
Cooperative Failure Detection in Overlay Multicast ?

Mengkun Yang and Zongming Fei

Department of Computer Science, University of Kentucky,
301 Rose Street, 2nd floor, Lexington, KY 40506, USA

myang0@cs.uky.edu,fei@cs.uky.edu

Abstract. Node failures and ungraceful departures are important issues to be
dealt with in overlay multicast. Fast detection is key to minimizing the disruption
of service to the affected nodes participating in the multicast session. In this pa-
per, we propose a cooperative failure detection mechanism that can greatly reduce
the failure detection time. A significant contribution of the paper is that we quan-
tify three important measures, i.e., the expected detection time, the probability of
false failure detection, and the overhead. This allows us to study the fundamen-
tal tradeoff among them in the failure detection mechanisms. The analysis and
simulations show that the proposed cooperative failure detection mechanism can
significantly reduce the failure detection time while maintaining the probability
of false positive at the same level, at the cost of slightly increased overhead.

1 Introduction

Overlay multicast (also known as application-layer multicast) [1,2] has been widely in-
vestigated as an alternative to IP multicast to implement group communications for its
easy deployment. It builds an overlay topology (usually a tree) among end hosts partic-
ipating in the multicast session, by using the unicast service provided by the substrate
network. The duplication functions are implemented at end hosts rather than routers.

Management of the overlay multicast tree faces a key problem. The non-leaf nodes
in the tree are end hosts, which are more likely to fail than routers and may leave the
multicast tree voluntarily without informing other nodes. In these cases, all of its down-
stream nodes are partitioned from the multicast tree and cannot get the multicast data
any more. It is important to recover from partitioning quickly so that the disruption of
service to those downstream nodes is minimized. The time to resume the data flow to
those affected nodes is an important measure of the responsiveness of failure recovery
mechanisms.

The recovery process consists of two steps, failure detection and tree reconstruc-
tion. Failure detection means that when a node in overlay multicast fails or leaves the
multicast session, other nodes can detect the event. A departing node may leave the
multicast tree gracefully, by sending a message to relevant nodes. The detection is not
a problem in this case. However, it is not uncommon in overlay multicast that a node
leaves the tree accidentally, such as in case of failures, or leaves voluntarily without in-
forming other nodes about its status. We need a detection mechanism for affected nodes
? This work was supported in part by the National Science Foundation under Grants CCR-

0204304 and EIA-0101242.

2

to reach the conclusion that the node is gone as soon as possible. In the rest of the paper,
we will use “failure” or “a node fails” to include the case in which a node leaves the
multicast tree without informing others.

The tree reconstruction is the process that those orphaned nodes or subtrees find
new parents to reconnect to the multicast tree. Several recent researches have addressed
the problem. A centralized approach depends on a coordinator to find the locations in
the tree for those affected nodes [3]. SpreadIt adopts a distributed approach in which
disconnected nodes try to get help from their grandparents or the root of the tree [4].
A proactive approach pre-computes rescue plans before failures happen to reduce the
recovery time [5]. They improve the performance of the tree reconstruction process
after failures have been detected.

In contrast, failure detection itself has not been widely studied in the context of
overlay multicast. They are usually described as a part of the tree construction proce-
dure [1,6], rather than as a focal topic being investigated as it deserves. Lack of quanti-
tative analysis of different detection mechanisms hinders a full exploration of different
design options.

In this paper, we perform an analysis of a basic heartbeat mechanism and study the
fundamental tradeoff among the failure detection time, the probability of false positive,
and the overhead. Based on that, we propose a cooperative approach to node failure
detection in overlay multicast to speed up the detection process. The basic idea is that all
neighbors interested in the well-being of a node cooperate with each other. To detect the
failure of a non-leaf node in overlay multicast, all its children and its parent can form a
logical group to help each other to make a decision. When any of them loses a heartbeat,
it tells others in the group about this event. If a node cannot receive the heartbeats from
the target node, and also receive information from cooperating nodes that heartbeats
are missing, it can quickly reach the conclusion with higher confidence that the target
node has failed. We perform a formal analysis of the cooperative scheme and design a
probabilistic notification technique to deal with big group sizes. Through analyses and
simulations, we find that the cooperative scheme can achieve shorter failure detection
time and a smaller probability of false positive at the same time, with a small increase
of overhead, compared with the basic heartbeat mechanism.

