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Abstract. We study a finite population of mobiles communicating using
the slotted ALOHA-type protocol. Our objective is the study of coordina-
tion between the mobiles in both cooperative as well as non-cooperative
scenarios. Our study is based on the correlated equilibrium concept, a
notion introduced by Aumann that broadens the Nash equilibrium. We
study ways in which signaling can improve the performance both in the
cooperative as well as in the non-cooperative cases, even in the absence
of any extra information being conveyed through these signals.

1 Introduction

There has been a growing interest in studying competition (and also cooperation)
aspects of networking in general, and of access to a common channel in particular.
Non-cooperative game theory, as well as cooperative game theory, have been
frequently used as a central framework for modeling such issues, see for example
[1] and references therein.

We consider a finite population of mobile terminals that compete over the
access to a common channel. The framework we consider is of a discrete time
system (a simplified version of the slotted Aloha protocol [2]). All mobiles are
thus supposed to be synchronized. As is frequently assumed when studying slot-
ted Aloha, we assume that if more than one mobile attempts to send a packet
at time slot t then all transmitted packets are lost and mobiles wait a random
amount of slots before retransmitting their packets, in order to avoid repeated
collisions.

We consider both the cooperative as well as the non-cooperative approaches.
For each case we study the impact of adding coordination mechanisms on the
throughput.

The framework we consider is that of correlated games along with the notion
of correlated equilibrium. The notion of correlated equilibrium was introduced
by R. Aumann3 in [3] and further studied in [4–6]. An algorithm for the com-
3 Prof. R. Aumann has received in 2005 the Nobel prize in economy for his contribu-

tions to game theory, together with Thomas Schelling.



putation of correlated equilibria is developed in [7]. Correlated equilibria are
generalizations of the Nash equilibrium concept; the correlated equilibria are de-
fined in a context where there is an arbitrator who can send (private or public)
signals to the players. These signals allow players to coordinate their actions,
and, in particular, to perform joint randomization over strategies.

In many contexts, an arbitrator is thought of as an intelligent entity, used for
helping to solve conflicts and for proposing compromises to the different sides
involved. In contrast, in correlated games, an arbitrator needs not have any
intelligence. It is assumed to generate signals that do not depend on the system
(or on individual) states. Moreover, it does not need to have any knowledge
on the system. All the arbitrator has to do is to create some random signals
(according to a randomized mechanism known by the players) that can help the
synchronization (or coordination) between them.

In the context of non-cooperative games, each player has the possibility not
to consider the signal(s) it receives. A multi-strategy obtained using the signals
is a set of strategies (one strategy for each player which may depend on all the
information available to the player including the signal it receives). It is said to be
a correlated equilibrium (a precise definition will be given later) if no player has
an incentive to deviate unilaterally from its part of the multi-strategy. A special
type of “deviation” in this definition can be of course to ignore the signals.

An arbitrator may even be a virtual entity. As an example, the players can
agree to use some random data (e.g., the first word they hear on the radio) as
the signal or as an input to a function that allows to create a common signal (or
a signal which may differ from one player to another).

Our contribution in this paper is not only in applying the notion of cor-
related equilibrium in the context of networking, but also in extending it to
the multi-criterion case; in our case, each mobile (player) has two objectives:
expected throughput and expected power consumption. We use the correlated
equilibrium setting adapted to the context of constrained optimization by each
player (maximizing the average throughput with a constraint on the average
power consumption).

Coordination between players turns out to be useful also in the case of coop-
erative optimization. Indeed, the coordination may be needed also in this frame-
work in the so called team problem [1, 8], i.e., where various players have the
same common objective that they maximize (e.g., the global throughput). Users
may benefit from performing joint randomizations, which may not be possible
without coordination due to a possible distributed nature of the problem. The
need for joint randomization in the team setting is due to the multi-objective
nature of the problem (more precisely to the constraints on the expected power
consumption).

The paper is organized as follows. The model is described in Sect. 2. The
general game is analyzed in Sect. 3. We introduce a coordination mechanism,
and we define and analyze the corresponding correlated strategies that arise in
this context in Sect. 4. Finally, we present some results in Sect. 5.



2 The Model

We consider a finite population of m mobile terminals. Each mobile has a unique
i.d. number ranging between 1 to m. Time is slotted.

Let N = {0, 1}m represent the set of all 2m subsets of {1, . . . , m}. At each
time slot, a subset of mobiles Z(t) ∈ N is assumed to be active. The number of
active terminals at time t is equal to the Hamming weight |Z(t)| =

∑m
i=1 Zi(t)

of Z(t) and denoted by N(t). Z(t) (and thus N(t) = |Z(t)|) are assumed to be
stationary ergodic processes.

