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Abstract. This work presents an extensive evaluation of the request
filtering in hierarchy of proxy caches. Using the recently proposed ADF
(Aggregation, Disaggregation and Filtering) model as well as entropy
as metric for Web traffic characterization, we evaluate how locality of
reference changes as the streams of requests pass through a hierarchy
of caches. Moreover, we propose the use of average entropy for com-
paring the locality of reference of different streams and present how a
proxy server can dynamically calculate the entropy of its incoming re-
quest stream.
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1 Introduction

The dramatic growth of network traffic and the increasing number of users
are characteristics that have marked the phenomenon of the Web. The use of
proxy servers has emerged as an efficient solution to increase the performance
of Web systems, improving Web servers scalability and, reducing network traffic
as well as the response time of user requests.

A proxy server can be seen as an intermediator of the traffic among clients
and HTTP servers. When a proxy server sends a previously requested document
to the clients, a copy of the document is stored in its local cache, so that future
requests for this document can be directly obtained from the proxy server. These
servers operate aggregating, disaggregating and filtering the request stream that
passes through them. One can say they aggregate the arriving requests in an
unique stream, which is processed using its local cache. Moreover, the proxy
servers act as a disaggregator of traffic, distributing the arriving requests for
different Web servers. When a stream of requests passes through a proxy, only
the requests that could not be served from its cache are disaggregated towards
the destination Web servers. In this context, one can say that a proxy acts as a
request filter, allowing only the miss stream to be disaggregated to the rest of
the Web.

Web caching is usually associated with a hierarchical organization. The browser
cache, located in the user machine, is the lowest level of the hierarchy. The next
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level is composed of the caches of intranets, i.e., the proxy servers in universities
and organizations. Going up in the hierarchy, there are regional proxies and so
forth. A request that cannot be satisfied for a proxy is immediately sent to the
proxy in the next level in the hierarchy, until it reaches the destination server.

The organization of an efficient cache hierarchy involves the study of the
main properties of the streams of requests. Various questions related to caching
require a deep study of how properties of the request streams change when
they pass through the proxy servers. In this context, a vision of the Web traffic
according to the effects of aggregation, filtering and disaggregation associated to
the appropriated metrics bring a better understanding of the effects of locality
of reference in an hierarchy of Web caches.

The study of locality of reference under this new perspective of the Web was
initially considered in [5]. That work considered the use of entropy as metric
to measure the locality of reference of request streams. In this work, we apply
adaptations of this metric in a context of cache hierarchy, evaluating the impact
that different cache replacement policies have on the locality of reference of the
request streams. Moreover, we propose a methodology for calculating locality of
reference dynamically. The main contributions of this paper are:

1. Performance evaluation of a cache hierarchy - This work provides an
extensive performance evaluation of cache replacement policies in different levels
of a hierarchy of caches. We measure traditional metrics such as hit ratio and
compare these results with some recently proposed metrics for locality of refer-
ence. The experiments presented allow a better comprehension of how locality of
reference changes as the streams of requests pass through an hierarchy of caches.
This evaluation of the locality of reference can be used as a guide for designing
of hierarchy of caches.

2. Metrics to locality of reference - We propose the average entropy to al-
low an HTTP server or a proxy server to perceive the variation of the locality of
reference of request streams. Moreover, we present how entropy can be dynami-
cally calculated by the Web components. We believe that capturing the notion
of locality in real time can be helpful for constructing self-adaptive Web caching
systems.

The rest of the paper is organized as follows. The next section presents re-
lated work. Section 3 introduces entropy and the new proposed metrics. Section 4
presents the experimental methodology used in this study. Our results are de-
tailed in section 5. Conclusions and future work are offered in section 6.

2 Related Work

Although several different definitions are currently available [1,6,5], it is
strongly accepted that the main aspects to locality of reference are temporal
correlations in the request streams and the popularity distribution of requested
objects [5,4,7]. This work focuses on the object popularity.

The study of locality of reference was motivated by the impact of this prop-
erty on the performance of cache systems. These studies were the basis for
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the development of caching policies, inter-proxy communication protocols and
prefetching algorithms [8].

The first attempt to characterize the impact of proxy caches on request
streams is presented in [9]. Mahanti et al. studied how the temporal local-
ity changes in different levels of a hierarchy of Web caches [6]. More recently,
Williamson [10] evaluates the effectiveness of different caching policies in differ-
ent levels of a hierarchy of Web caches. Whereas [10] only considered the filtering
effects, [4, 5] introduced the study of two other transformations to which streams
of references are submitted: aggregation and disaggregation. They grouped the
three transformations into a model called ADF (Aggregation, Disaggregation
and Filtering), and proposed and validated new metrics for analyzing temporal
locality in a request stream moving through this model.

