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Abstract. Recently, Peer-to-Peer has become a popular paradigm for building 

distributed systems, aiming to provide resource localization and sharing in 

large-scale networks. However, advanced searching for resources remains an 

open issue. The flooding technique used by some Peer-to-Peer systems is 

expensive in bandwidth usage, and it shows a serious lack in scalability. Also, 

more efficient systems based on distributed hash tables (DHT) lack in query 

expressiveness and flexibility. This paper addresses this issue by discussing 

existing solutions, and proposing a novel approach to support advanced multi-

keyword queries in the context of Peer-to-Peer systems. It extends the existing, 

and widely established, DHT-based localization frameworks. This new 

approach can substantially reduce the bandwidth consumption and improve the 

load balancing over the network. 

Keywords. Peer-to-Peer systems, Distributed Hash Tables, Content discovery, 

Keyword-based Searching. 

1. Introduction  

These last years have seen the emergence and the deployment of a new approach for 

distributed systems known as peer-to-peer. This approach allows the deployment of 

distributed systems in large-scale and dynamic networks. Nowadays, the main 

application of this approach is the object localization in these large scale networks. 

Objects can be of any type, such as files, services, applications, devices, etc. Though 

they have introduced a new manner to handle the resource discovery problem, the 

initial systems had some major limitations. One can mention Napster and its central 

index that introduces a bottleneck in the network and, therefore, a loss of reliability in 

addition to high administration costs. In the case of the Gnutella system [6], its 

expensive diffusion principle introduces a serious load in the network, as well as a 

serious lack in term of scalability. 

To improve the efficiency of the classical approaches, distributed Hash Tables 

(DHT) have been introduced [16] [12] [17] [10]. The objective of the DHT-based 

peer-to-peer systems is mainly the localization of files (i.e. the node containing the 

requested file). These localization systems are based on the construction of a simple 



        

index containing associations between File IDs and Node IDs, where peers and data 

are structurally organized. This index is distributed over the network by the mean of a 

specific hash function. The DHT-based systems guarantee an efficient discovery with 

a limited number of hops. Furthermore, the study presented in [9] has demonstrated 

that DHT-based protocols are suitable for dynamic and large environments. 

Despite the efficiency of these approaches, objects can only be localized using a 

unique identifier. Thus, current DHTs are limited to pure lookup of these identifiers. 

This unique ID introduces a problem as a user is not always aware of its value (i.e. the 

name of the corresponding file). However, in order to use these systems in the general 

case of resource discovery, it is necessary to define an enhanced search approach not 

only based on a unique ID but on several parameters, possibly fuzzy parameters, that 

can describe this resource (keyword searching). A system based on this principle will 

provide a query engine allowing this type of requests in large scale networks.  

The objective of this work is to propose and evaluate a new solution to advanced 

multi-keyword search in the context of structured peer-to-peer systems. The related 

architecture is completely distributed and is based on DHT-localization. However, it 

is not based on a specific protocol but aims to incorporate, with minimal efforts, 

several protocols such as Tapestry [17] and Chord [16]. To support keyword-based 

requests, the proposed solution introduces a query engine on the top of these DHT-

based protocols. 

The rest of this paper is organized as follows. Section 2 provides and discusses 

related works. In section 3, we introduce our novel architecture. The sections 4 and 5 

detail our propositions as well as the underlying mechanisms. We evaluate the 

solution in section 6 before we conclude with section 7.  

2. Related work and discussion 

Some work has already been done to make peer-to-peer keyword searching feasible. 

Most of the proposed solutions use the concept of reverse hash tables. The association 

< ID of file, Node > is replaced by the inverted list: < keyword, List of nodes >. Each 

resource is described by a list of keywords. Then, each keyword is indexed separately. 

Hence, the inverted index is distributed among peers by keyword. A query with k 

keywords can be answered by k nodes. Afterwards, all the results are collected by the 

initiator of the query and the final result is identified as the intersection of all these 

responses. Despite its simplicity, we can easily notice the overload introduced in the 

network by this approach, since the final result corresponds only to a small portion of 

the received responses. Based on this method, several recent propositions and 

improvements have been proposed. We can cite: 

Reynolds and Vehdat [13] have proposed an architecture based on reverse hash 

tables associated with Bloom filters and caches to reduce network traffic.  

