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Abstract. This paper is a sequel of previous work, in which we proposed a model
and computational technique to calculate the Erlang capacity of a single CDMA
cell that supports elastic services. The present paper extends that base model by
taking into account two important features of CDMA. First, we capture the im-
pact of soft blocking by modeling the neighbor cell interference as a lognormally
distributed random variable. Secondly, we model the impact of the outage by tak-
ing into account that in-progress sessions can be dropped with a probability that
depends on the current load in the system. We then consider a system with elas-
tic and rigid service classes and analyze the trade-off between the total (soft and
hard) blocking probabilities on the one hand and the throughput and the session
drop probabilities on the other.

1 Introduction

The teletraffic behavior of code division multiple access (CDMA) networks has been
the topic of research ever since CDMA started to gain popularity for military and com-
mercial applications, see for instance Chapter 6 of [1] (and the references therein) that
are concerned with the Erlang capacity of CDMA networks. The paper by Evans and
Everitt used an M/G/∞ queue model to assess the uplink capacity of CDMA cellular
networks and also presented a technique to calculate the outage probability [2]. These
classical papers have focused on ”rigid” traffic in the sense that elastic or best effort
traffic whose bit rate can dynamically change was not part of the models. Subsequently,
the seminal paper by Altman proposed a Shannon like capacity measure called the ”best
effort capacity” that explicitly takes into account the behavior of elastic sessions [3].

The importance of modeling outages and session drops and their impacts on the Er-
lang capacity in cellular networks in general and in CDMA in particular has been em-
phasized by several authors, see for instance [2] and more recently [7]. Session drops
are primarily caused by outages, when the desired signal-to-noise ratio for a session
stays under a predefined threshold during such a long time that the session gets inter-
rupted. However, sessions can be dropped by a load control algorithm (typically located
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in the radio network controller in WCDMA) to preserve system stability. Session inter-
ruptions are perceived negatively by end users - more negatively than blocking a session
- and therefore their probability should be minimized by suitable resource management
(including admission control) techniques.

The purpose of this paper is to develop a model that can be used to analyze the
trade-off between the blocking and dropping probabilities in CDMA in the presence
of elastic traffic. We build on the model developed for elastic traffic in previous work
[4] and extend it with allowing for a state dependent soft blocking and capturing the
fact that sessions are sometimes dropped. The main assumption that we make is that
the session drop probability is connected to the load of the system. When the load is
high, the interference from neighbor cells leads to outages with a higher probability
than when it is low. For elastic sessions, fast rate and power control attempts to reduce
the transmission rates and the required received power at the base station, as long as the
transmission rates stay above the session specific so called guaranteed bit rate (GBR).
Therefore, it seems intuitively clear that there is a trade-off between how conservative
the admission control algorithm is (on the one hand) and what is the average bit rate
of elastic sessions and what session drop probabilities users experience (on the other
hand). The contribution of the paper is to propose a model that can be used for the
analysis of this trade-off.

2 Revisiting CDMA Uplink Equations and State Space Structure
The basic CDMA uplink equations that serve as a starting point for this paper are de-
scribed in details in [3] and [4]. In this section we summarize these results and refer to
these references for the derivation of them.

2.1 Revisiting the Basic CDMA Equations
We consider a single CDMA cell at which sessions belonging to one of I service classes
arrive according to a Poisson arrival process of intensity λi (i = 1, . . . , I). Each class is
characterized by a peak bit-rate requirement R̂i and an exponentially distributed nomi-
nal holding time with parameter µi. When sending with the peak rate for a session, the
required target ratio of the received power from the mobile terminal to the total inter-
ference energy at the base station is given by ∆̃i = R̂iEi

WN0
. Here Ei/N0 is the class-wise

signal energy per bit divided by the noise spectral density that is required to meet a
predefined QoS (e.g. bit error rate, BER) and W/R̂i is the CDMA processing gain.