Each active mobile is assumed to be saturated, i.e., it always has packets to
send. At each time slot, a random subset of mobiles is active. If at a time slot,
more than one active mobile attempts to transmit then there is a collision and
all packets transmitted in the time slot are lost.

Let qi denote the probability that mobile i transmits a packet when active
(we call qi the strategy). If z ∈ N, let ζ(z) be the probability that the subset z
of mobiles is active at a slot and let πn =

∑
|z|=n ζ(z) be the probability that

there are n active mobiles at a slot. In particular, the probability that mobile i
is the only active mobile in a slot is ζ(ei) where ei is the vector whose elements
are all zero except for the ith entry which equals one.

The probability of a successful transmission at a time slot is

Θall(q1, . . . , qm) = EZ


∑

i∈Z

qi

∏

j∈Z\{i}
(1− qj)




=
∑

z∈N

ζ(z)
∑

i∈z

qi

∏

j∈z\{i}
(1− qj). (1)

which is also the system throughput. The expected average throughput per mo-
bile is Θall/m. The throughput of mobile i conditioned on being active is given
by

Θact
i (q1, . . . , qm) = EZ


qi

∏

j∈Z\{i}
(1− qj)

∣∣∣∣∣∣
i ∈ Z




= qi

∑

z∈N
i∈z

ζ(z)
∏

j∈z\{i}
(1− qj). (2)

In the following, the purpose of cooperative optimization will be to maximize
the system throughput Θall, whereas in a non-cooperative setting, each mobile
will attempt to maximize selfishly its conditional throughput Θact

i , which we call
its utility.

3 No Coordination Mechanism

3.1 General Case

The maximal throughput that can be attained is obtained by maximizing the sys-
tem throughtput Θall(q1, . . . , qm) given by (1) over (q1, . . . , qm) ∈ [0, 1]m. Since



Θall(q1, . . . , qm) is a multivariate polynomial, hence continuous in (q1, . . . , qm),
and [0, 1]m is a compact set, the existence of a maximum is immediate. For given
{ζ(z)/z ∈ N}, computing this maximum is a constrained optimization problem
[9].

If the mobiles are non-cooperative and care only for their own throughput
then it is immediate from (2) that the only Nash equilibrium4 is where all mobiles
transmit with qi = 1. The global throughput is then π1 and the expected average
throughput per mobile is π1/m.

In the non-cooperative case, we are also interested by the conditional through-
put, i.e., the throughput of a mobile averaged over the activity periods of the
mobile. The conditional throughput of mobile i when qi = 1 for all mobiles is
given by ζ(ei).

3.2 Power Considerations

In reality mobile users are sensitive to power consumption. Their objective is
to maximize the system throughput (in the cooperative case) or the individual
throughput (in the non-cooperative case) under the constraints qi ≤ qmax

i for
some constant qmax

i , for all users i. In the cooperative case, we can model the
choice of transmission probability qi as a constrained optimization problem. In
the non-cooperative case, it is easy to see that the Nash equilibrium is obtained
with qi = qmax

i for all mobiles. From (1), this gives at the Nash equilibrium the
throughput of

Θall(qmax
1 , . . . , qmax

m ) =
∑

z∈N

ζ(z)
∑

i∈z

qmax
i

∏

j∈z\{i}
(1− qmax

j ),

and from (2), the conditional throughput as

Θact
i (qmax

1 , . . . , qmax
m ) = qmax

i

∑

z∈N
i∈z

ζ(z)
∏

j∈z\{i}
(1− qmax

j ).

4 Coordination, Correlated Equilibrium and
Optimization

4.1 Coordination Mechanism

If the base station had full information and could schedule transmissions of the
mobiles then full utilisation (i.e., a throughput of 1−π0) could be achieved by a
TDMA type approach. We consider however the case where the base station has
no control over the mobiles and has no information on their power constraints
nor on their number. It can only serve as an arbitrator, in the sense that was
discussed in the introduction.
4 A Nash equilibrium is a set of strategies such that no mobile can improve its utility

by deviating unilaterally from its strategy.



We therefore consider the following coordination mechanism. We assume that
at each time slot t, the base station can send a signal to all mobiles in the form
of a random variable X(t), uniformly distributed over the integers {0, . . . , K−1}
for some integer K ≥ 2. We assume for simplicity that m is a multiple of K.
The process X(t) is assumed to be independent of Z(t).

4.2 Transmission Strategy for Mobiles

In absence of any coordination mechanism, a strategy of a mobile would be
the probability of transmitting a packet. In the presence of the coordination
mechanism, a mobile has the possibility to use a larger notion of strategies.

Definition 1. We define the set of correlated policies as follows.

– We partition the set of all mobiles into K subgroups Sj, j = 1, . . . , K where
Sj contains a mobile i if and only if i = j − 1 (mod K) (denoted i ≡ j − 1).

