
An Energy-Efficient Image Representation for

Secure Mobile Systems

Tim Woo, Catherine Gebotys, and Sagar Naik

Department of Electrical and Computer Engineering
University of Waterloo, Waterloo, Ontario, Canada

timwoo@alumni.uwaterloo.ca, cgebotys@uwaterloo.ca,

knaik@swen.uwaterloo.ca

Abstract. In a mobile device, two major sources of energy consumption
are energy used for computation and energy used for transmission. Com-
putation energy can be reduced by minimizing the time spent on com-
pression. Transmission energy and encryption energy can be reduced by
sending a smaller image file that is obtained by compression. Image qual-
ity is often sacrificed in the compression process. Therefore, users should
have the flexibility to control the image quality to determine whether
such a tradeoff is acceptable. This paper proposes an energy efficient im-
age representation system using Binary Space Partitioning (BSP) trees.
Our experimental result shows that in most cases, our new tree construc-
tion and compression formula use only 40% of the original total energy
required for compressing and sending images. BSP tree representation
also allows partial encryption, which reduces total energy required for
secure transmission by reducing the amount of data that needs to be
encrypted. Our experimental results show that BSP tree representation
is effective in reducing total energy for secure transmission for computer
arts images compared to JPEG.

1 Introduction

The increasing popularity of wireless digital image communication presents a new
challenge to image compression and encryption. First, portable devices run on
a limited energy source such as batteries. Therefore, energy utilization must be
efficient. From a software perspective, there are several strategies for optimizing
energy [1]. These strategies focus on minimizing the energy cost for computa-
tions and memory accesses. For a wireless device, the total energy consumption
consists of energy used for computations, data accesses, and transmission energy.
For example, a typical CPU for PDA (whose name is not revealed to protect ven-
dor identity) consumes about 90-150mW in running mode, 36mW in idle mode,
and 0.9mW in sleeping mode. The transceiver consumes about 210-540mW for
transmitting and 180-240mW for receiving data. Since the power used for com-
putation and transmission is quite significant, this paper focuses on reducing the
computation energy and transmission energy. To minimize computation energy,
one can reduce the execution time of the compression algorithm, so that less

energy is consumed in the switching activities in the processor when computing.
To reduce transmission energy, one can reduce the amount of data to be sent,
which is achieved by compression.

Although the study of image quality and execution time tradeoff is not a
novel idea, it deserves special attention for a wireless device because of its lim-
ited computation power, memory and energy source. At the time of writing, a
typical PC consists of a 2.8GHz processor, with 512MB RAM. A typical PDA
(e.g. PalmOne Tungsten T3) consists of a 400MHz processor, with 64MB RAM,
which is only a fraction of the computation power and memory available to a
PC. Therefore, it is especially crucial for the image compression and encryption
system to be optimized for a wireless PDA.

To provide flexibility and high compression performance, a Binary Space
Partitioning (BSP) tree structure can be used to represent an image [2]. BSP tree
representation is easy to construct, and it allows convenient pruning to different
image quality levels. In a BSP tree, each non-terminal node is associated with a
partition line and each leaf node is associated to a particular region of the image.
The non-terminal nodes store the line parameters while the leaf nodes store the
colour of the associated regions.

We have proposed a new tree construction technique by splitting the image
into two equal halves each time instead of finding the optimal line. We have
found in our experiments that the original Least-Square-Error (LSE) method
in [3] is slow. We have also proposed a new pruning formula for compressing
images. In BSP lossy compression, calculation of errors at each node is required
to make pruning decisions. Our new formula aims to reduce computation times
by reusing previous calculated values in previous iterations. Finally, we have
introduced the concept of variable compression rate for different areas of the
image using the advantages of BSP.

This paper is organized as follows: Sect. 2 discusses the relevant previous
research. Sect. 3 describes the proposed BSP tree construction and pruning for-
mula. Sect. 4 shows the experimental results by varying different parameters.
Sect. 5 analyzes the new proposed scheme and discusses how our results com-
pare to previous work, followed by a summary of the advantages and limitations
of the new scheme and the concluding remarks in Sect. 6.