Let ni be the number of ongoing sessions of class i. We will refer to vector n = {ni}
as the state of the system. We now assume that arriving sessions are blocked by a
suitable admission control algorithm that prevents the system from reaching the state in
which the power that should be received at the base station would go to infinity. In other
words, a suitable admission control algorithm must prevent the system to reach its pole
capacity (as defined by Equation (8.10) of [8] and (5) of [3]).

The power Pi that is received at the base station from the mobile terminal for session
i must fulfill (see [4]):

Pi =
(

PN +
PN · Ψ
1− Ψ

)
·∆i =

PN ·∆i

1− Ψ
; Ψ , Ψ(n) =

I∑

`=1

n` ·∆`; ∆i , ∆̃i

1 + ∆̃i

(1)
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Table 1. Model (Input) Parameters

I Number of service classes
R̂i Peak bit rate associated with class-i sessions
λi Arrival intensity of sessions belonging to class-i

1/µi Mean (nominal) holding time of sessions belonging to class-i
âi Maximum slow down (using the terminology of [3]) of R̂i

ϕ Parameter of the other cell (sector) interference (see Equation (4))
Ei/N0 Normalized signal energy per bit requirement of class-i

In practice, Ψ̂ is defined such that the noise rise in the system stays under some prede-
fined threshold, typically less than 7dB. In the single class case it means that the number
of admitted sessions must fulfill: n1 < bΨ̂/∆1c.

2.2 The Impact of Slow Down

Recall that the required target ratio (∆i) depends on the required bit-rate. Explicit rate
controlled elastic services tolerate a certain slow down of their peak bit-rate (R̂i) as
long as the actual instantaneous bit rate remains greater than R̂i/âi. When the bit rate
of a class-i session is slowed down to R̂i/ai, (0 < ai ≤ âi) its required ∆ai value
becomes:

∆ai =
∆̃i

ai + ∆̃i

=
∆i

ai · (1−∆i) + ∆i
, i = 1, . . . , I, (2)

which increases the number of sessions that can be admitted into the system, since now
Ψa must be kept below Ψ̂ , where Ψa =

∑I
i=1 ni ·∆ai .

We use the notation ∆min,i = ∆âi to denote the class-wise minimum target ratios
(can be seen as the minimum resource requirement), that is when the session bit-rates
of class-i are slowed down to the minimum value (GBR) associated with that class.
The smallest of these ∆min,i values ∆ = mini ∆min,i can be thought of as the finest
”granularity” with which the overall CDMA resource is partitioned between competing
sessions.

2.3 Determining the System State Space

The maximum number of sessions from each class can is given by n̂i = b(∆min,i)−1c.
Then, recall that in each n state of the system, the inequality

∑
i ni ·∆ai < Ψ̂ must hold.

The states that satisfy this inequality are the feasible states and constitute the state space
of the system (Θ). The feasible states, in which the acceptance of an additional class-i
session would result in a state outside of the state space are the class-i blocking states.
The set of the class-i blocking states is denoted by Θi. Due to the ”Poisson Arrivals See
Time Averages” (PASTA) property, the sum of the class-i blocking state probabilities
gives the (overall) class-i blocking probability. In each feasible state, it is the task of
the bandwidth sharing policy to determine the ∆ai(n) class-wise target ratios for each
class. The ∆ai(n):s reflect the fairness criterion that is implemented in the resource
sharing policy mentioned above. From these, the class-wise slow down factors and the
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instantaneous bit-rates of the individual sessions can be calculated as follows:

ai(n) =
∆i · (1−∆ai(n))
∆ai

(n) · (1−∆i)
; Rai

(n) = Ri/ai(n) (3)

For ease of presentation, in the rest of the paper we will not indicate the dependence of
ai, ∆ai

and Rai
on the system state n.

3 Modeling Soft Blocking and Session Drop

3.1 Modeling the Interference from Neighbor Cells

The interference contribution from other cells is typically quite high (around 30-40%).
This is taken into account as follows. We think of the CDMA system as one that has
a maximum of n̂ = Ψ̂

∆ number of (virtual) channels. The neighbor cell interference ξ
is a random variable of log-normal distribution with the following mean and standard
deviation respectively :

α =
ϕ

ϕ + 1
· n̂ and σ = α, (4)

where ϕ is factor characterizing the neighbor cell interference and is an input parameter
of the model (Table 1).

