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Abstract. In this paper we propose an analytical model of a resilient, tree-based
end-node multicast streaming architecture that employs path diversity and for-
ward error correction for improved resilience to node churns and packet losses.
Using the model and via simulations we study the performance of this architec-
ture in the presence of packet losses and dynamic node behavior. We show that
the overlay can distribute data to nodes arbitrarily far away from the root of the
trees as long as the loss probability is lower than a certain threshold, but the prob-
ability of packet reception suddenly drops to zero once this threshold is exceeded.
The value of the threshold depends on the ratio of redundancy and on the number
of the distribution trees. Using the model and simulations we show that correlated
and inhomogeneous losses slightly worsen the overlay’s performance. We apply
the model to study the effects of dynamic node behavior and compare its results
to simulations.

1 Introduction

The delivery of streaming media over end-point overlays has received much attention
recently ([1, 2] and references therein). Although current commercial content delivery
networks are capable of supporting many simultaneous streams, end-node-based multi-
cast could considerably decrease the cost of large scale streaming, while being resilient
to sudden surges in the client population, such as flash crowds. In an end-point-based
multicast distribution system end-points are organized or organize themselves into an
application layer overlay and distribute the data among themselves. The main advan-
tages are that such a system is easy to deploy and it reduces the load of the content
provider, since the distribution cost in terms of bandwidth and processing power is
shared by the nodes of the overlay.

Since the success of such schemes depends on the behavior of the participating
nodes, several issues have to be dealt with, such as the effects of group dynamics, sta-
bility of the system or the incentives for nodes to collaborate. Furthermore, since nodes
receive data from their peer nodes only, the performance of such a scheme in an error
prone environment is unclear due to possible error propagation.
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The first proposed architectures focused primarily on low overhead due to control
traffic and on the efficiency of the data distribution. They were based on a mesh [3] or
a single distribution tree [4]. Resilience to node failures and error prone transmission
paths appeared as important criteria later.

Robustness to node churns, i.e. node departures that disturb the data flow, was con-
sidered in SRMS [5] by distributing packets to randomly chosen neighbors outside of
the distribution tree. Though this scheme provides some resilience to losses, it is known
that repeating information is less efficient than using error correcting codes. SplitStream
[6] and CoopNet [1] introduce multiple distribution trees and employ priority encoding
transmission (PET) [7] based on forward error correction (FEC) [8] to decrease the
effects of node failures and to recover from packet losses. Simulations were used to
show the resilience of these schemes under various scenarios showing that increasing
the number of trees improves the resilience both to packet losses and node churns.

Feasibility issues of small overlays with less than 100 nodes were discussed in de-
tail in [9] based on experimental broadcasts over the Internet, and showed promising
results. The experiments showed that poor performance was due in a large extent to
packet losses. The feasibility of larger deployments was studied for a CoopNet like
end-node overlay via simulations based on measured traces of user behavior in [2]. The
authors concluded that application layer multicast architectures have enough resources,
are stable in spite of group dynamics and hence can support large scale streaming con-
tent distribution.

Albeit there is an extensive literature on end-point-based multicast streaming, previ-
ous work on the behavior of these systems was limited to simulations. In this paper we
present a simple model for a CoopNet like overlay combined with FEC, and evaluate
the performance of such a system for a large number of nodes. We consider correlated
and inhomogeneous losses and the effects of group dynamics. Our results show that an
arbitrarily high packet reception probability can be achieved independent of the num-
ber of nodes in the overlay by adding enough redundancy (while keeping the bitrate
constant). The packet reception probability goes however to zero if there is not enough
redundancy added. The transition between the stable and non-stable states of the system
is ungraceful, which can raise problems in a dynamic environment.

The paper is organized as follows. In Section 2 we briefly describe the architecture
of the considered end-point-based application overlay for multicast. In Section 3 we
present the mathematical model and the main results. In Section 4 we discuss the per-
formance of the system based on the analytical model and simulations. In Section 5 we
conclude our work.