2 Related Work

There have been several studies on the effect of varying JPEG parameters on the
image quality, latency, and energy. In [4], the authors have used a pre-computed
lookup table to estimate compresssion costs. Research in [5] has studied the effect
of varying JPEG parameters on the image quality. Although their approach does
not require complete decompression to re-scale an image to different quality,
it still requires re-encoding of entropy parameters, which consumes significant
energy too. In contrast, our BSP tree compression scheme consumes only a small
amount of energy when re-scaling because no re-computations are necessary
when pruning the tree. JPEG encryption [6] has revealed that there are many

image leakages when only part of the JPEG file is encrypted. For example,
the image is still recognizable even if most of the AC and DC coefficients are
encrypted.

A recent standard, JPEG2000, uses wavelet transforms to compress an im-
age. In wavelet compression [7], the image first goes through a discrete wavelet
transform (DWT) to generate wavelet coefficients. In [8], the wavelet coefficients
are organized in pyramid levels according to importance, with each level adding
additional details to the image. The resulting image consists of two parts: the
zerotree structure and the wavelet coefficients.

Several energy efficient wavelet image compression schemes have been pro-
posed. In [9],[10], the authors have proposed varying parameters such as the
transform level, elimination level (EL), and the quantization level (QL). Again,
the authors have used a lookup table that requires re-computation of quantiza-
tion and entropy coding steps, which consumes fair amount of energy too. In
[11], a distributed approach to wavelet compression has been proposed to dis-
tribute energy use in a wireless adhoc network evenly at different nodes. In such
a system, the task for the wavelet transform, is processed in a distributed fashion
to the various nodes in the adhoc network to save energy.

Quadtree compression [12] is similar to BSP except an image is split into four
quadrants instead at each iteration. The advantage of quadtree compression is
that tree construction is fast and simple. However, since each split creates four
quadrants, it may result in a larger file size compared to BSP.

Many of the image compression algorithms are designed to aim for the maxi-
mum compression rate. However, these high compression algorithms may be too
complex for energy constrained handheld devices. BSP scheme has advantages
that other image compression techniques do not have. First, the hierarchical
structure of the BSP tree allows convenient pruning of an image. This offers
scalability and flexibility by dynamically adjusting the image quality according
to the user need and environment to save transmission energy. In addition, since
BSP compression operates in spatial domain, it is possible to compress using dif-
ferent thresholds in different regions of the same image. This allows selectively
retaining the details in the important areas of an image, while the less important
areas can be compressed more.

3 Our Image Representation Scheme

This section presents the proposed scalable energy efficient image representation
scheme using BSP trees. We present the specifics of how the BSP tree repre-
sentation of the highest quality image is constructed, and the specifics of how
the energy, and image quality parameters are used in different modules of the
system.

Fig. 1 shows the block diagram for our image compression system. The end
user specifies his desired security levels and image quality for the various regions
of the image (to be used for selective thresholding) to the system. From these user
parameters, the test bench module generates the threshold for the compression

and the encryption parameters. The compression module then compresses the
highest quality image and the resulting image is immediately encrypted using
Advanced Encryption Standard (AES) to generate an encrypted image. Only the
defining BSP tree needs to be encrypted for security (not the colours defining
each leaf node of the BSP tree).

Fig. 1. Our Image Compression and Encryption System

In our proposed binary split method, the algorithm simply bisects the longest
dimension of the region of interest in two equal halves. This speeds up the line
selection process significantly, since it eliminates the expensive LSE transform
computation in [3]. However, the trade-off is that the file size may not be optimal.
In our method, for a region R with endpoints p1 and p2 and x1 and x2 as the x-
coordinates (y-coordinates if it is a vertical line) of the two points, the midpoint
between x1 and x2, i.e. xC , is simply selected as the split line. The image is
partitioned into smaller rectangular regions until the colour of the region is
homogenous or until the region cannot be splitted further. Although this splitting
method violates the property of optimal alignment of BSP tree partitioning lines
with the actual object edges, it is found in our experiments that, in practice,
this new method still performs satisfactorily.