The mean value of the interference α is equal to the average capacity loss in the cell
due to the neighbor cell interference and σ is chosen to be equal to α as proposed by
[6] and also adopted by [5]. (When ϕ = 0, the neighbor cell interference is ignored in
the model.)

Recall that we think of Ψ(n) as the used resource in state n. Then in a given state
n let bΨ (n) denote the probability that the neighbor cell interference is greater than the
available capacity in the current cell that is (Ψ̂ − Ψ ):

bΨ (n) = Pr{ξ > Ψ̂ − Ψ} = 1− Pr{ξ < Ψ̂ − Ψ} = 1−D(Ψ̂ − Ψ),

where D(x) is the cumulative distribution function of the log-normal distribution:

D(x) =
1
2

(
1 + erf

( ln(x)−N

S
√

2

))
; N = ln

(
α2

√
α2 + σ2

)
; S2 = ln

(
1 +

σ2

α2

)
.

The impact of state dependent soft blocking resulted, e.g. by the neighbor cell inter-
ference, can conveniently be taken into account by modifying the λi arrival rates in
each state by the (state dependent) so called passage factor: σi(n) = gi(1 − bΨ (n)) =
gi(D(n̂ − Ψ(n))). The passage factor is the probability that a class-i session is not
blocked by the admission control algorithm when such a session arrives in system state
n [5].

3.2 Modeling Session Drop

When the system is in state n, a class-i session leaves the system with intensity γi(n) ·
µi

ai(n) , where γi(n) is the state dependent session drop factor. The session drop factor is
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such that for all i: γi(n) |ni=0 = 1; and γi(n) |ni 6=0 ≥ 1 . Furthermore, we can assume
that the drop probability for a given session does not depend on the instantaneous slow
down of that session. This is because whether a session gets out of coverage or whether
it gets dropped by the radio network does not depend on the slow down. The session
drop probabilities, however, depend on the actual level of the noise rise, because higher
noise rise level at the base station makes decoding of signals more difficult. We will
thus assume that the session drop factor is a function of the macro state only and is
the same for all classes : γi(x) = f(x) = f(Ψ) ∀i ∈ I . That is, we assume that the
session drop probability is determined by the load in the system and is equal for all
service classes.

4 System Behavior
4.1 The Markovian Property and Determining the Generator Matrix
We now make use of the assumptions that the arrival processes are Poisson and the nom-
inal holding times are exponentially distributed (see Subsection 2.1). The transitions
between states are due to an arrival or a departure of a session of class-i. The arrival
rates are given by the intensity of the Poisson arrival processes. Due to the memoryless
property of the exponential distribution, the departure rates from each state depend on
the nominal holding time of the in-progress sessions and on the slow down factor in that
state. Specifically, when the slow down factor of a session of class-i is ai(n), its depar-
ture rate is γi(n)µi/ai(n). Thus, the system under these assumptions is a continuous
time Markov chain (CTMC) whose state is uniquely characterized by the state vector
n.

4.2 Determining the Generator Matrix
For ease of presentation, but without losing generality, we use an example to illustrate
the structure of the generator matrix. Assume that â1 = 1, â2 > 1 and â3 > 1. In this
case, the task of the bandwidth sharing policy simplifies to determining ∆a,2 and ∆a,3

for each state, from which â2 and â3 follows.
Based on the considerations of the preceding subsections, we see that the generator

matrix Q possesses a nice structure, because only transitions between ”neighboring
states” are allowed in the following sense. Let q(n1, n2, n3 → n′1, n