2 System Description

We consider an application overlay as the one described in [1, 2] consisting of a root
node and N peer nodes. Peer nodes are organized in t distribution trees, either by a
distributed protocol or a central entity like in [1]. The nodes are members of all t trees,
and in each tree they have a different parent node from which they receive data and
a different child node to which they forward data. Child nodes of the root node can
have the same parent (i.e. the root) in more than one tree. Upon construction of the



distribution trees each node is at the same distance from the root node in all trees, and
we will refer to nodes at distance i nodes from the root as members of layer i. In the
presence of group dynamics it is the task of the tree building algorithm to ensure that
all parent nodes of a node are in the same or almost the same layer. We denote the
number of children of the root node in each tree by m, and we call it the multiplicity
of the root node. The number of layers in the distribution tree is N/m. Typically the
number of distribution trees is no more than the multiplicity of the root node m≥ t; we
will consider this case in the analysis. We assume that nodes do not contribute more
bandwidth towards their children as they use to download from their parents, so that the
multiplicity of the peer nodes is one, i.e. they have one child in each distribution tree
(See Fig. 1).

The root uses block based FEC, e.g.

Fig. 1. Multicast tree structure for t = 3, m = 3
and N = 6.

Reed-Solomon codes, so that nodes can
recover from packet losses due to net-
work congestion and node departures. To
every k packets of information c packets
of redundant information are added re-
sulting in a block length of n = k + c. If
a source would like to increase the ratio
of redundancy while maintaining its bi-
trate unchanged, then it has to decrease
its source rate. We denote this FEC scheme by FEC(n,k). Using this FEC scheme one
can implement UXP, PET or the MDC scheme considered in [1]. Lost packets can be
reconstructed as long as no more than c packets are lost out of n packets. The root sends
every tth packet to its children in a given tree. If n ≤ t then at most one packet of a
block is distributed over the same distribution tree. Peer nodes relay the packets upon
reception to their respective child nodes in the tree corresponding to the particular pack-
ets, and once they received at least k packets of a block of n packets they recover the
remaining c packets and send them to the child nodes in the corresponding distribution
trees. A packet received from the parent node after it has been decoded based on other
packets in the block will be discarded.

3 Mathematical Model

In this section we present a mathematical model that describes the behavior of the sys-
tem in the presence of packet losses due to congestion in the network. Our goal is to
calculate the probability π(i) that a node in layer i of the distribution tree receives or can
reconstruct an arbitrary packet, where i can be arbitrarily high. We model the correlated
losses at the input-link of the nodes by a two-state time-discrete Markovian model, of-
ten referred to as the Gilbert model [10]. We denote the probability that a packet is lost
on the path between two adjacent peer nodes by pω (0 < pω < 1). The probability that
a packet is lost on the input link of a node given that the previous packet from the same
block of packets was lost is denoted by pω|ω. The parameters p and q of the Gilbert
model are calculated as q = 1− pω|ω and p = pωq

1−pω
. Based on the Gilbert model we

can calculate the probability of loosing l packets out of j consecutive packets denoted



by P(l, j) [10]. Losses seen by different nodes are assumed to be independent. We as-
sume that the probability that a node is in possession of a packet is independent of the
probability that another node in the same layer possesses a packet from the same block
of packets. We will comment on the validity and possible effects of these assumptions
later.

In the following we give a nonlinear recurrence equation [11] to calculate the evo-
lution of π(i). As the root node possesses all packets, the initial condition is

π(0) = 1. (1)

Consider the n packets of an FEC block that should arrive from different parents to a
node in layer i+1. The average number of packets received or reconstructed at the node
can be calculated as the average number of packets reconstructed given that j packets
have been transmitted from the parents multiplied by the probability that the parents
possess j out of the n packets. The probability that a node in layer i + 1 (i ≥ 0) will
possess a packet can then be calculated as

π(i+1) = R(π(i), pω, pω|ω) =
n

∑
j=1

(

n
j

)

π(i) j(1−π(i))n− j 1
n

j

∑
l=1

τ(l)P( j− l, j), (2)

where τ(l) indicates the number of packets after FEC reconstruction if l packets have
been received and is given as

τ(l) =

{

l 0≤ l < k
n k ≤ l ≤ n.

If losses occur independently on the input links of the nodes then P(l, j) =

(

j
l

)

pl
ω(1−

pω) j−l , and the model becomes the same as the one presented in [12] for independent
losses.