In this work, we evaluate the impact of locality of reference in the perfor-
mance of a hierarchical caching system using the tools proposed in [5]. Moreover,
we consider new forms of using the entropy proposed by [5] to analyze the local-
ity of reference, providing a framework so that this metric can be dynamically
calculated and applied to real environments.

3 Metrics for Locality of Reference

This section presents the metrics used in this paper to measure the locality of
reference in streams of requests. In section 3.1 we present the concept of entropy.
In section 3.2 we show an efficient form of calculating the entropy dynamically.
In section 3.3, we propose the use of average entropy.

3.1 Entropy

The distribution of popularity of a set of requests usually is characterized by
the Zipf Law [1,3]. In general a Zipf-like distributions (the probability P[i] of

access the i-th most popular object is P[i] = &, where « is a parameter and C

g ?
a normalizing constant) has been used to appgoximate the popularity of objects
in request streams in the Web. In this kind of distribution, the a coefficient is
usually used as an indicator of the concentration of popularity of the request
streams.

Recently, a more direct measure was proposed to evaluate the concentration
of popularity of streams of requests, namely entropy [5]. The entropy H(X) of
a random variable X, taking n possible values with probability p;, is calculated
as follows:

H(X) ==Y pilog, . 1

Note that H(X) depends only on the probability of occurrence of the requests
and the number n of different requests of the set. The maximum value (H(X) =
logan) is reached when the requests have the same probability (p; = 1/n,Vi),
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and the minimum value (H(X) = 0) occurs when only one object concentrates
all references (p; = 1, p; = 0 for i # j). Thus, for sets with the same number
of requests, the higher the value of the entropy, the smaller the concentration of
popularity in few objects.

3.2 Calculating Entropy Dynamically

We now propose a technique to dynamically compute the entropy present in
a request stream. Calculating entropy dynamically allows an online analysis of
locality of reference, which can be used for making operational decisions. For
instance, a proxy server can vary some parameters of its configuration based
on the variations that occur in the locality of reference of the arriving request
stream.

In order to use the definition of entropy, proposed and validated in [5], in real
environments, its value must be measured in a incremental way, being recalcu-
lated at each new arriving request. Previous works [5], have computed entropy
for a set of requests, in which the number of requests was known a priori.

Expanding the equation 1, we find a practical and dynamic way to calculate
the entropy. Let n; be the total number of requests that have already arrived at
the proxy and n; be the number of references for the object 4 in that set, then
p; can be estimated as n;/ns. The entropy can be calculated as:

1 n
H(X) =logyn: — — Z n;logan; (2)

ti=1
Using equation 2, the entropy can be dynamically calculated keeping up to
date the value of n; and the value of the sum S = E:‘Zl n;log, n; for each new

arriving request.

3.3 Average Entropy

The normalized entropy was proposed to compare the entropy of sets with
different number of requests [5]. This normalization is based on the highest
possible value for the entropy of the set of requests. Considering n as the number
of distinct requests, the normalized entropy H™(X) is defined as:

H(X)
H™Y(X) = (o0 3)

Nevertheless, when we deal with sets of requests of equal sizes, the entropies
of these sets can be compared directly, being unnecessary the normalization
presented in the equation 3. Based on this observation, we propose the average
entropy. We calculate the entropy of a set of requests by considering a window
of m requests at a time. The window moves one request at a time, and a new
entropy value is calculated. At the end, after covering the whole set of requests,
we average the entropy values computed for all request windows.
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Considering a window of size m, a sequence with a total of n; requests and
H(X{;,5) as the value of the entropy of the window that contains the interval of
the i-th until the j-th request, we define the average entropy H™(X) as:

Yoo " H(Xpig1,me))
ng—m+1

H™(X) = (4)

In order to use the notion of locality of reference in a real environment such
as in a Web server or in a proxy server, one needs to evaluate the locality
of a certain sample of the requests that arrive at the server. In this context
the average entropy, associated to the dynamically calculation of the entropy,
emerge as adjusted metrics to capture the variation of popularity of the stream of
requests that arrives at the servers. This can be done, for instance, by comparing
the entropy of the last window with the value of the average entropy.