To compress highest quality image file in BSP tree form, we can prune the
BSP tree according to the pruning threshold, which is expressed as a fraction
relative to the root node’s error in our experiments. This process reduces the
file size by sacrificing the image quality. There exist some advanced pruning
techniques such as [13]. For simplicity, we focus our work using a simple error
based pruning criterion.

Before compression, the error associated with each node in the tree must
be calculated. We now introduce the concept of pruning. Pruning deletes and
merges nodes in a BSP tree if the error is smaller than a user specified threshold.
In the best quality image, the leaf nodes store the exact colours of the original
image. When pruning this best quality tree, these leaf nodes are merged to form
new leaf nodes if the merged node’s error is below the pruning threshold, which
is expressed as a fraction of the root node’s error in our work. After these leaf
nodes are merged, the mean colour value of the pixels in the region is used
to approximate the new leaf node’s colour. First, users will specify a relative

threshold divisor value. Then, this value is multiplied by the root node’s error
value to generate the absolute threshold value that is used for pruning decision.

Traditionally, error for the region is calculated using the total square error.
However, in our experiment, it is found that this formula is slow. Therefore, we
have proposed a new error calculation formula for image pruning. Our formula
calculates error in a bottom-up manner and speeds up computation by reusing
previously calculated error values. First, at each iteration i, two parameters, σ1

and σ2, are defined:

σ1 =
{ |mL − mi| if left child of the current node is a leaf;

σL otherwise

σ2 =
{ |mR − mi| if right child of the current node is a leaf;

σR otherwise

(1)

where mL and mR are the mean values of the left and right child, respectively,
σL and σR are the previously calculated values of σ for the left and right child,
respectively and mi is the mean value of the current node at iteration i. The
current node’s standard deviation σi is calculated by:

σi =

{
0 if left child of the current node is a leaf;√

ALσ2
1+ARσ2

2
AL+AR

otherwise
(2)

where AL and AR are the area of the left and right child, respectively. Finally,
the node’s total error Ei is calculated by this formula:

Ei =
{

AL |mL + σ1 − mi| + AR |mi − (mR − σ2)| if mL ≥ mi;
AR |mR + σ2 − mi| + AL |mi − (mL − σ1)| otherwise (3)

After the image is compressed by BSP tree algorithm, the image goes to
encryption stage. In the encryption module, only the BSP tree part needs to be
encrypted. Unlike JPEG, where the entire image must be encrypted for secure
transmission, BSP tree allows partial encryption while still keeping the image
secure. This saves encryption computation energy cost.

4 Experimental Results

The experimental results of varying different parameters in generating an image
will be presented in this section. We will investigate the effect of the tree con-
struction mechanism on the computation energy and compression bit rate. We
will also investigate how the error formula used for pruning affects the image
quality and compression ratios. The computation energy is estimated by mul-
tiplying the execution time by the estimated average CPU power dissipation
during execution. Due to limited resources, the execution time is measured on
a PC, and the time on PDA is estimated by scaling down by a factor of seven
(since a typical PC is 2.8GHz and a typical PDA CPU is 400MHz). Then the
result is multiplied by 120mW, the average CPU power consumption during

computation. The transmission time is estimated from the file size of the image
multiplied by the average data rate of 600kbit/s for a typical 3G system [14].
Then the transmission energy is estimated by multiplying the estimated trans-
mission time by 375mW, the average measured transmission power consumption
of the transceiver for our PDA.

4.1 Effect of Tree Construction Mechanism

The tree construction method affects how fast the best quality tree representa-
tion of image can be generated. In addition, the shape of the tree affects the
pruning characteristics. This section presents the resulting images for the opti-
mal line selection method and the binary split method.