The rest of the paper is structured as follows. Section 2 proposes the cooperative
failure detection mechanism. Section 3 gives an analytical study on the gains and costs
of different detection schemes. Performance evaluations are presented in Section 4 and
related work is discussed in Section 5. We conclude the paper in Section 6.

2 A Cooperative Failure Detection Mechanism

The node failure and its detection can be illustrated by an example in Fig. 1. When non-
leaf node 5 fails, all the links (shown as dotted lines) between 5 and other nodes will
be affected. All the downstream nodes, 8, 9, 10, and 15-22, are affected and experience
data disruptions. Failure detection is the process that neighboring nodes (e.g., nodes 2,
8, 9, and 10) come to a conclusion that the node being monitored (node 5) has failed.

In the following discussion, the node being monitored will be called the target node.
The nodes participating in the failure detection of the target node are usually its neigh-

3

1

2 3

54

15 16 17 18 19 20 21 22

6 7

108 9 11 12 1413

2423

Fig. 1. An example of node failure

bors, such as nodes 2, 8, 9, and 10 for target node 5. In the discussion, we also use terms
monitor nodes and detecting nodes interchangeably with term neighbors.

2.1 Basic Heartbeat Scheme

The basic heartbeat scheme works as follows. Every node sends a heartbeat message
to each of its monitor nodes every T seconds. If a monitor node does not receive k
heartbeat messages in a row, it will derive that the target node has failed. k and T
are design parameters that can be adjusted. They determine the performance of the
detection mechanism.

Since each node independently makes its own decision about the failure of other
nodes based on its observation on the heartbeat losses, we call this basic heartbeat
scheme non-cooperative failure detection in our later discussion, in contrast to the co-
operative scheme discussed next.

2.2 Cooperative Scheme

The idea of the cooperative scheme is to let monitor nodes of a target node cooperate
with each other as a group so that each node can reach the conclusion faster. The goal
is that in most cases, a monitor node can detect the failure of a target node within one
heartbeat interval, with the help of other nodes in the same group.

Similar to the non-cooperative case, every target node sends a heartbeat message
to each of its monitor nodes every T seconds. When a monitor node does not receive
the heartbeat message at the expected time, it will send a notification message to each
node in the cooperating group with regard to the same target node. When a monitor
node receives the heartbeat message, no notification will be sent. So no extra traffic is
generated when the target node works normally.

For each target node, each monitor node maintains two counters in the coopera-
tive scheme. One is the number of heartbeats lost, denoted as Nh, and the other is the
number of notifications received, denoted as Nn. They are both initialized to 0.

– When a monitor node receives a heartbeat message from the target node, it resets
both counters, Nh and Nn, to 0.

4

– When it does not receive an expected heartbeat from the target node, it increases
the lost heartbeat counter Nh by 1, sends a notification to each node in the group,
and performs the following check. If Nh + Nn ≥ k, it concludes that the target
node has failed.

– When it receives a notification from other nodes in the cooperating group with
regard to the target node, it increases the notification counter Nn by 1 and performs
the following check. If (Nh + Nn ≥ k) ∧ (Nh > 0), it concludes that the target
node has failed.

Note k is a threshold parameter that can be adjusted. It can be different from the
k in the basic heartbeat scheme. A monitor node reaches the conclusion that the target
has failed only after it has lost at least one heartbeat from the target node.

3 Analytical Study

To better understand the gains and cost of the failure detection approaches, we per-
form a formal analysis in this section. Specifically, we want to quantify the following
performance measures.

1) Failure Detection Time. It is the interval between the time a node fails and the
time a monitor node reaches the conclusion that it has failed.

2) Probability of False Positive. It is the probability that while a target node works
fine, a monitor node reaches the conclusion that it has failed. This may happen when
the heartbeat messages are lost.

3) Overhead. It is the traffic generated for the failure detection purpose. Specifically,
we calculate the average number of messages generated per unit time for one monitor
node to be able to detect the failure of a target node.

