ {P},s′′,t);
5 For each ordered pair < Xu1,v1,P1

, Xu2,v2,P2
> satisfying that P1 6= P2, do

5.1 Construct a graph G′′ = (V ′′, E′′): V ′′ = V ∪ {s′′, t′′}, E′′ = E, remove all the links
in P1 and all the links incident to u2 or v2 from E′′, except those links in P2.
E′′ = E′′ ∪ {(s′′, u1), (s

′′, v1), (u2, t
′′), (v2, t

′′)};
5.2 Add a new link {< Xu1,v1,P1

, Xu2,v2,P2
>} into E′, and assign it a weight equal

to the cost of the solution returned by MDLDP-S(G′′,P \ {P1, P2},s
′′,t′′) plus one;

Fig. 6. Construction of the auxiliary graph in Algorithm MDLDP-G

from P . Other intersected paths except P are trivial-intersected. By calling
MDLDP-S(G′′,P \ {P},s,t′′), we can find two link-disjoint paths between s and
u, and between s and v with the minimum cost. We assign < s, Xu,v,P > a
weight that is equal to the returned cost plus one, because P is also intersected.
When calculate the weight of < Xu,v,P , t >, we assume that (u, v) is a partition-
pair and P is the regular-intersected path incident to u and v. We remove all the
links in P and remove P from P . All the intersected paths are trivial-intersected.
By calling MDLDP-S(G′′,P \ {P},s′′,t), we find two link-disjoint paths between u
and t, and between v and t. Assign the cost as the weight of < Xu,v,P , t >.
The weight of < Xu1,v1,P1

, Xu2,v2,P2
> can be calculated similarly. After the

construction of G′, we apply Dijkstra’s algorithm to find a shortest path in it



 

s  t  
, ,u v PX  

'
,s tSP  

s  t  

u  

v  

1,1AP  1,2AP  
1,3AP  

1,1BP  
1,2BP  1,3BP  

P  

Fig. 7. Construction from SP ′

s,t to G(SP ′

s,t)

from s to t. Let SP ′

s,t be such a shortest path. To construct two link-disjoint
paths in G between s and t using SP ′

s,t, we construct a subgraph G(SP ′

s,t) of
G by replacing each link in SP ′

s,t with the corresponding link-disjoint paths. If
a path P ∈ P is link-intersected by G(SP ′

s,t), we add all the links in P into
G(SP ′

s,t). In the end, the number of paths in P appearing in G(SP ′

s,t) is equal
to the weight of SP ′

s,t.

Lemma 2. There are two link-disjoint paths in the subgraph G(SP ′

s,t) between
s and t.

Proof. If SP ′

s,t consists of only one link < s, t >, then there are two link-disjoint
paths found at step 1 in the construction of G′. Otherwise, there must be at
least one partition-node in SP ′

s,t. In the following we only consider the case
where there is only one partition-node, and the case with multiple partition-
nodes can be shown by similar arguments. Let Xu,v,P be the partition-node
in SP ′

s,t. As shown in Fig. 7, replace the link < s, Xu,v,P > with two paths
{AP1,1 ∪ AP1,2, BP1,1 ∪ BP1,2}. And replace < Xu,v,P , t > with the two paths
{AP1,3, BP1,3}. AP1,2 and BP1,2 are the two rightmost shared subpaths of P .
Because P is regular-intersected, AP1,2 and BP1,2 are connected by a part of
P which is not link-intersected with any of AP1,1, BP1,1, AP1,3 and BP1,3, i.e.,
(AP1,1 ∪ AP1,2) ∩ (BP1,1 ∪ BP1,2) = ∅, AP1,1 ∩ AP1,2 = ∅, BP1,1 ∩ BP1,2 =
∅,(AP1,2 ∪AP1,3) ∩ (BP1,2 ∪BP1,3) = ∅, AP1,2 ∩AP1,3 = ∅, BP1,2 ∩BP1,3 = ∅.
For each link e in AP1,2, because e /∈ BP1,1 ∪ BP1,2 ∪ BP1,3, there is a path in
G(SP ′

s,t) between s and t which does not include e and e is not an st-bridge in
G(SP ′

s,t), where an st-bridge in G(SP ′

s,t) is a link in G(SP ′

s,t) such that every
path in G(SP ′

s,t) between s and t passes through this link. Similarly for each link
e in BP1,2,e is not an st-bridge. For each link e in AP1,1, if e /∈ BP1,3, because
e /∈ BP1,1∪BP1,2, there is a path between s and t through BP1,1∪BP1,2∪BP1,3