We can rewrite (2) by subtracting π(i) from both sides and omitting the indices to

f (π) = −π+
1
n

n

∑
j=1

(

n
j

)

π j(1−π)n− j
j

∑
l=1

τ(l)P( j− l, j). (3)

Figs. 2 and 3 show examples of f (π) for independent and correlated losses respectively.
Since π(i+1)−π(i) = f (π(i)) we have that for any layer i if f (π(i)) < 0 then π(i+1) <
π(i), if f (π(i)) > 0 then π(i+1) > π(i) and if f (π(i)) = 0 then π(i+1) = π(i) and π(i)
is a fixed point of (2). Starting with π(0) = 1 as in eq. (1) the value of π(i) will decrease
as long as f (π(i)) < 0. The roots of f (π) correspond to the fixed points of eq. (2). If
f (π) has a real root r in the interval (0,1) and the derivative f (1)(r) = d

dπ f (π)π=r <
0 then π(∞) = limi→∞ π(i) = r (e.g. r and r2 in Figs. 2 and 3), since the fixed point
corresponding to this root is asymptotically stable. A fixed point corresponding to a
root r with f (1)(r) > 0 is unstable on the other hand (e.g. r1 in Figs. 2 and 3). If f (π)
does not have real a root in (0,1) then π(∞) = 0, since f (π) is always negative on (0,1)
as we show it later (e.g. the dashed line in Figs. 2 and 3). We will call the system stable
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Fig. 2. f (π) vs. π for different ratios of re-
dundancy and loss probabilities, independent
losses (p+q=1). At the root in (0,1) closest to
1 (if it exists) the derivative is negative and
hence the corresponding fixed point is stable.
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Fig. 3. f (π) vs. π for different ratios of re-
dundancy and loss probabilities, correlated
losses. At the root in (0,1) closest to 1 (if it
exists) the derivative is negative and hence the
corresponding fixed point is stable.

if π(∞) > 0 and unstable otherwise. To check the existence and the number of real roots
of f (π) in (0,1) we investigate the signs of f (π) at the endpoints of the interval.

For any pω > 0 the ratio of successfully received or recovered packets has to be less
than 1, so that f (1) < 0. Since π = 0 is a zero of f (π) we have to calculate f (1)(0) to
see the sign of f (0+) = limπ→0+ f (π).

If k = 1 then we get that f (1)(0) = n(1−P(1,1))− k, and thus if P(1,1) = pω <
(n− k)/n then f (1)(0) > 0 and consequently f (0+) > 0. Hence there has to be at least
one root r in (0,1) for which f (1)(r) < 0 resulting in an asymptotically stable fixed point
(e.g. the solid line in Figs. 2 and 3). It follows that for any loss probability pω there is
a ratio of redundancy c/k above which limi→∞ π(i) > 0. Otherwise, if pω ≥ (n− k)/n,
then the number of real roots in (0,1) is either zero or an even number, and using
Sturm’s theorem [13] we find that the number of roots in (0,1) is 0 for any such pω
(e.g. the dashed line in Figs. 2 and 3).

If k > 1 then we have f (1)(0) =−P(1,1) =−pω, which is always negative, and thus
the number of real roots in (0,1) is either zero or an even number. By using Sturm’s
theorem we find for any pω and pω|ω that the number of real roots in (0,1) is no more
than two (counting their multiplicity). If they exist, denoted by r1 and r2 (r1 ≤ r2), then
f (1)(r2) < 0, r2 is asymptotically stable and π(∞) = r2 (e.g. the dotted line in Figs. 2
and 3). Since f (π) > 0 for r1 < π < r2, the above result holds for any r1 < π(0) ≤ 1
as initial condition. Similarly, even if r1 < π(i) < r2 for some i, we have π(∞) = r2.
With other words, the system can recover from disturbances, as long as π(i) > r1. Let
us denote the bifurcation point in pω at which the asymptotically stable fixed point (r2)
annihilates with the unstable fixed point (r1) and both disappear by pmax(pω|ω). For
0 < pω < pmax(pω|ω) we have that 0 < r1 < r2 < 1. However, f (π) has no roots in
(0,1) for pω > pmax(pω|ω) (e.g. the dash-dotted line in Figs. 2 and 3). In the special
case when losses are uncorrelated, i.e. pω|ω = pω, we will denote the bifurcation point
in pω by pmax.



In the following we discuss the validity and effects of certain assumptions made in
the model. The model considers loss correlations at the input links of the nodes. If losses
occur in bursts at the output links of the nodes, the burstiness influences the results if
packets from the same block are distributed over the same distribution tree, i.e. t < n,
but does not influence them otherwise. We do not consider this case in this analysis. The
assumptions n≤ t and m≥ t are made to ensure independence of the losses of packets
in the same block and to ensure that each node has different parents in all of the trees
respectively. Removing these assumptions will make losses more correlated, and hence
worsen the performance of the distribution tree. On the other hand, setting t > n will
not improve the performance of the system compared to t = n. Hence, when choosing
n and t there are two factors to be considered: the delay introduced by an FEC block of
length n and the administrative overhead of maintaining t distribution trees.