We assume the probability of message loss between any pair of nodes in the overlay
multicast tree is p (0 ≤ p ≤ 1) and losses are independent. For clarity of analysis,
we assume the end-to-end path latency between two nodes is negligible and a monitor
node knows a heartbeat is lost at the exact same time when the heartbeat is supposed to
be sent out. These paths include those not in the overlay tree and yet used in the coop-
erative failure detection. Every node in the overlay multicast tree fails with probability
q (0 ≤ q ≤ 1). In the cooperative failure detection, we assume the number of nodes in a
cooperating group is n. When n = 1, there is no other node in the group. The other two
important parameters are threshold value k, which determines when a monitor node
concludes that a target node has failed, and the heartbeat interval T , which specifies
how frequently the heartbeat messages are sent out.

3.1 Failure Detection Time

Non-cooperative case In the non-cooperative failure detection, a node can detect the
failure of a target node if the number of heartbeats it has missed in a row exceeds the
threshold k. Therefore, the failure detection time Tnc is between (k − 1)T and kT , as
shown in Figure 2. Specifically, Tnc ≈ (k − 1)T if the target node fails immediately
before the expected time at which the next heartbeat should be sent out (point B); and

5

RcvdRcvd 1 2 3 k−1 k

T T T T T
(k−1)

k

T

TA

B

Fig. 2. Failure detection time for the non-cooperative approach

Rcvd k1 2 m−1 m

Maximal possible notifications
(m−1)(n−1)

The number of notifications
received: x

The number of
notifications
received: y

Maximal possible:
 n−1

Fig. 3. Failure detection time for the cooperative approach

Tnc ≈ kT if the target node fails immediately after a heartbeat is sent out (point A).
Assuming that the failure event is uniformly distributed in the interval (between point
A and point B), we can get the expected failure detection time for the non-cooperative
approach as E(Tnc) =

(

k − 1
2

)

T .

Cooperative case In the cooperative failure detection, the longest failure detection
time is Tco = kT , when the target node fails immediately after a heartbeat is sent
out and the detecting node gets no notifications from other nodes in the group. The
shortest failure detection time is achieved when the target node fails immediately before
a heartbeat is supposed to be sent out, and the detecting node gets all notifications from
all other nodes in the cooperating group. For every scheduled heartbeat, the detecting
node gets n−1 notifications and one missing heartbeat. It takes d k

nemissing heartbeats
to get the total bigger than or equal to the threshold k. So the minimal detection time is
Tco =

(⌈

k
n

⌉

− 1
)

× T .
We are interested in the expected detection time. If the probability the detecting

node can reach the conclusion after m (d k
ne ≤ m ≤ k) missing heartbeats is g(m), the

expected detection time will be

E(Tco) = T

k
∑

m=dk/ne

mg(m)−
T

2
(1)

To get the probability g(m), we explore all possible cases that a detecting node
cannot make the conclusion in m − 1 intervals, but can in m intervals. Assume the
number of notifications received in the first m − 1 intervals is x, and the number of
notifications received in the m-th interval is y, as shown in Fig. 3. Because the max-
imum number of notifications that can be received in one interval is n − 1, we have
0 ≤ x ≤ (n − 1)(m − 1) and 0 ≤ y ≤ n − 1. The fact that the detecting node can-
not make the conclusion in the first m − 1 intervals implies x + m − 1 ≤ k − 1, i.e.,

6

x ≤ k −m. In order for the node to make the conclusion in the m-th interval, we have
x + y + m ≥ k.

From y ≤ n− 1 and x + y + m ≥ k, we get x ≥ k −m− (n − 1). Therefore, x
can take values from max(0, k −m− (n− 1)) to min(k −m, (n− 1)(m− 1)), and
y can take values from k −m− x to n− 1.

Because the target node has failed, all other nodes in a cooperating group will send
a notification to the detecting node. Each notification will reach the detecting node with
probability 1− p. Under the independent loss assumption, the number of notifications
reaching the detecting node in the first m−1 intervals follows the binomial distribution
with parameters ((n − 1)(m − 1), 1 − p). The number of notifications reaching the
detecting node in the m-th interval follows the binomial distribution with parameters
(n− 1, 1− p). We use notation Pn,p(i) to represent the probability of i successes in the

binomial distribution with parameters (n, p). We know Pn,p(i) =

(

n
i

)

pi(1− p)n−i,

where

(

n
i

)

= n!
i!(n−i)! .