– A correlated strategy of a mobile is described using two real numbers in the
unit interval: pi and qi.

– At time t, an active mobile i transmits a packet with probability pi if and
only if i ∈ SX(t). Otherwise it transmits with probability qi.

Note that this class of correlated strategies includes in particular the non-
correlated strategies. Thus, in the non-cooperative setting, a mobile has always
the possibility of ignoring the signals X(t) by using pi = qi. The latter can be
viewed as a non-correlated strategy.

We call (pi, qi) the strategy of mobile i. For two m-dimensional vectors p and
q we define (p,q) to be a multi-strategy for all mobiles, where mobile i uses the
ith entry (pi, qi) of the vectors (p,q). Let

U = {(p,q)/∀i ∈ {1, . . . ,m}, pi ∈ [0, 1], qi ∈ [0, 1]}
denote the class of all multi-strategies.

Define (p,q)−i to be the set of m − 1 strategies of all mobiles except for
mobile i, and set

(
(p,q)−i, (p′, q′)i

)
to be the policy where all mobiles other

than the ith one use the policies described by (p,q)−i whereas the ith mobile
uses policy (p′, q′).

4.3 Power Considerations

We assume that mobile i has a constraint on the average power it can use while
active. More precisely, the average power consumption during activity periods
of a mobile with parameters (p, q) is

Pow(p, q) =
p

K
+

(K − 1)q
K

. (3)

We then assume that mobile i has the power constraint

Pow(pi, qi) ≤ qmax
i where qmax

i ≤ 1. (4)



Let U cons
i denote the class of strategies of mobile i satisfying (4). Let

Ucons = {u ∈ U/∀i ∈ {1, . . . , m}, ui ∈ U cons
i }

denote the class of multi-strategies u for which for each i, ui = (pi, qi) satisfies
(4).

Definition 2. A multi-strategy u ∈ Ucons is said to be a correlated equilibrium
if for all i and (p′, q′) ∈ Ucons

i

Θact
i (u) ≥ Θact

i

(
u−i, (p′, q′)i

)
. (5)

Definition 3. A multi-strategy u∗ ∈ Ucons is said to be correlated optimal if for
all feasible multi-strategies u ∈ Ucons,

Θall(u∗) ≥ Θall(u). (6)

The expressions for Θall(u) and Θact
i (u) can be written as

Θall(u) =
∑

z∈N

ζ(z)
∑

i∈z




pi

K

∏

j∈z\{i}
j≡i

(1− pj)
∏

j∈z\{i}
j 6≡i

(1− qj)

+
qi

K

K∑

k=1
k 6≡i

∏

j∈z\{i}
j≡k

(1− pj)
∏

j∈z\{i}
j 6≡k

(1− qj)


 (7)

and

Θact
i (u) =

pi

K

∑

z∈N
i∈z

ζ(z)
∏

j∈z\{i}
j≡i

(1− pj)
∏

j∈z\{i}
j 6≡i

(1− qj)

+
qi

K

∑

z∈N
i∈z

ζ(z)
K∑

k=1
k 6≡i

∏

j∈z\{i}
j≡k

(1− pj)
∏

j∈z\{i}
j 6≡k

(1− qj) . (8)

Θact
i (u) is an affine function of pi and qi. Therefore, in order to maximize

Θact
i (u), the inequality in (4) will be an equality: each mobile will transmit at

the maximum of its possibilities. In the next section, we investigate how the
power is split between pi and qi for each mobile in a particular case.

4.4 Symmetric case

Solving the constrained optimization problems of (1) or (7), as well as finding
Nash or correlated equilibria, becomes rapidly intractable in the general case



when the number of mobiles m (and hence the number of variables in the mul-
tivariate polynomials involved) increases. To simplify the analysis, we consider
a symmetric case when the coefficients ζ(z) depend only on |z|, and the power
constraints qmax

i = qmax are the same for all users.
We consider a simple model when mobiles are independently active with

a probability π. This corresponds to the model used in [10] for users with a
single packet buffer, when the probability of arrival of a new packet is equal
to the probability of retransmission of a backlogged packet. In this case, the
coefficients in (1) and (7) become symmetric, since for all z such that |z| = n,
ζ(z) are equal:

ζ(z) = π|z|(1− π)m−|z| (9)

In the non-cooperative case, we can restrict to the same strategy (p, q) being
used by all users, and investigate if a single user deviating from this strategy
benefits by using a different strategy (p̂, q̂). Recall that πn =

∑
|z|=n ζ(z). Let

` =
m

K
, λ = m− m

K
.