Table 1 shows the computation energy Etree used for tree construction and
the transmission energy ETx for both the original LSE optimal line and our
binary split method. It can be seen that our method only uses about 40% of the
original total energy required for constructing and sending the image. Most of the
savings comes from the savings in the computation energy for tree construction.
Although the images generated by our method use slightly more transmission
energy because the generated file is slightly larger, it is compensated by the
much more significant savings in computation.

Table 1. Tree Construction and Transmission Energy Consumption (Joules) for Var-
ious Images. The total energy is the sum of the computation energy required for con-
structing the tree and the transmission energy for sending the image

Optimal Line Binary Split ETotalB
ETotalOEtree ETx ETotalO Etree ETx ETotalB

peppers (512 × 512) 11.86 5.23 17.09 1.30 5.58 6.88 0.40
lena small (256 × 256) 2.74 1.33 4.07 0.30 1.37 1.67 0.41
tulips (768 × 512) 17.47 7.96 25.43 1.95 8.46 10.41 0.40
frymire (512 × 512) 8.85 1.46 10.31 0.80 3.32 4.12 0.40
serrano (512 × 512) 9.67 1.12 10.79 0.66 2.33 2.99 0.27

4.2 Effect of Error Calculation Formula on Pruning

In this experiment, we will explore how our error pruning formula performs
on the optimal line constructed and our binary split constructed tree. We will
explore the effects of the tree construction method on the results generated by
our pruning formula. The proposed fast error formula in (3) is used to prune
optimal-line tree and binary-split tree images at a threshold of 4.00× 10−4. The
resulting peppers and frymire images are shown in Fig. 2.

With respect to image quality, it is found that our fast error formula works
slightly better with binary split generated trees. The optimal line generated

Threshold Optimal Line Tree Binary Split Tree

4.00 × 10−4

4.00 × 10−4

Fig. 2. Peppers and Frymire Images Using Fast Error Pruning. For peppers image,
our fast error formula works better images trees constructed with binary split method,
since the tree is more balanced. For frymire, our pruning formula works equally well
with image trees constructed with either the optimal line or our binary split method

image’s quality degrades quickly as the threshold increases. For example, at a
threshold of 5 × 10−6 of the root node’s error, the bit rate decreases quickly to
3.49bbp at 34.54dB, while the binary split tree has a slower drop in bit rate
(8.82bbp) and image quality (37.73dB). The sharp drop in bit rate and image
quality for optimal line trees is due to the observation that these trees are usually
unbalanced. Therefore, the effect of error propagation is worse for an unbalanced
tree where some paths to the root may be very long. As a result, the root’s total
error calculated using our formula deviates from the actual total square error
more. Therefore, our formula performs better for our binary split constructed
trees.

The estimated computation energy consumed in computing the errors at
each node is shown in Table 2. For both the peppers and frymire images, the
computation energy is reduced by almost 90%. Also, the slow total square error
(TSE) method works slightly better on binary split tree version than the optimal
line tree version of peppers. Again, this is due to the unbalanced tree shape of
optimal line trees. Therefore, a lot of the calculations done at the deeper levels
need to be performed again. For the frymire image, the behaviour is opposite.
The binary split tree version is slower. This is because for the frymire image, the
best quality image actually has a lot more nodes than the optimal line version.

Although the optimal line selection algorithm yields an optimal size image
tree, it is too computationally intensive; therefore it is not optimal for energy. On
the other hand, the binary split method can construct the BSP tree much faster,

Table 2. Computation Energy Consumption (Joules) for Computing Node Error

Optimal Line Tree Binary Split Tree
TSE Our Error Formula TSE Our Error Formula

Peppers 4.99 0.50 3.77 0.53

Frymire 1.08 0.14 2.19 0.33

with a slight increase in file size. Moreover, calculating the total square error in
the traditional way is too slow. Our proposed a fast error formula yields satisfac-
tory results when pruning images, especially for binary split method constructed
images.