The probability of getting x notifications in the first m − 1 intervals is
P(n−1)(m−1),1−p(x). The probability of getting y notifications in the m-th interval is
Pn−1,1−p(y). Therefore, if we let α = (n− 1)(m− 1), and β = k −m− (n− 1), the
probability of reaching the conclusion in the m-th interval is

g(m) =

min(k−m,α)
∑

x=max(0,β)



Pα,1−p(x)
n−1
∑

y=k−m−x

Pn−1,1−p(y)





Combining this with formula (1), we get the expected detection time of the cooper-
ative approach.

3.2 Probability of False Positive

Non-cooperative case In the non-cooperative failure detection, a false failure detection
at node x is caused by the loss of k consecutive heartbeats that the target node sends to
x. Therefore, the probability of false positive is Fnc = pk.

Cooperative case In the cooperative detection, both the consecutive loss of heartbeats
sent to a monitor node v itself and the notifications from cooperating nodes contribute
to the false failure detection. The probability that a cooperating node will send a notifi-
cation to v while the target node is still sending heartbeats is θ = p(1− p), which is the
probability (p) that the heartbeat to that node is lost times the probability (1 − p) that
the notification successfully reaches v.

The probability that v concludes the target node has failed after the target node
sends out m heartbeat messages is the probability that v misses all m heartbeat mes-
sages times the probability that an appropriate number of notifications reach v. Note the
number of notifications reaching v in the first m− 1 intervals follows the binomial dis-
tribution with parameters (α, θ), and the number of notifications reaching v in the m-th

7

interval follows the binomial distribution with parameters (n−1, θ). Following the sim-
ilar reasoning as in deriving the expected time, the probability of false positive when
node v reaches a conclusion that the target node has failed after m (dk/ne ≤ m ≤ k)
heartbeat messages is

fco(m) = pm

min(k−m,α)
∑

x=max(0,β)



Pα,θ(x)

n−1
∑

y=k−m−x

Pn−1,θ(y)



 (2)

where α = (n− 1)(m− 1), and β = k−m− (n− 1). Therefore, the total probability
of false positive in the cooperative case is Fco =

∑k
m=dk/ne fco(m).

3.3 Overhead

Non-cooperative case The overhead for one monitor node is one heartbeat message
per T seconds, if the target node does not fail. Therefore, the overhead is Hnc = 1−q

T .

Cooperative case For the cooperative failure detection, in addition to the heartbeat
message, we have notification messages transmitted between cooperating nodes. When
the target node fails (with probability q), each monitor node will lead to n − 1 no-
tifications being transmitted. When the target node sends heartbeats normally (with
probability 1 − q), each of n − 1 cooperating nodes may miss the heartbeat message
with probability p and send a notification message to the monitor node. Therefore, the
overhead for the cooperative case is

Hco =
q(n− 1) + (1− q) (1 + p(n− 1))

T
(3)

3.4 Numerical Results and Analysis

Non-cooperative vs. Cooperative To compare different approaches, we show the nu-
merical results in Fig. 4(a)-4(c). For the cooperative detection, the number of nodes in
a cooperative group (n) is either 2, 4 or 6. As the threshold k increases, the detection
time increases in all schemes (Fig. 4(a)), but the non-cooperative approach increases
much faster than the cooperative approach. For a given threshold k, the cooperative ap-
proach can detect the failure in significantly shorter time. For example, when k = 4, the
cooperative approach with n = 6 only takes 0.5T , which is 1/7 of the time (3.5T) by
the non-cooperative approach. Fig. 4(b) and Fig. 4(c) show that the non-cooperative ap-
proach has a lower probability of false positive and lower overhead than the cooperative
approach, when they use the same threshold value (k).

An interesting observation is that the cooperative scheme with n = 4 nodes in
a group and the threshold k = 4 achieves both a lower probability of false positive
and the shorter detection time than the non-cooperative approach with k = 3. A more
general observation from the plot is that given a non-cooperative scheme with some
k > 1, we can always find a cooperative scheme with appropriate k and n such that it
has shorter detection time and a lower probability of false positive at the same time. In
all cases, the extra overhead is always no bigger than 20%.