4 Performance Evaluation

In this section we show results obtained with the model presented in the previous section
and simulations. In all scenarios we set t = n and we consider m = 80 to m = 320 for
easy comparison. For the simulations we considered the streaming of a 112.8 kbps
stream to nodes organized in 1000 layers, hence the number of nodes in the overlay
is between 80000 and 320000. The packet size is 1410 bytes. The peer nodes have
128 kbps connections both uplink and downlink. Nodes choose their parent nodes at
random, and avoid having the same parents in different trees whenever possible. During
each run of the simulation the root node sends about 10000×m to 30000×m packets,
so that there are 0.8 to 9.6 million packets sent per layer, and 0.8 to 9.6 billion packets
sent in the overlay.

4.1 Independent and Homogeneous Losses

We start the evaluation by considering the simplest scenario, homogeneous, uncorre-
lated losses. All nodes experience the same packet loss probability, and packets arriving
to a particular node are lost independent from each other. Figure 4 shows π(1000) as a
function of pω for k = 10 and k = 20 and different values of c. The figure shows that for
every (n,k) pair there is a loss probability pmax above which the reception probability in
nodes far from the root node suddenly becomes 0. Below pmax the reception probability
is close to 1 and is slowly decreasing. This stepwise, ungraceful decrease of the recep-
tion probability is an undesired feature for systems working in a dynamic environment
such as the Internet. The figure shows that increasing the number of trees, i.e. the FEC
block length, slightly improves the resilience of the distribution tree to losses, which is
in accordance with [1, 8].

Figure 5 shows π(i) as a function of i for different block lengths n and loss probabil-
ities and a ratio of redundancy of c/k = 0.2. We see that π(i) is close to one in the cases
when pω < pmax, while it becomes almost 0 after some i otherwise. The value of i at
which π(i) breaks down depends on how far pω is from pmax. For k = 10 pmax = 0.0799
and for k = 20 pmax = 0.0885. The positive effects of the increased block length can be
seen by comparing results at pω = 0.08, where for k = 20 the system is stable, whereas
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for k = 10 it is unstable. Figure 6 shows simulation results for the same scenarios as
Fig. 5. The comparison shows perfect match for pω = 0.07 and pω = 0.10, while the
simulation results show worse behavior than the analytical ones when pω is close to
pmax. The difference is rather big for k = 10 and pω = 0.08, when pω− pmax = 10−4,
in which case deviations from the mean loss probability in the individual layers make
the deterioration faster than that predicted by the model. For higher values of m the
simulation gives more accurate results as the probability of deviation is lower due to the
central limit theorem.

Figure 7 shows c, the number of redundant packets needed to ensure π(∞) > 0,
π(∞) > 0.99 and π(∞) > 0.999 for k = 10 and k = 20. The figure shows a closely linear
relationship between the number of redundant packets needed and the loss probability.
For low values of pω the number of redundant packets needed to ensure π(∞) > 0.999 is
close to the number of redundant packets needed for π(∞) > 0, and hence in a dynamic



environment the ratio of redundancy has to be set higher to prevent a severe decrease of
π(i) due to a sudden increase of the loss probability.

4.2 Inhomogeneous Losses

In this subsection we consider the scenario when the packet loss probability experi-
enced by the individual nodes is not homogeneous, i.e. different nodes experience dif-
ferent loss probabilities. We denote by Q the joint distribution function of pω and pω|ω
experienced by individual nodes. If the multiplicity m of the root node is high, then the
evolution of the packet reception probability can be described by the equation

π(i+1) =
Z

Q
R(π(i), pω, pω|ω)dQ, (4)

where R(π(i), pω, pω|ω) was defined in eq. 2. This approximate model treats layer i as
homogeneous, and calculates the mean of the packet reception probability in layer i+1
given the distribution Q of the packet loss probability. In the following we consider non-
correlated losses (p+q=1) to keep the number of parameters low and we show results for
two cases of inhomogeneous losses. In the first, bimodal case, γl portion of the nodes
experiences loss probability pl