Balazinska et Al. [1] have designed a resource discovery system, called Twine, 

based on the Chord [16] localization protocol. In this system, the support of keyword-

based queries is achieved by the translation of resource descriptors into hierarchical 

trees (dependence between resources’ attributes). This relation aims to reduce the load 

during the creation of the reverse hash tables. 



       

Shi et Al. [15] used, also, the concept of reverse hash tables (keyword indexing). 

However, this mechanism is improved by organizing the nodes into several groups of 

different levels depending on their locations. This method aims to reduce the query 

routing latency as well as the network load. 

 Even so, the “reverse hash table” approach introduces a significant load in the 

network and nodes. In fact, each resource - and then each query - can be represented 

by potentially a number of keywords. Moreover, this approach raises the problem of 

“common keyword” which produces a heterogeneous load in the network. Thus, the 

node responsible for this so called “common keyword” will be requested more 

frequently than others, and consequently will be overloaded. The scalability 

limitations of this technique and its existing optimizations, in term of high bandwidth 

consumption, have been demonstrated in [14]. 

Other interesting works presented in [7] [11], introduce new concepts and 

architectures that are not compatible with existing P2P systems which is not the 

approach we have chosen. In fact, our objective is to exploit and extend the existing 

peer-to-peer systems, since they are widely used and accepted. Also, the proposed 

solution should provide a generic framework, which can be used for various purposes 

and applications such as: service discovery, file sharing, distributed file storage …etc.  

Therefore, through this work, we aim to propose a new technique to handle 

advanced multi-keyword lookup queries in a large scale peer-to-peer environment. 

Indeed, this new approach intends to tackle the following objectives and 

requirements: 

− Generic framework: use and extend the existing, and widely used, peer-to-peer 

frameworks. Thus, the new approach should be compatible with the current 

technologies. 

− Bandwidth saving: reduce the bandwidth consumption to its minimum in order to 

improve scalability. 

− Load balancing: reduce the load disparity between peers. However, this latter is 

not our main goal, and even if our proposed approach can reduce the load 

unfairness in the network, it still needs the introduction of more specific load 

balancing techniques [5] [2] in order to be completely efficient. 

Hence, after describing our novel approach, we will evaluate its performances and 

compare it to the existing ones in order to prove these enhancements. 

3. Proposed architecture 

In our solution, the system is deployed in a distributed manner on top of a set of 

participating nodes that communicate together using a peer-to-peer protocol. Each 

node supports the proposed software architecture as presented in Figure 1. The 

enhanced query layer is responsible for handling application requests and translating 

them into localization queries. This layer is deployed on the top of a DHT-based 

protocol such as Tapestry or Chord to take benefit from their routing and resource 

localization mechanisms. In the following part of this paper, we will present the 

various query mechanisms, as well as their integration with the content-localization 

protocol. 



        

 

 

Fig. 1. Software architecture on a node. 

4. The query engine  

The query engine constitutes the upper part of our discovery system. It receives high 

level search queries from the client application. Then, it translates them into routable 

queries which are forwarded to the underlying DHT-based localization layer. 

Afterwards, it analyses and combines the collected responses before delivering an 

accurate result to the application. So, the primary purpose of this engine is to provide 

advanced resource descriptions and a powerful query construction allowing the use 

and combination of various keywords. 

4.1 Identifier Format and resource descriptions 

In the current content-localization systems, the resource identifiers are obtained by 

hashing an attribute or a list of attributes using a consistent function. This list of 

attributes defines a single key that identifies uniquely the resource. Thus, if a resource 

is described by a key:  

key = (attributeN°1=value1, attributeN°2=value2),  

Then, its identifier will be extracted as follows:  

ID = h(key), where h represents the hash-function.  

The naming space should be very large (generally 160 bits) in order to guarantee 

the identifier uniqueness with a high probability (consistent-hashing characteristic). In 

this case, the most used hash-function is SHA-1 [3].   

The weakness of such localization systems is their incapacity to deal with complex 

and advanced queries. This comes from the specification of the Ids. In fact, each 

resource is identified by its unique key, instead of a list of attributes, which limits 

considerably its description. In order to respond to this lack, we propose to change the 



       

identifiers structure. This latter will be decomposed into several fields. For each 

resource type, a list of major attributes is established (attributes that should appear in 

the resource ID). This list should be larger than the key-attributes list and should 

model the resource in an accurate manner. Thus, the identifier is not based any more 

on the resource key, but on its description (which is as complete as possible). The 

final identifier is specified according to the format presented in figure 2. This latter 

provides a comparison between the usual identifier construction technique and the 

proposed method. 