The size of the window for the calculation of the entropy can impact the
analysis of the popularity concentration. For instance, if the window is small, the
obtained entropy captures the locality of a small sample, which cannot represent
correctly the popularity of the flow. On the other hand, if the size of the window is
relatively high, the variation of popularity is less noticeable. We suggest that, to
compare different streams of requests it is necessary that the size of the window
to be of the same order of magnitude of the total of requests of the streams.

4 Experimental Methodology

This section describes the methodology used in our study. A simulator of a
hierarchy of caches was built, organized as showed in figure 1 (left). This figure
presents a two-level caching system, with two caches (children) on the first level
and one cache (parent) on the second one. The requests made by the users
are received directly by the caches in the first level, whereas the requests that
cannot be satisfied in this level are aggregated forming a request stream, which
is forwarded to the second level cache. There is no interaction between the first
level caches.

In order to better understand the effects of the locality of reference in the
hierarchy of caches, we use the ADF model [5]. This model represents the Web
through a graph where the vertices are points where the request streams can be
modified, and the edges are connections among these points. The vertices in the
graph are of three different kinds, depending of which effect they cause in the
Web traffic: Aggregation (A), Disaggregation (D) and Filtering (F).

Figure 1 (right) shows the representation of the cache hierarchy used in our
experiments using the ADF model. The caches of the first level function as
points of aggregation of the user requests. These caches also apply a filtering
transformation on the streams of requests. The streams of missed requests that
are forwarded by the first level caches are aggregated and again, are filtered in
second level cache, where they are finally disaggregated to the Web servers.

In the simulations, we evaluate the behavior of the average entropy when
streams of requests pass through the hierarchy of caches, varying the size of
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Fig. 1. System of hierarchy caches: ISP overview(left), ADF model(right)

these caches from 1M B to 16GB. To choose the size of the window used in the
calculation of the average entropy, several experiments were executed varying
the window size. The difference of the results obtained for window sizes with
order of magnitude 100,000 varies very little. Accordingly to it, this value was
chosen for the experiments.

Four cache replacement policies were considered: LRU, LFU-Aging, GD-Size
and LRU-Threshold. We evaluate the impact of these policies combined in the
different levels of the hierarchy. For a comprehensive description of several re-
placement cache policies, see reference [8].

4.1 'Workload Characteristics

This section presents the main characteristics of the logs used in the ex-
periments. These logs were obtained from a Brazilian ISP!, with a hierarchical
caching system similar to the one presented in figure 1. We obtained logs of two
machines of the first level of this hierarchy, which we call Pop-1 and Pop-2. The
main workload characteristics are presented in Table 1. The logs of the days Oct
16-17, 2001 were used to warm the caches whereas the measurements of entropy
and hit ratio were obtained with logs of the days Oct 18-19, 2001.

Note that the number of different objects represents about 26% of the total
number of requests in all four logs. From this percentage, about 69% are doc-
uments with only one reference (I-timers ). Moreover, our workloads contain
mostly small objects. As show in Table 1, the 3° quartile of the distribution of
file sizes is under 3K B. Nevertheless, some objects are relatively large for Web
documents, which explains the coefficient of variation of the distributions of file
sizes being relatively high.

1 POP-MG provides Internet access to incorporated customers and university users.
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5 Experimental Results

This section presents the results of the simulation of the hierarchy of caches
illustrated in figure 1. The average entropy was measured in the points numbered
in the figure, which are the points where we perceive the effect of filtering,
aggregation and disaggregation. For each caching polices LRU, LFU-Aging and
GD-Size used in the caches at first level of the hierarchy; we evaluated different
caching policies in the second level cache. The hit ratio and average entropy are
calculated for each cache. Individual caches are identified as child R, child L and
Parent for the first and second levels, respectively. Figures 2, 3 and 4 show the
hit ratio and average entropy as the cache size increases.

Comparing the effectiveness of the first-level cache with the second-level
cache, one can see that the first-level caches always get higher hit ratio. Com-
paring the entropy of the streams of requests before the hierarchy of caches with
the entropy after the first level of caches, we verify that this occurs because the
filtering of the first level caches absorbs part of the locality of reference and
generates a stream of requests with smaller concentration of popularity for the
second-level cache. The larger the first level caches, the higher is the filtering
effect perceived. Thus, in some cases, the hit ratio of the second level cache
decreases with the increase of the cache size at the first level. Moreover, as dis-
cussed in [2], the cache hit ratio becomes stabilized and reaches its maximum
value when the cache is able to store all distinct objects. In our experiments, the
maximum hit ratio for the first and second levels of the hierarchy occurs when
the cache size is approximately 4GB.