After some manipulations, (8) can be rewritten as:

Θact(u) =
p̂

K

m∑
n=1

1(
m
n

)πn

×
min(`−1,n−1)∑

k=max(0,n−1−λ)

(
`− 1

k

)(
λ

n− 1− k

)
(1− p)k(1− q)n−1−k

+
(K − 1)q̂

K

m∑
n=1

1(
m
n

)πn

×
min(`,n−1)∑

k=max(0,n−λ)

(
`

k

)(
λ− 1

n− 1− k

)
(1− p)k(1− q)n−1−k. (10)

The power constraints (4) give us

p̂ = Kqmax − (K − 1)q̂. (11)

Replacing p̂ by this expression in (10), we obtain Θact(u) as an affine function
in q̂. Hence, the optimal q̂ will be either

max(0,
Kqmax − 1

K − 1
) or min(1,

Kqmax

K − 1
)

depending on the sign of the coefficient

m∑
n=1

1(
m
n

)πn

min(`,n−1)∑

k=max(0,n−λ)

(
`

k

)(
λ− 1

n− 1− k

)
(1− p)k(1− q)n−1−k

−
m∑

n=1

1(
m
n

)πn

min(`−1,n−1)∑

k=max(0,n−1−λ)

(
`− 1

k

)(
λ

n− 1− k

)
(1− p)k(1− q)n−1−k. (12)



This gives us a simple formula to investigate whether or not a given value of
(p, q) that saturates (4) is a correlated equilibrium: replace (p, q) by their values
in (12) and estimate the sign of the expression. If the chosen q satisfies

q = max(0,
Kqmax − 1

K − 1
)

and the sign of (12) is negative or if the chosen q satisfies

q = min(1,
Kqmax

K − 1
)

and the sign of (12) is positive, then (p, q) is indeed a correlated equilibrium.

5 Results

We use the terms cooperative and non-cooperative to describe the behavior of
mobiles, whereas the term coordination refers to the presence of a common signal.
Without coordination, the equilibrium concept in the non-cooperative case is the
Nash equilibrium, whereas it is the correlated equilibrium with coordination.

In this section, we consider the setting of Subsect. 4.4. However, an interesting
result is that, even in this symmetric case, the optimal throughput is neither
reached by saturating the power constraints qmax

i for all users nor for a symmetric
attribution of the channel (i.e., the same strategy for all users).

In Fig. 1, we have plotted the system throughput Θall versus the probability
of being active π with and without coordination, according to (1) and (7), for 6
users, without power constraints (qmax

i = 1 for all users). We observe that the
optimal throughput with the same strategy for all mobiles reaches a plateau and
stays constant, no matter how active the mobiles are. With coordination, the
value of this plateau is increased.

With a non-symmetric attribution of the strategies, a higher system through-
put can be achieved. The linear portion of the curve, for π > 0.5, is actually
obtained by letting only one user transmit; for π ≤ 0.5, it is optimal to let sev-
eral users transmit. Without power constraints, the optimal throughput with
coordination is the same as without coordination.

The system throughput reached at Nash equilibrium (i.e., q = 1 for all mo-
biles) is close to the optimum for low values of π (when few mobiles are active),
but rapidly decreases and approaches 0 as the probability of being active in-
creases. Note that without power constraints, Nash and correlated equilibrium
coincide, therefore the coordination mechanism does not increase the through-
put in the non-cooperative case. We remark that the curve for Nash equilibrium
corresponds to the throughput calculated in [10], which is simply mπ(1−π)m−1.

The optimal curves in Fig. 1 are obtained without power constraints, there-
fore with power constraints the optimal curves will always be lower.

In Fig. 2, we have plotted the system throughput Θall obtained in the cor-
related equilibrium with power constraint qmax = 0.25. In the case K = 3, two



correlated equilibria are possible: p = 0.75, q = 0 or p = 0, q = 0.375 (denoted
respectively as 1 and 2 in the figure). In the case K = 2, there are two correlated
equilibria as well: p = 0.5, q = 0 and p = 0, q = 0.5 (both give the same system
throughput). As a comparison, we have plotted the optimal throughput that can
be obtained under the power constraint qmax = 0.25 in the cooperative case, as
well as the throughput obtained in the Nash equilibrium without coordination.

Non-cooperative throughput is improved compared to the case without power
constraints. With strong power constraints, we observe that the coordination
mechanism allows to obtain higher values of the throughput in the non-cooperative
case. For some probabilities π, non-cooperative global throughput almost reaches
the values obtained in the cooperative case.

6 Conclusion

We have investigated a game theoretical setting including a coordination mech-
anism in a distributed access control. Our analysis is based on the concept of
correlated equilibrium that enriches the strategies of mobiles. Power constraints
are primordial in order to give a sense to coordination. In the absence of power
constraints, coordination does not necessarily improve the channel utilization.
The proposed coordination mechanism can improve the utilization of the channel
in presence of power constraints, even in presence of selfish users.
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Fig. 1. System throughput versus the probability of being active for a mobile with and
without coordination, for 6 users, without power constraints.
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