′
2, n

′
3) denote the

transition rate from state (n1, n2, n3) to state (n′1, n
′
2, n

′
3). Then the non-zero transition

rates between the feasible states are (taking into account the impact of the passage
factors and session drop factors):

q(n1, n2, n3 → n1 + 1, n2, n3) = λ1σ1(n1, n2, n3)

q(n1, n2, n3 → n1, n2 + 1, n3) = λ2σ2(n1, n2, n3)

q(n1, n2, n3 → n1, n2, n3 + 1) = λ3σ3(n1, n2, n3)

q(n1, n2, n3 → n1 − 1, n2, n3) = n1γ1(n1, n2, n3)µ1

q(n1, n2, n3 → n1, n2 − 1, n3) = n2γ2(n1, n2, n3)µ2/a2(n1, n2, n3)

q(n1, n2, n3 → n1, n2, n3 − 1) = n3γ3(n1, n2, n3)µ3/a3(n1, n2, n3)

The first three equations represent the state transitions due to session arrivals, while
the second three equations represent the transitions due to session departures. Here we
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utilized the fact that Class-1 sessions cannot be slowed down, while Class-2 and Class-3
sessions can be slowed a2 : 1 ≤ a2 ≤ â2, and a3 : 1 ≤ a3 ≤ â3 respectively.

4.3 Determining the Blocking Probabilities and Session Drop Probabilities

From the steady state analysis, the blocking and dropping probabilities directly follow.
The hard blocking probabilities can be easily calculated, because we assume that the
sessions from each class arrive according to a Poisson process: Phard,i =

∑

n∈Θi

π(n).

The total blocking probabilities include the soft blocking probabilities in each state
and the hard blocking probabilities: Ptotal,i = 1 −

∑

n∈Θ

π(n)σi(n). Finally, the class-

wise dropping probabilities can be calculated using the following observation. Since the
dropping related departure rate from state n is (γi(n)−1) · niµi

ai(n) , the long-term fraction

of the dropped sessions must be proportional to γi(n)−1
γi(n) · niµi

ai(n) . Weighing this quantity
with the stationary probability distribution of the system and normalizing yields:

Pdrop,i =

∑

n∈Θ

π(n) · γi(n)− 1
γi(n)

· niµi

ai(n)
∑

n∈Θ

π(n) · niµi

ai(n)

. (5)

In the next section we will show how this intuitively clear formula can be verified by
defining a trapping state in this system.

5 Solution Based on the Tagged Customer Approach

The calculation of the (mean and the distribution of the) time to completion of suc-
cessful sessions requires some additional effort. As we shall see, the method we follow
here can also be used to verify the dropping probability calculations as suggested by
Equation (5).

5.1 Session Tagging and Modifying the State Space

In order to calculate the moments and the distribution of the holding time of successful
(not dropped) sessions we modify the state space by introducing a trapping (absorbing)
state and make the following considerations.

We will continue to think of an elastic session as one that brings with itself an expo-
nentially distributed amount of work and, if admitted into the system, stays in the system
until this amount of work is completed or the session gets dropped. The method we fol-
low here is based on (1) tagging an elastic session arriving to the system, which, at the
time of arrival is in one of the feasible states; and (2) carefully examining the possible
transitions from the moment this tagged call enters the system until it acquires the re-
quired service or gets dropped and therefore leaves the system. Finally, un-conditioning
on all possible entrance state probabilities, the distribution of the best effort service time
can be determined.
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Fig. 1. Modified state space with a trapping state that represents successful session termination.
The transition rates to this trapping state correspond to the transition rates with which the tagged
session enters the trapping state. The initial probability vector can be determined from the steady
state by normalization and taking into account the ’thinning’ affect of the passage factors.

For the purpose of illustration, we again concentrate on the part of the state space
in which n1 = 8 and tag a class-3 session. Figure 1 shows the state transition dia-
gram from this tagged session’s point of view an infinitesimal amount of time after this
tagged session entered the system. Since we assume that at least the tagged session is
now in the system, we exclude states where n3 = 0. Figure 1 also shows the entrance
probabilities for each state, with which the tagged session finds the system in that state.
Thus, in Figure 1, the tagged arriving session will find the system in state (n2, n3) with
probability P (n2, n3), and will bring the system into state (n2, n3 + 1) unless (n2, n3)
is a Class-3 hard blocking state. For non hard blocking states the entrance probabili-
ties have to be ”thinned” with the passage factor (i.e. γ(n1, n2, n3)). In order for the
entrance probabilities to sum up to 1, they need to be re-normalized since we have
excluded entrances in the hard blocking states.