4.3 Selective Focus Regions Feature

One of the major advantages of a BSP tree is the feature of selectively choosing
important areas of the image to have a higher quality than the less important
parts. The ”importance” of a region is supplied as user parameters. For the less
important areas, one can choose a higher threshold to compress the image more,
while in the more important areas one can choose a lower threshold to keep a
higher quality image. For example, in Fig. 3a, the lena image is pruned with the
same threshold for the entire picture. The facial features and the background
are pruned with the same quality. As a result, the facial features are blurred
(highlighted with circles). On the other hand, in Fig. 3b, the facial region is
pruned with a lower threshold, while the less important background is pruned
with a higher threshold. One can see that Fig. 3b appears to have a higher
quality than Fig. 3a because the important facial details are conserved. Selective
focus region feature should theoretically work well for quadtrees too, although
it has not been suggested in previous research in [12].

a) Uniform threshold b) Selective threshold

Fig. 3. Lena Image with Selective Threshold Regions. It can be seen that with selective
threshold to preserve the facial details, the lena image is visually higher quality than
the same image with uniform threshold across the image

5 Discussion

This section presents the analysis for the various characteristics of BSP tree
representation. We will analyze the performance of the tree construction methods
and pruning formula, image quality with respect to execution time and file size,
and the encryption performance with respect to file size and block or key length.

In [3], LSE is calculated for every potential partitioning line. The minimum
total number of operations required for constructing a optimal line selection BSP
tree for a N × N image is MinTotalOps = 2 log2 N · (3N2 · Multiplications +
5N2 ·Additions). This is only the lower bound of the total number of operations
required for the optimal line selection process. Usually, more than one line passes
the LSE transform condition. Therefore, the number of actual computations is
significantly greater.

In the binary split case, for each split, only one addition and one multipli-
cation is needed to find the midpoint. Thus, only N2 − 1 additions and N2 − 1
multiplications are required. No calculation of total square error is needed. It
can be seen that the binary split method is much faster than the optimal line
selection method. From the experimental results, it can be seen that the file size
increase due to neglecting the optimal line is acceptable. Therefore, the binary
split method is a simple yet efficient method to construct the BSP tree. It has
the combined benefits of the efficiency of representation of a BSP tree and the
efficiency in tree construction of a quadtree.

In [3], TSE needs to be calculated at every level of the tree. This may yield
to better pruning decisions, yet it is not efficient since this calculation needs to
be repeated again at the higher levels. Our proposed formula reuses the partial
error previously calculated from the lower nodes. This speeds up the pruning
exponentially. Calculation of the total square error requires N2. In contrast,
our proposed formula in (3) reuses the children’s total error and derives the
new total error by adding a weighted average of the children node’s error and
standard deviation. No recalculation of error for the subtree regions is needed.

Our proposed algorithm aims to reduce energy consumption by cutting down
the computation energy for constructing the image tree and pruning the tree.
In the new binary split tree construction method, the tree construction energy
is cut down significantly, at the expense of a slight increase in tree file size
and transmission energy. In the fast error calculation method, the computation
energy is reduced by reusing results from previous calculations. The tradeoff is
a slightly less accurate pruned image quality.

In general, the higher the image quality, the larger the file size is. Table 3
shows the file size, bit rates and the PSNR for the peppers and frymire im-
ages compared to JPEG. The BSP tree with the bit rate closest to the best
compression (denoted BC) JPEG is chosen for comparison. The optimal tree
peppers image is pruned at 10−5 threshold using the original TSE formula. The
best quality image (denoted BQ) chosen for comparison with the JPEG is also
generated by optimal tree method.