 

 

Fig. 2. Identifier format, usual vs. proposed method. 

The hash-function, that is used for each couple (attribute = value), is SHA-1. The 

first attribute should be the ‘resource type’, because it is the one that infers the exact 

identifier structure. In fact, the number of fields composing an identifier may vary 

according to the resource type (the list of major attributes describing a resource). 

Also, the sizes of the different fields can be different in a same ID. The unique 

constraint is to choose each field size proportionally to the Base B of the underlying 

localization protocol. This constraint aims to facilitate the routing process. Therefore, 

it is easy to combine the number and the size of the fields in order to comply with this 

constraint. For example, if a resource is described by 7 attributes and if the total 

identifier size is 320 bits, one solution is to fix the size of the first field to 80 bits and 

fix all the remainder to 40 bits. Naturally, the total ID size is the same for all the 

resources. This size should be very large in order to guarantee uniqueness with a high 

probability.  

Concerning the node identifiers, we keep the same construction technique as in the 

existing systems, i.e. hashing of the IP address, the public key or any other unique 

attribute of the node. 



        

4.2 Query construction  

Traditionally, in the content-localization systems, the requests are built by specifying 

the unique key of the desired resource (its identifier). Then, this request is routed to 

the node indexing this ID. The localization process is completed. 

In our discovery system, the user application provides a set of keywords to the 

underlying query engine in order to formulate its request. Generally, these keywords 

are only a subset of all the attributes identifying the resource. Hence, the query engine 

can not, from this subset of attributes, recover a unique identifier to locate a resource. 

However, it can calculate some of its fields to build a fuzzy identifier (a set or interval 

of identifiers). Then, the localization protocol diffuses the request to all the nodes 

indexing the elements of this set of IDs. It is the concept of “limited diffusion”. Figure 

3 provides an example of such a query construction, based on our “Fuzzy-identifier” 

concept. 

 

 

Fig. 3. Query construction example: the “Fuzzy-identifier” concept. 

When the user request combines several logical operators: OR / AND, the query 

engine translates them according to a canonical template: 

(a & b & c)  || (d & e & f & g) || … (z & f). 

Where { a, b, …, z } represents query axioms. For example: 

a = “Type=VoIP”,    b = “Location=USA”,    c = “Encoder=G.711”, ... 



       

Then, the query is divided into several basic queries according to the union 

operator. A basic query should contain only intersection operators. Then, each basic 

query is translated into a fuzzy identifier (an interval or a set of IDs). Thus, each 

fuzzy identifier constitutes a query which is sent to the localization layer in order to 

be routed. After receiving the responses, the query engine collects these results, 

combines and analyses them in order to extract the final result.  

5. Query routing: “limited diffusion” 

 

Fig. 4. Limited diffusion with Tapestry. 



        

When a resource is published and indexed in the network, its identifier is calculated 

using its major attributes. Then, the routing layer forwards this ID using the habitual 

process. However, during the search phase, the query engine provides to this 

localization layer a set of IDs. At that time, the "limited diffusion" mechanism is 

solicited, since the requesting node should contact several nodes simultaneously. In 

figure 4, we describe, as an example, the extension of the Tapestry protocol with this 

diffusion mechanism.  

In the Tapestry protocol [17], every node and every resource is assigned a unique 

ID. Indeed, the identification space is structured in a hierarchical tree. Thus, the 

routing is performed in a recursive manner by progressing digit by digit in the 

targeted node ID, using the routing table entries of each visited node. In the case of 

our extension, the routing algorithm handles the “undetermined digits” by forwarding 

the request to all the relevant entries in the routing table, as shown in figure 4. Hence, 

it is a hybrid solution (routing vs. diffusion). This extension introduces only minor 

changes into the functioning (routing algorithm [17]) of this localization protocol. All 

the other features and algorithms of the Tapestry protocol are kept unchanged, 

especially in term of replication, fault tolerance, network construction and 

maintenance. In the same way, our architecture can use and extend other DHT-based 

localization protocols, such as Chord [16] or Pastry [19]. 