8

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6

T
im

e
/ T

Threshold: k

Expected detection time (p=0.02)

NonCoop
Coop(n=2)
Coop(n=4)
Coop(n=6)

(a) The expected detection time

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 2 3 4 5 6

P
ro

ba
bi

lit
y

Threshold: k

False positive (p=0.02)

Coop(n=6)
Coop(n=4)
Coop(n=2)
NonCoop

(b) The probability of false positive

 0

 0.5

 1

 1.5

 2

 2 3 4 5 6

O
ve

rh
ea

d
(p

ac
ke

ts
/T

)

Threshold: k

Overhead (p=0.02, q=0.02)

Coop(n=6)
Coop(n=4)
Coop(n=2)
NonCoop

(c) The detection overhead

 0

 0.5

 1

 1.5

 2

 2.5

 2 3 4 5 6 7 8 9 10

T
im

e
/ T

Number of cooperative nodes: n

Expected detection time (p=0.02)

Coop(k=5)
Coop(k=4)
Coop(k=3)
Coop(k=2)

(d) The effect of group size on detection
time

Fig. 4. Quantitative comparison of failure detection schemes

The Effect of the Number of Monitor Nodes in a Cooperative Group In Fig 4(d),
as the number of monitor nodes in a group increases from 2 to 10, the detection time
decreases. Due to lack of space, we do not show the figures for the probability of false
positive and the overhead. Both metrics increases as the size of the cooperative group
increases. The key observation is that when the group size increases beyond threshold
k, the detection time reaches the minimum value T /2 and cannot be further decreased,
while the probability of false positive and the overhead continue increasing. On one
hand, this tells us that the cooperative scheme with n ≥ k achieves the design goal of
having monitor nodes detect the failure of a target node within one heartbeat interval in
most cases. On the other hand, this gives us a hint that the number of nodes in a group
should not be too large. A value close to or a little bit bigger than k is enough.

An Implementation Implication When implementing the cooperative scheme, we let
the parent and the children of a target node form a cooperative group, which can be
much larger than k. The implication of the above observation is that the large number
of members in a group does not help much to reduce the detection time further, but
increases the traffic generated when a heartbeat is lost. One approach to solving the

9

problem is to limit the number of cooperating nodes in a group to k. In this paper,
we adopt a different approach, i.e., probabilistic notification. We can let a node send
notifications with probability pc (0 ≤ pc ≤ 1) if the number of members in a group
is too large. Assume the number of nodes in the group is n (n > k). We can set pc to
about k−1

n−1 , so that each monitor node can roughly receive k − 1 notifications within
one interval and detect the failure if there is one. Also the overall traffic is reduced. We
call this method the probabilistic notification scheme in the performance evaluation. In
contrast, the original method will be called non-probabilistic notification scheme.

4 Performance Evaluations

1) Simulation Setup.
In the simulation, we use GT-ITM [7] to generate 1600 node transit-stub topolo-

gies as the underlying network. The source and the multicast members are randomly
distributed in stub domains. The network-layer link latencies, represented by the edge
weights in the graph, range from 1 ms to 81 ms. The application-level distance (path
latency) between two end-hosts is the sum of link latencies on the shortest path between
them. It ranges from 1 ms to 220 ms with the average equal to 96 ms in the generated
topology. The maximum number of neighbors that a node can have in the overlay mul-
ticast tree, called node degree, is uniformly distributed in range [2, 2× d− 2], where d
is the average node degree. In the simulations, d = 5 if not stated otherwise.

All experiments begin with a multicast tree with 160 end-hosts. Then nodes join
and leave the tree dynamically, following the Poisson process with leaving and join rate
λ = 0.2/second. Each experiment lasts for two hours. We use the Gilbert model [8]
to simulate the packet loss on the network-layer links. The average link loss rate is
set as plink = 1% if not mentioned otherwise. The end-to-end path loss probability is
p = 1− (1−plink)

l if the path consists of l links. The average number of links between
neighbors in the generated multicast tree is about 6. In the experiments, the heartbeat
interval is T = 15 seconds.

In the following figures, labels “Coop-nonprob” and “Coop-prob” denote the co-
operative failure detection using the non-probabilistic and the probabilistic notification
scheme respectively. “NonCoop” represents the non-cooperative approach.