not through e. Thus, e is not an st-bridge. Otherwise if e ∈ BP1,3, because
AP1,3∩BP1,3 = ∅, e /∈ AP1,3. There is a path between s and t not via e: traverse
from s along BP1,1 to BP1,2, then traverse from BP1,2 along P to AP1,2, finally
traverse from AP1,2 along AP1,3 to t. Thus e is not an st-bridge. Similarly, each
link in AP1,3 ∪BP1,1 ∪BP1,3 is not an st-bridge either. There is no st-bridge in
G(SP ′

s,t). The lemma follows. �

It is clear that the weight of SP ′

s,t is no more than the cost of the optimal solution
for MDLDP2. Algorithm MDLDP-G thus is correct. The rest is to analyze the
running time of the proposed algorithm. Assume there are k paths in P and their
lengths are l1, l2, · · · , lk with l1+l2+· · ·+lk ≤ m. There are l21+l22+· · ·+l2k ≤ (l1+
l2 + · · ·+ lk)2 ≤ m2 partition-nodes in G′. The dominant step in the construction



of G′ is step 5, which takes O(m5 log n)-time due to that there are O(m2) nodes
and O(m4) links in G′. Step 2 of algorithm MDLDP-G takes O(m4 log n)-time. The
time complexity of algorithm MDLDP-G is thus O(m5 log n).

Theorem 3. There is a polynomial algorithm for MDLDP2 which takes O(m5 log n)
running time, where m and n are the number of links and nodes in the graph.

Acknowledgment

It is acknowledged that the work by the authors is fully funded by a research
grant No:DP0449431 by Australian Research Council under its Discovery Schemes.

References

1. A. Narula-Tam, P. J. Lin, and E. Modiano, “Efficient routing and wavelength
assignment for reconfigurable WDM networks,” IEEE Journal on Selected Areas

of Communications, vol. 20, pp. 75–88, 2002.
2. P. Saengudomlert, E. Modiano, and R. Gallager, “On-line routing and wavelength

assignment for dynamic traffic in WDM ring and torus networks,” in Proc. IEEE

INFOCOM’03, San Francisco, CA, April 2003, pp. 1805 – 1815.
3. L.-W. Chen and E. Modiano, “Efficient routing and wavelength assignment for

reconfigurable WDM networks with wavelength converters,” in Proc. IEEE INFO-

COM’03, San Francisco, CA, April 2003, pp. 1785 – 1794.
4. P. Saengudomlert, E. Modiano, and R. Gallager, “Dynamic wavelength assignment

for WDM all optical tree networks,” Allerton Conference on Communications,

Control and Computing, October 2003.
5. K. C. Lee and V. O. K. Li, “A wavelength rerouting algorithm in wide-area all-

optical networks,” J. of Lightwave Tech., vol. 14, pp. 1218–1229, 1996.
6. G. Mohan and C. Murthy, “A time optimal wavelength rerouting for dynamic

traffic in WDM networks,” J. of Lightwave Tech., vol. 17, pp. 406–417, 1999.
7. A. Caprara, G. F. Italiano, G. Mohan, A. Panconesi, and A. Srinivasan, “Wave-

length rerouting in optical networks, or the venetian routing problem,” Journal of

Algorithms, vol. 45, no. 2, pp. 93–125, 2002.
8. Y. Y. Wan and W. Liang, “Wavelength rerouting for on-line multicast in WDM

networks,” in Proc. IEEE LCN’04, 2004.
9. J. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, pp. 125–145, 1974.

10. C. Li, S. McCormick, and D. Simchi-Levi, “The complexity of finding two disjoint
paths with min-max objective function,” Discrete Applied Mathematics, vol. 26,
no. 1, pp. 105–115, 1990.

11. D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He, “On finding disjoint paths in single
and dual link cost networks,” in Proc. IEEE INFOCOM’04, 2004.

12. A. Sen, B. Shen, S. Bandyopadhyay, and J. Capone, “Survivability of lightwave
networks - path lengths in WDM protection scheme,” Journal of High Speed Net-

works, vol. 10, no. 4, pp. 303–315, 2001.
13. S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks part i-

protection,” in Proc. IEEE INFOCOM’99, New York, NY, March 1999, p. 744–751.
14. R. Andersen, F. Chung, A. Sen, and G. Xue, “On disjoint path pairs with wave-

length continuity constraint in WDM networks,” in Proc. IEEE INFOCOM’04,
2004.