In this modified state space, we also define a trapping (absorbing) state. Depend-
ing on how this trapping state is interpreted and how the transition rates into that state
is defined, we can calculate the moments and the distribution of the holding time of
successful sessions and the time until dropping of dropped sessions as well.

We first discuss the case of successful sessions. In this case, the trapping state cor-
responds to the state which the tagged session enters when the workload is completed
(”the file has been transferred successfully”). The transition rates from each state are
given by µ3/a(n). The time until absorption corresponds to the time the tagged session
spends in the system provided that it is not dropped. Indexing the modified state space
in a similar manner as the original state space, the new generator matrix Q̃S will have
the following structure:

Q̃S =
[

BS bS

0 0

]
(6)
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where the BS matrix represents the transitions between the non-trapping states, the
bS vector contains the transitions to the trapping state, the 0 vector indicates that no
transitions are allowed from the trapping state. When the trapping state represents the
state that the tagged session enters when it is dropped, the transition rates to the trapping
state are given by γ3(n)−1

a3(n) µ3 and the generator matrix takes the following form:

Q̃D =
[

BD bD

0 0

]
(7)

where the BD matrix represents the transitions between the non-trapping states, and the
bD vector contains the transitions to the trapping state. Once the structure of the ex-
panded state space and the associated transition rates together with the (thinned) initial
probability vector, PR(0), are determined, we can determine the rth moment of TS :

E[T r
S ] = r! · P t

R(0) · (−BS)−r · e (8)

We note that the procedure to calculate the moments of TD is the same as that for TS ,
except that we now have to make use of the BD matrix instead of BS . The distributions
of TS and TD are given by:

Pr{TS < x} = 1− P t
R(0) · exBS · e; Pr{TD < x} = 1− P t

R(0) · exBD · e.

5.2 Verifying Equation (5): An Alternative Way to Calculate the Dropping
Probabilities

The trapping state approach can also be used to determine the dropping probabilities,
which can be used to verify results obtained from Equation (5). In order to do this, we
consider the modified state space with two trapping states illustrated in Figure 2. From
each state, the tagged class-i session can enter any of the two trapping states corre-
sponding to the case when the tagged session successfully terminates or gets dropped.
The generator matrix of this state space is given by:

Q̃i =




Bi bS,i bD,i

0 0 0
0 0 0


 (9)

where bdrop,i is the column vector containing the transition rates to the trapping state
representing the session drops. The Bi matrix has to be determined considering the total
transition rates to the two trapping states.

The class-wise dropping probabilities can be calculated using Equation (10):

Pdrop,i = P t
R(0) · (−Bi)−1 · bD,i, (10)

6 Numerical Results

6.1 Input Parameters

The input parameters for the two cases that we study are summarized by Table 2. In
Case I, Class-1 is a rigid class, whereas in Case II, Class-1 is elastic with a maximum
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Fig. 2. Modified state space with two trapping states representing successfully terminated and
dropped sessions respectively. Seen from the transient states, the total transition rates with which
the tagged session enters either of these states is the sum of the two transition rates. This modified
state space can be used to determine the probabilities of success and drop.

slow down factor â1 = 3. In both cases we change the maximum slow down factor of
Class-2 â2 = 1 . . . 4. (â2 is changed along the x axis in each Figure.) The offered traffic
is set to 2.72 Erlang per each class and the required ∆i value for sessions of each class
is ≈ 0.15. The function γi(n) = f(n) is set such that it does not depend on the slow
down factors, according to the discussion at the end of Section 3.2. Specifically, in this
paper we choose the following dropping factor: f(n) = 1+νln(1+n1 ·∆1 +n2 ·∆2),
expressing that the dropping factor is a function of the total load in the system (see also
Table 2).