2) Failure Detection Time.
Fig. 5(a) compares the average failure detection time, measured in the number of

heartbeat intervals. Fig. 5(b) depicts the cumulative distribution of the failure detection
time when the threshold is k = 4. Curves “overall” plot the average detection time of
all nodes in the multicast tree, while curves “n ≥ 2” only consider those nodes that
have n − 1 nodes to cooperate with in monitoring target nodes. We observe that the
cooperative detection achieves much smaller average detection time, compared with
the non-cooperative approach. For example, for the nodes in the cooperating groups
with sizes n ≥ 2, when k = 4, the average detection time is only 30% of the non-
cooperative approach. Moreover, more than 55% of them detect the target node failures
within just one interval and more than 95% of them detect the failures within two in-
tervals. In contrast, using the non-cooperative approach, more than 95% of the failures
are detected after three intervals. The detection time of the “overall” curves are not as

10

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6

A
ve

rg
e

de
te

ct
io

n
tim

e
/ h

ea
rt

be
at

 in
te

rv
al

 T

Threshold (k)

Average failure detection time

NonCoop
Coop-prob: overall

Coop-nonprob: overall
Coop-prob: n>=2

Coop-nonprob: n>=2

(a) Average failure detection time

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

C
D

F
 o

f f
ai

lu
re

 d
et

ec
tio

n
tim

e
(%

)

Detection time / heartbeat interval T

CDF of failure detection time

Coop-nonprob: n>=2
Coop-prob: n>=2

Coop-nonprob: overall
Coop-prob: overall

NonCoop

(b) CDF of the failure detection time

Fig. 5. Failure detection time

good as “n ≥ 2” because the nodes that have nobody to cooperate with need longer
time to detect the failures. We vary the average node degree d between 2.5 and 5 and
find that about 70% ∼ 85% of the nodes in the multicast tree belong to the monitoring
groups with sizes no less than 2. This means that most of the tree nodes cooperate with
somebody else and thus can benefit from the cooperative approach to detect the target
failures faster. Also we observe that in the cooperative detection, using the probabilistic
notification can detect failures almost as fast as using the non-probabilistic scheme.

3) Probability of False Positive.
Fig. 6(a) plots the probability of false positive. Given a threshold k, the cooperative

approach has more false positives than the non-cooperative approach. However, we
also note that using a larger threshold k in the cooperative approach (e.g., k = 4) can
result in the smaller probability of false positive and the smaller detection time This
revalidates the observation in the formal analysis. Moreover, when the threshold k is
less than the sizes of most cooperating groups, the probabilistic notification scheme can
get smaller probability of false positive for the cooperative approach, compared with
the non-probabilistic scheme. This is because using the probabilistic notification, when
the cooperating group size n is greater than the threshold k, only about k− 1 instead of
n − 1 cooperating nodes of a monitor node can send false notifications to it. A related
problem is how to choose k. We may have a target probability of false positive we want
to achieve. Then we can determine the value for k that satisfies the goal.

4) Overhead.
The overhead of detection approaches is measured by the number of control packets

sent per second for the detection purpose. In the non-cooperative approach, the heart-
beat packets are counted. For the cooperative detection, both the heartbeats and the
notification packets are included in the calculation. We define the relative overhead
of the cooperative approach as the ratio of its overhead to that of the non-cooperative
approach, under the same experiment configuration.

Fig. 6(b) depicts the relative overhead of the cooperative failure detection using two
different notification schemes. We observe that using the non-probabilistic notification,
the cooperative approach introduces about 20% more traffic than the non-cooperative
approach. This allows us to reduce the average detection time for all tree nodes by 50%

11

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 3 4 5 6

P
ro

ba
bi

lit
y

Threshold (k)

Probability of false positive

Coop-nonprob
Coop-prob
NonCoop

(a) Probability of false positive

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 3 4 5 6

R
el

at
iv

e
ov

er
he

ad

Threshold (k)

Relative overhead

Coop-nonprob
Coop-prob

(b) Relative overhead

Fig. 6. Probability of false positive and overhead

and for nodes having somebody to cooperate with by roughly 70 ∼ 75%, compared
with the non-cooperative approach. Moreover, the overhead can be further reduced by
using the probabilistic notification scheme. As demonstrated in the figure, its overhead
is always less than or equal to that of the non-probabilistic scheme. For example, with
k = 2, the probabilistic notification only gives rise to 5% more overhead than the non-
cooperative approach, in contrast to 17% in the non-probabilistic scheme.