We next discuss the variations of locality of reference comparing the entropy
as the stream of requests pass through the hierarchy. We verify that the filtering
diminishes the popularity when we compare the entropy of points 1 and 2 with
the entropy of points 3 and 4, and the entropy of point 5 with the entropy

Table 1. Workload Characteristics

Item Pop-1 | Pop-2 | Pop-1 | Pop-2
Start Date 10/16/01|10/16/01|10/18/01|10/18/01
Duration (# days) 2 2 2 2

# requests 882,639 | 908,317 | 902,998 | 919,541
Distinct objects 234,663 | 246,560 | 238,880 | 237,290
1-timers 161,646 | 173,796 | 164,011 | 164,878
Workload Size (MB) 3,865 4,220 3,974 4,213
Smallest object 0 0 0 0
Largest object (MB) 33.13 41.75 29.61 49.70
Average Size (KB) 4.48 4.76 4.51 4.69
1° Quartile (Bytes) 365 372 364 371
Median (Bytes) 757 746 1,392 778
3° Quartile (Bytes) 2,690 2,698 2,576 2,571
Coefficient of Variation| 16.52 29.29 14.22 19.62
Average Entropy 14.64 14.32 13.78 13.92
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of point 6. Moreover, we notice that the aggregation in point 5 diminishes the
entropy, increasing the concentration of popularity. The entropy in points 3, 4,
5 and 6 grows until stabilizing as the cache sizes increases. This occurs when the
caches are able to store all distinct objects, and the entropy tends to its upper
bound, which indicates a sequence without popularity.
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Figure 5 shows the hit ratio and the average entropy when LRU-Threshold
is used as the caching policy in the first level caches, storing just fewer files,
with sizes smaller than 4K B. Table 1 shows that this value is greater that the
3° quartile of the file size distribution for all logs, which indicates that most of
objects can be stored in the first level, leaving only the largest objects to the
second-level cache. Note that the sizes of the first level caches are large enough
to hold all the objects smaller than 4K B, the request stream that leaves these
caches contains only references to objects smaller than 4K B that are 1-timers
and to larger objects. Thus, the larger objects become relatively popular at the
second-level cache, decreasing the entropy.
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The relationship between entropy and hit ratio can be analyzed by observing
the graphs in Figure 5. The reduction of the entropy in point 5, between the cache
sizes 64 MB and 256 MB, has direct implication in the hit ratio of second-level
cache. Until this point the LFU-Aging gets better hit ratio and, from this point
on, GD-Size obtained the best result. This effect suggests that variations in the
entropy can be used to dynamically configure caching policies in an hierarchy of
caches. This is subject for future work.

In order to evaluate the performance of the hierarchy of caches as a whole,
we simulated different configurations of caching policies. We consider the best
configuration as the one that filters the concentration of popularity the most,
i.e., the one which has the largest entropy in the stream of requests leaving the
hierarchy. Figure 6 shows the final entropy and the hit ratio for some configura-
tions of caching policies. The combination of LFU-Aging in the first-level caches
and GD-Size in the second-level cache produced the best results, whereas the use
of LRU in all caches performs the worst. Note that although the configuration
with GD-Size in the two levels produced the best hit ratio, this configuration did
not provide the best final entropy. This happens because these policies keep the
smaller objects in the cache, thus increasing the hit ratio, but discarding bigger
objects with some popularity. Therefore, this kind of policy does not act directly
on the locality of reference.
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6 Conclusions and Future Work

We use the ADF (Aggregation, Disaggregation and Filtering) model and en-
tropy to evaluate the effects that the locality of reference of a request streams
suffer as they pass through a hierarchy of caches. The proposed metrics are able
to capture online the locality of reference at any component of the Web hierar-
chy. We believe that the notion of locality can be used for operational decisions
and thus, it can be useful to construct automated Web caching systems. Our re-
sults show how the transformations of aggregation, filtering and disaggregation
act in the locality of reference and the impact of these operations into the per-
formance of a hierarchy of caches. In general, filtering on the first-level caches is
more effective than filtering on the second-level cache, since the request streams
leaving the first-level caches have lower entropy. However, the aggregation of the
outgoing first-level request streams decrease the entropy of the stream offered to
the second-level cache, which provides an opportunity for a better hit ratio on
that cache. Furthermore, our results show that heterogeneous configurations of
caching policies take advantage of the reference locality.

Directions for future work include to explore dynamic and average entropy
in proxy servers and to develop a model for hierarchical caching system in which
the caching policies for the different levels of this hierarchy can dynamically be
modified, based on variations of the entropy of the requests that arrive at the
caching system.
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