ω and the rest ph
ω, the mean packet loss probability in the

overlay is pω = γl pl
ω +(1− γl)ph

ω. In the second, uniform case, the loss probabilities
are uniformly distributed between pl

ω and ph
ω, the mean packet loss probability in the

overlay is pω = (pl
ω + ph

ω)/2. For easy comparison we consider n = 12, FEC(12,10) and
m = 160. We do not consider ph

ω > 0.1, as nodes that experience higher loss probabilities
will leave the overlay due to poor quality. Figure 8 shows results obtained with the
model for various bimodal and uniform distributions. The figure shows that the presence
of nodes with high loss probabilities decreases π(i) compared to the homogeneous case.
This is due to that R is a concave function of pω and π for values of interest of pω
(pω < 0.1). Simulation results shown in Figure 9 for π(i) as a function of i show a good
match with the mathematical model. Since the number of nodes in each layer is finite,
the mean packet loss probability in individual layers can deviate from the mean loss
probability in the overlay, which explains the high variance of the simulation results.
The variance of the results decreases as m increases due to the central limit theorem.

4.3 Correlated Losses

Figure 10 shows π(1000) as a function of pω for various values of pω|ω obtained with
the model. The figure shows that the value of both r2 and pmax(pω|ω) decreases as losses
become more correlated (i.e. pω|ω increases). Figure 11 shows π(i) as a function of pω
for correlated losses for scenarios similar to those in Fig. 5 as obtained with the model.
Comparing the two figures shows that correlated losses decrease the packet reception
probability significantly whenever the system is stable. Figure 12 shows matching sim-
ulation results for the same scenarios.

4.4 Malicious Layers

In this subsection we investigate how the presence of layers with extreme loss proba-
bilities (e.g. a DDoS attack) influences the packet reception probability. We consider an
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Fig. 8. π(i) vs i for inhomogeneous losses.
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Fig. 9. π(i) vs i for inhomogeneous losses.
Simulation results.

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss probability (p)

π(
10

00
)

FEC(13,10),p
ω|ω=0.2

FEC(13,10),p
ω|ω=0.4

FEC(13,10),p
ω|ω=0.6

FEC(29,20),p
ω|ω=0.2

FEC(29,20),p
ω|ω=0.4

FEC(29,20),p
ω|ω=0.6

Fig. 10. π(1000) vs. pω for m=80,
FEC(13,10) and FEC(26,20) and differ-
ent values of pω|ω.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer (i)

π(
i)

FEC(10,12),p
ω

=0.07,p
ω|ω=0.27

FEC(10,12),p
ω

=0.08,p
ω|ω=0.28

FEC(10,12),p
ω

=0.09,p
ω|ω=0.29

FEC(10,12),p
ω

=0.10,p
ω|ω=0.30

FEC(20,24),p
ω

=0.07,p
ω|ω=0.27

FEC(20,24),p
ω

=0.08,p
ω|ω=0.28

FEC(20,24),p
ω

=0.09,p
ω|ω=0.29

FEC(20,24),p
ω

=0.10,p
ω|ω=0.30

Fig. 11. π(i) vs i for different ratios of re-
dundancy and loss probabilities, correlated
losses.

overlay, where the loss probability is pω, except for layers 50 and 100, which experi-
ence significantly higher (pm

ω) packet loss probability. Such layers decrease π(i) below
r2(pω) (the stable fixed point corresponding to pω) in the layers following them. Based
on Figs. 2 and 3 we expect that the overlay can recover as long as π(i) remains larger
than r1(pω). Figure 13 shows π(i) as a function of i for pω = 0.05. The figure shows
that for m = 80 the malicious layers influence the packet reception probability for all
following layers already at pm

ω = 0.25, while for m = 320 the overlay is able to recover.
The different behavior is due to that if less than r1(0.05) = 0.7499 portion of the pack-
ets of an FEC block is received in the malicious layers, then that block will be entirely
lost in the following layers. For m = 320 the probability that less than r1(0.05) portion
of the packets in a block will be received in layers 50 or 100 is only significant for
pm

ω = 0.4, while for m = 80 this probability is significant already for pm
ω = 0.25 (around

0.05). Hence, once again, increasing m improves the robustness of the overlay.



4.5 Effects of Group Dynamics

In this subsection we analyze the effects of node departures on the packet reception
probability. We assume that the departure of a node interrupts the flow of data to its
child nodes for a random time T . This time T includes the time it takes for the child
node to notice that its parent node has departed and the time it takes to find a new
parent node. For a description of how the departure of a parent or a child node can be
detected see [1]. Several algorithms have been proposed to find a suitable parent node,
a comparison of some simulation results is shown in [2].