6.2 Numerical Results

Blocking Probabilities Figures 3-4 and Figures 5-6 show the impact of state dependent
blocking on the total blocking probabilities. State dependent blocking implies that the
admission control takes into account the instantaneous value of the noise rise at the
base station rather than just the state of the own cell. This increases the class-wise total
blocking probabilities from around 7% and 2% to 10% and 6% in Case I when â2 = 4.
We also note that when both classes are rigid (Case I, â2 = 1), the total blocking values
are high, but these high values are brought down to reasonably low blocking probability
values when either one and especially when both classes tolerate slowing down of the
instantaneous transmission rates (Case II, â2 = 4).

Dropping Probabilities Figures 7-8 and Figures 9-10 show the impact of soft block-
ing on the session drop probabilities. First, we note that the session drop probabilities
slightly (less than 2%) increase as traffic becomes more elastic. The reason is that the
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Table 2. Model (Input) Parameters

I 2
R̂i 128 [kbps]
λi 87.2613 [1/s]
µi 32.03 [1/s]
â1 1 (Case I); 3 (Case II)
â2 1 . . . 4 (along the x axis)
ϕ 0.25

Ei/N0 7 [dB]
Dropping factor f(n) = 1 + νln(1 + n1 ·∆1 + n2 ·∆2),ν = 1; [9]
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Fig. 3. Case I, no soft blocking, blocking prob-
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Fig. 4. Case I, soft blocking, blocking probabil-
ities

system utilization increases when traffic is elastic and the system operates in ”higher
states” with a higher probability than when traffic is rigid.

We also see that state dependent blocking decreases the session drop probabilities
in both cases (for example from around 7% to 5% in Case I when â2 = 4). This is
because soft blocking entails that in average there are fewer sessions in the system that
decreases session drops.

Mean Holding Time of the Successful (Not Dropped) Sessions Figures 11-12 show
the mean holding times of successful sessions (normalized to the nominal expected
holding time, that is when the slow down factors are 1). In Case I, Class-1 sessions are
rigid and there is no increase in their mean holding times. In this case, Class-2 sessions
benefit from soft blocking (keeping in mind that we are now only taking into account
the sessions that are successful). Their holding time is somewhat lower in the case of
soft blocking.

7 Conclusions

In this paper we have proposed a model to study and analyze the trade-off between
the blocking and dropping probabilities in CDMA systems that support elastic services.
The model of this present paper captures the impact of state dependent blocking, which
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Fig. 8. Case I, soft blocking, session drop prob-
ability

is a consequence of the CDMA admission control procedure that takes into account
the actual noise rise value at the base station (including the interference coming from
surrounding cells) rather than just the state of the serving cell. Session drops happen
with a probability that increases with the overall system load.

As traffic becomes more elastic, the session drop probability increases, but this in-
crease can be compensated for by a suitable admission control algorithm. Such state
dependent admission control algorithms increase the blocking probabilities somewhat,
but this increase can be mitigated if sessions tolerate some slow down of their sending
rates. Thus, the design of the CDMA admission control algorithm should take into ac-
count the actual traffic mix in the system and the per-class blocking and session drop
probability targets.

An important consequence of the presence of elastic traffic is that the blocking prob-
abilities decrease as the maximum slow down factors increase. This is a nice practical
consequence of one of the key findings in [3], namely that the Erlang capacity increases.
Another consequence of elasticity is that the dropping probabilities increase somewhat,
but this increase is not significant (the exact value would depend on the model assump-
tions, for instance the value of ν).
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Fig. 9. Case II, no soft blocking, session drop
probabilities
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Fig. 10. Case II, soft blocking, session drop
probabilities
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Fig. 11. Case II, no soft blocking, successful
sessions’ mean holding time
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Fig. 12. Case II, soft blocking, successful ses-
sions’ mean holding time
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