Table 3. BSP Tree and JPEG Transmission Energy and PSNR

JPEG size
(bytes)

ETxJPEG

(Joules)
PSNR
(dB)

BSP size
(bytes)

ETxBSP

(Joules)
PSNR
(dB)

Peppers BC 23308 0.117 32.19 34020 0.170 25.29

Peppers BQ 249787 1.249 44.35 1116072 5.580 56.53

Frymire BC 88012 0.440 21.13 86006 0.433 20.39

Frymire BQ 475277 2.376 47.49 200632 1.014 49.66

The BSP tree with the bit rate closest to the best compression JPEG is chosen
for comparison. The optimal tree frymire image pruned at 10−4 threshold. The
best quality image for comparison with the JPEG is the optimal tree image.

It can be seen that BSP tree compression works better with the frymire image
than the peppers image. For the frymire image, the BSP tree compression can
compress more than 2 times better at the best quality (BQ) settings in Table 3.
Even if we set JPEG at the best compression (BC) settings, BSP tree compres-
sion is still able to match the compression ratio of JPEG. Table 4 illustrates the
estimated total energy required for encrypting and transmitting the JPEG and
BSP images. For JPEG it is assumed that the entire JPEG file is encrypted to
avoid security leaks. In the BSP case only the defining BSP tree is encrypted as
described in Sect. 3. It can be seen that our BSP approach uses only a fraction
of the encryption energy, denoted EAES, compared to JPEG. When sending the
frymire image, our BSP approach is better than JPEG, and it uses only 38-87%
of the total energy required for encrypting and transmitting an equivalent JPEG
image. However, it uses more energy than JPEG for the peppers image. From
our experimental results, it appears that BSP trees works better for computer
graphics images and JPEG is more suitable for natural photographic images.

Table 4. Estimated BSP Tree and JPEG Secure Transmission Energy (Joules)

JPEG BSP Tree ETotalBSP
ETotalJPEGEAES ETx ETotalJPEG EAES ETx ETotalBSP

Peppers BC 0.015 0.117 0.132 0.001 0.170 0.17 129%

Peppers BQ 0.164 1.249 1.413 0.041 5.580 5.621 398%

Frymire BC 0.058 0.440 0.498 0.003 0.430 0.433 87%

Frymire BQ 0.311 2.376 2.689 0.011 1.003 1.014 38%

We have compared the bit rate with other compression systems. For the data
based on 8-bit greyscale images, we have multiplied the bit rate by 3 for a fair
comparison to the 24-bit colour used in this system. Table 5 shows the com-
parison to other image compression systems. The values in parentheses are the
greyscale values multiplied by 3. Our BSP tree compression system is compara-

ble to other systems’ performance for the peppers image. However, for the lena
image, other systems work better. Unfortunately, we are unable to find the data
for other images from the literature.

Table 5. Compression performance compared to other systems

Quadtree JPEG Fractal Binary Tree BSP Tree
Bit rate PSNR Bit rate PSNR Bit Rate PSNR Bit Rate PSNR

peppers 0.516 N/A N/A N/A 0.60 (1.80) 32.5 1.67 31.37

lena 0.67 (2.01) 30.36 0.125 (0.375) 26.2 0.24 (0.73) 31.0 0.73 26.57

frymire N/A N/A 1.813 47.49 N/A N/A 0.765 49.66

Our proposed BSP compression algorithm is faster than [3] because it reuses
calculations at previous nodes. With respect to the compression performance and
based upon our experimental results, BSP trees are better suited for computer
graphics images than photographic images when compared to JPEG. This is
because BSP compresses better when there are larger homogenous regions, which
is typical for computer graphics. In contrast, photographic images have smooth
transitions between pixels. Therefore, neighbouring pixels are usually slightly
different from each other. JPEG is more specialized in handling such cases. Our
BSP scheme is also better than quadtrees in most cases because partitioning
lines are more flexible, thus less nodes are created to represent the same image.

Finally, this paper has proposed the idea of allowing users to select a different
pruning threshold for different regions using a BSP tree. This allows users to
conserve the details in the important parts of the image. After all, it is the
end users’ perception of the image that is ultimately important. Compression
algorithms that affect the image globally (e.g. JPEG and wavelets) do not allow
such flexibility. We have proposed a binary split scheme in building the BSP tree,
which combines the benefits of both worlds: it has the computation efficiency of
quadtree in splitting the image, but also has the compact storage property of an
optimal line BSP tree.