In this work we consider an ideal parent selection algorithm that maintains the struc-
ture of the overlay despite of the node departures. Arriving nodes take the places of the
departed nodes, and hence fill the gaps in the distribution tree. We consider the sta-
tionary state of the system, when the arrival and departure rates are equal. We assume
that the interarrival times are exponentially distributed, this assumption is supported by
several measurement studies [14, 15]. The distribution of the session holding times has
been shown to fit the log-normal distribution [14].

Based on the model presented in Section 3 we expect that node departures can be
included in the model as an increase of the packet loss probability as pd

ω = Nd/N×T ,
where Nd is the mean number of nodes departing per time unit and T is the mean of the
time nodes need to recover from the departure of a parent node. The rationale for this
hypothesis is that node departures can be treated as bursty losses on the output link of
the departing nodes, and can be modeled as independent if n≤ t and m≥ t.

To simulate the ideal tree construction algorithm, instead of removing the departing
and inserting the arriving nodes, we switch nodes off after their session holding time
has elapsed, and switch them on after a random time T , which would correspond to the
reconstruction of the tree. We can change the value of pd

ω by adjusting T and the session
holding time 1/µ. We show simulation results for m = 80 and m = 320, and we consider
two mean session holding times, 1/µ = 306s as measured in [14] and 1/µ = 1320s
as measured in [2]. The parameters of the corresponding log-normal distributions are
M = 4.93,S = 1.26 and M = 5.46,S = 1.85 respectively.

Figs. 14 and 15 show results for 1/µ = 306s and 1/µ = 1320s respectively consider-
ing FEC(12,10). The two figures show the same characteristics despite of the different
mean session holding times, which supports our approximation. The figures show that
for pd

ω = 0.05 the overlay is stable for both m = 80 and m = 320, for pd
ω = 0.06 the over-

lay is only stable for m = 320, while for higher values of pd
ω it is unstable. The overlay

would become stable for pd
ω = 0.07 by increasing the value of m similar to the results

shown in Fig. 5 obtained with the analytical model. To understand why increasing the
number of nodes per layer (m) gives better resilience to node departures, let us consider
the evolution of the number of active nodes per layer (ν). If ν/m in a layer is lower
than 1− pmax then it is likely that the following layers will not be able to recover the
missing data. The evolution of ν can be modeled by an Engset system [16] (due to its
insensitivity to the distribution of the service time, i.e. the nodes’ lifetime distribution).
ν follows a binomial distribution with parameters m and β = µ/(1 + µT ), its mean is
βm and its coefficient of variation (the ratio of the standard deviation and the mean)
is
√

(1−β)/(mβ). Consequently, the higher the number of nodes per layer, the lower
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Fig. 15. π(i) vs i for 1/µ = 1320s. Simulation
results.

the probability that the ratio of active nodes is lower than 1− pmax, which explains the
improved performance of the overlay as m increases.

Node departures can have an aggravating effect towards the end of a broadcast,
when departures cause the number of nodes in the overlay to decrease. The increased
loss probability due to node churn might exceed the level of stable operation and can
lead to π(∞) = 0. The root node can prevent this from happening by increasing the ratio
of redundancy c/k towards the end of the broadcast.

5 Conclusion

In this paper we presented a mathematical model for the analysis of an end-point over-
lay for multicast based on multiple distribution trees and forward error correction. We
showed that for any loss probability there is a ratio of redundancy which ensures that



even nodes far away from the root of the trees receive a non-zero ratio of the informa-
tion. We showed that this multicast scheme shows a non-graceful performance degrada-
tion once the loss probability exceeds a certain threshold. The threshold depends on the
number of distribution trees and the ratio of redundancy used. Using the model and sim-
ulations we showed that correlated and inhomogeneous losses decrease both the ratio
of received packets and the value of the stability threshold of the system. We analyzed
how malicious layers can influence the behavior of the system, and concluded that in-
creasing the number of nodes per layer gives improved robustness. The performance
evaluation in the presence of dynamic node behavior led to the same conclusion. The
results presented here show that the ratio of redundancy has to be adjusted with care
to maintain the stability of this overlay, as underestimating the loss probability in the
network can lead to the loss of all data.
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