5 Related Work

Failure detection has been studied in distributed systems [9]. The goal is to design a
scalable detection mechanism that all nodes in the distributed system can reach a con-
sensus that a failure has occurred. In the context of overlay multicast, failure detection
is usually described as a part of the tree construction procedure. In the End System
Multicast [1], each node sends refresh (heartbeat) messages to its neighbors. If a node
does not receive refreshments from a neighbor for a long period of time, a probe is sent
to this neighbor. It is considered to be dead if no response is returned. For those nodes
it does not receive refreshments for some time, but not long enough, it probabilistically
probes them. In the Intradomain Overlays [10], each overlay node periodically sends
keepalive (heartbeat) messages to its tree parent. Failure in receiving such a message
makes the parent to probe the child. No response for the probe leads to declaration of
child failure.

Both of them use the heartbeat mechanism to detect the failure. They also use probe
to make sure that the target has failed, in order to reduce the probability of false positive.
Notice that the final probe itself may also have a certain probability of false positive,
depending on which probing method is used. While the probing can also be used in our
systems, the cooperative scheme we proposed can reduce the time the monitor node
detects the problem at the target node and increase the confidence of the conclusion. By
choosing an appropriate threshold and forming a cooperating group, we can decrease
the probability of false positive to a very low level and make the probing unnecessary.

The Resilient Overlay Network [11] also addressed the failure detection problem.
It aims at detecting path failures instead of node failures in overlay networks, by using

12

an active probing mechanism. If no response is returned after probing a node, a higher
probing frequency replaces the normal probing frequency. If no response is received
for a certain number of consecutive probings, the probed path is determined to be dead.
The traffic generated by the probing process doubles that of heartbeat mechanism, and
the chance of message loss is also doubled. Therefore, the probability of false positive
is higher than one-way heartbeat based detection mechanisms. Based on the paper, the
detection time of the probing mechanism is about 2T if the probing interval is T . In
contrast, our cooperative scheme can detect the failure within one heartbeat interval if
we have enough cooperative nodes.

6 Concluding Remarks

Failure detection and recovery is a very important problem in overlay multicast. The
effectiveness of the detection mechanism has direct impacts on the service quality to
the receivers in the session. In this paper, we proposed a cooperative approach to speed
up the failure detection process. We gave a quantitative study of three important per-
formance measures of detection mechanisms, and analyzed the fundamental tradeoff
among them. We also discussed some implementation issues and evaluated the perfor-
mance of the proposed scheme. While the focus of this paper is on failure detection
in overlay multicast, the cooperative detection mechanism is also applicable to other
overlay networks as well.

References

1. Chu, Y.H., Rao, S.G., Seshan, S., Zhang, H.: A case for end system multicast. In: Proceedings
of ACM SIGMETRICS’00. (2000) Santa Clara, CA.

2. Chawathe, Y., McCanne, S., Brewer, E.A.: An architecture for Inter-
net content distribution as an infrastructure service (2000) Available at
http://www.cs.berkeley.edu/ yatin/papers/scattercast.ps.

3. Padmannabhan, V., Wang, H., Chou, P.: Resilient peer-to-peer streaming. In: Proceedings of
the 11th IEEE ICNP’03. (2003)

4. Deshpande, H., Bawa, M., Garcia-Molina, H.: Streaming live media over a peer-to-peer
network (2001) Technical Report CS-2001-31, CS Dept. Stanford University.

5. Yang, M., Fei, Z.: A proactive approach to reconstructing overlay multicast trees. In: Pro-
ceedings of the IEEE INFOCOM’04. (2004)

6. Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., James W. O’Toole, J.: Overcast:
Reliable multicasting with an overlay network. In: Proceedings of the 4th OSDI’00. (2000)

7. Zegura, E.W., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In: Proceedings
of INFOCOM’96. (1996)

8. Yajnik, M., Moon, S., Kurose, J., Towsley, D.: Measurement and modelling of the temporal
dependence in packet loss. In: Proceedings of INFOCOM’99. (1999) New York.

9. van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure detection service. In:
Proceedings of Middleware’98. (1998) 55–70 The Lake District, England.

10. Kommareddy, C., Guven, T., Bhattacharjee, B., La, R., Shayman, M.: Intradomain over-
lays: Architecture and applications. Technical Report UMIACS-TR 2003-70, University of
Maryland, College Park (2003)

11. Anderson, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay netorks. In:
Proceedings of ACM SOSP’01. (2001)