6 Conclusion

In this paper, we have presented an energy efficient image representation scheme.
For mobile systems, a fast compression algorithm is necessary to save computa-
tion costs and the energy cost used for transmission. Our binary split tree con-
struction scheme combines the benefits of both quadtree and optimal line BSP
tree: it has the execution efficiency of quadtree in splitting the image, but also
has the compact storage property of an optimal line BSP tree. Our experiment
results show that the file size, hence, transmission energy, only increases slightly
when using a binary split scheme. Our BSP tree pruning formula uses less energy
than the traditional total square error formula because it reduces computations
by reusing results from previous calculations. With respect to compression per-
formance, we have found that BSP tree compresses computer graphics better

than photographic images. Since computer graphics have large homogenous re-
gions, our BSP compression algorithm is effective in merging those neighbouring
pixels together. Finally, our image representation allows users to choose differ-
ent pruning thresholds for different areas of the image. By choosing a higher
threshold for the less important areas, while maintaining a lower threshold for
the important areas, the impact on the perception of image quality is small.
At the same time, transmission energy is reduced because the image file size is
smaller.

The authors would like to thank A. Sung for his power measurements.

References

1. Naik, S., Wei, D.: Software implementation strategies for power-conscious systems.
ACM Mobile Networks and Applications 6 (2001) 291–305

2. Radha, H., Vetterli, M., Leoonardi, R.: Image compression using binary space
partitioning trees. IEEE Trans. on Image Processing 5 (1996) 1610–1624

3. Radha, H., Vetterli, M., Leoonardi, R.: Fast piecewise constant approximation of
images. SPIE Visual Comm. and Image Processing 1605 (1991) 475–486

4. Chandra, S., Ellis, C.: JPEG compression metric as a quality aware image transcod-
ing. In: Proc. of the 2nd USENIX Symposium on Internet Technologies and Sys-
tems, Boulder, CO (1999) 81–92

5. Taylor, C., Dey, S., Panigrahi, D.: Energy/Latency/Image quality tradeoffs in
enabling mobile multimedia communication. Software Radio - Technologies and
Services (2001) 55–66

6. Kailasanathan, C., Safavi Naini, R.: Compression performance of JPEG encryption
scheme. In: IEEE Intl Conf. on Digital Signal Processing. Volume 2. (2002) 1329–
1332

7. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients.
IEEE Trans. on Image Processing 41 (1993) 3445–3462

8. Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set
partitioning in hierarchical trees. IEEE Trans. on Circuits and Systems for Video
Technology 6 (1996) 243–250

9. Lee, D., Dey, S.: Adaptive and energy efficient wavelet image compression for
mobile multimedia data services. In: Proc. of Intl Conf. on Communications. Vol-
ume 4., New York (2002) 2484–2490

10. D.G.Lee, D.Panigrahi, S.Dey: Network-aware image data shaping for low-latency
and energy-efficient data services over the Palm wireless network. World Wireless
Congress (3G Wireless) (2003)

11. Wu, H., Abouzeid, A.: Energy efficient distributed JPEG2000 image compression
in multihop wireless networks. In: Proc. of the 4th Workshop on Applications and
Services in Wireless Networks, Boston, MA (2004)

12. Cheng, H., Li, X.: Partial encryption of compressed images and videos. IEEE
Trans. on Signal Processing 48 (2000) 2439–2451

13. Chou, P., Lookabaugh, T., Gray, R.: Optimal pruning with applications to tree-
structured source coding and modeling. IEEE Trans. on Information Theory 35
(1989) 299–315

14. Eyuboglu, V.: CDMA2000 1xEV-DO delivers 3G Wireless (2002) Network World,
Feb 25th 2002, http://www.nwfusion.com/news/tech/2002/0225tech.html.