Also, the localization protocol keeps his performances unchanged. In order to 

confirm this assertion, we initiated a set of tests, using the p2psim software [4], and 

concerning our extension of the tapestry protocol. The simulation consists on varying 

the size ‘N’ of the network and the base ‘B’ of the protocol (the base of the 

identification space). The curves in figure 5 exhibit clearly the O(LogB N) 

characteristic of the query routing algorithm, in term of mean hop count (the number 

of hops necessary for a query to reach all its destinations). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Scalability Performance of the routing algorithm. 

6. Evaluation of the Query engine 

In this section, we evaluate the performances of the proposed query engine by 

comparing our approach, the fuzzy identifiers technique, to the reverse hash table 
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approach. This latter is described in section 2: Related work. This comparison is 

mainly based on simulations and made with respect to three crucial features: 

− Storage cost: by computing the mean index size per node. 

− Load balancing: by tackling the load disparity between nodes in term of index 

distribution. 

− Bandwidth cost: by computing the mean number of messages received in response 

to a search query. 

Before going further in this evaluation, we define in Table 1 a set of experiment 

parameters and metrics, as a basic vocabulary for the rest of this section. Thus, the 

system has N peers. The overall index is composed of M resource descriptions and 

distributed across the network peers. Each resource is described using K relevant 

keywords.  

Table 1. Parameters and metrics 

Name Description 

N Number of nodes in the network. 

M Number of documents (resource descriptions) in the network. 

K Mean number of keywords to describe a resource, or document. 

r Replication factor (index replication for availability purposes). 

Di Size of the index maintained by nodei. 

D Mean index size per node. 

L Load disparity factor (in term of index distribution) 

 

The mean index size per node determines the storage cost to distribute and 

maintain the index over the network peers. This metric is obvious and easy to 

compute in both cases:  

Fuzzy identifiers: 
 

(1) 

Reverse hash table: 
 

(2) 

 

Indeed, in our approach, each resource is described using only one index entry. On 

the other hand, in the reverse hash table approach, each keyword of the resource is 

indexed separately (the K factor in the second formula). We can notice the big storage 

loss due to the use of reverse hash tables in comparison to our approach, since the 

mean number of keywords per resource is generally big enough. 

Another critical issue of the index distribution performance is the load balancing 

(index balancing over the network peers). In order to study this feature, we defined a 

specific and accurate metric. This metric is computed as the standard deviation of the 

discrete quantitative variable: (Si = Di / D). By definition, the mean value of Si is 1. 

Also, the mean index size has no effect on this variable, and thus on its standard 

deviation. Therefore, this metric reflects only the index load disparity between nodes. 

In an ideally balanced system, the metric should be equal to zero. Also, high values 



        

imply an unfair index distribution as well as the presence of extremely loaded nodes. 

We call this metric “Load disparity factor”: 

 

(3) 

Figure 6 compares our approach to the reverse hash table technique. In these 

experiments, the overall number of documents, M, is set to one million, and the mean 

number of keywords, K, is set to 8. The index is not replicated (r = 1). First, we define 

the global keyword and document space, reflecting a realistic situation. Then, inside 

this space, we chose randomly the set of M documents to constitute our index. This 

latter is distributed across the network hosts according to both techniques. The curve 

in figure 6 shows the effect of the network size on the load balancing metric. The use 

of a reverse hash table leads to a highly unbalanced index distribution. Furthermore, 

the network size has a big effect on the load disparity parameter, which is very 

constraining for a potentially large scale localization system. On the other hand, our 

approach showed low and quite stable results. Thus, it is more suitable for a 

deployment in large scale environments. However, these results are not optimal. The 

system needs the introduction of more specific load balancing techniques [5] [2] in 

order to improve its performances. 
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Fig. 6. Load disparity between nodes: the network size effect. 

The number of documents received as a response to a search query is a critical 

issue of a scalable P2P localization system, since it has a big impact on both, the 

aggregate bandwidth cost and the processing load on peers. This critical parameter is 

plotted in figure 7 as a function of the query accuracy. By this latter, we mean the 

number of specified keywords in the query. If a query is more precise, by providing 

several keywords, it should produce fewer responses. Hence, the mean number of 

received documents should be inversely proportional to the query accuracy. This 

assertion is verified in the case of our approach. Furthermore, this approach is optimal 

since the number of received responses corresponds to the final result of a query; the 

bandwidth consumption is reduced to its minimum. 



       

In the case of the reverse hash table approach, each keyword is indexed separately; 

so, a query with k keywords is divided into k requests and answered by k nodes. Then, 

all the results are collected and the final result is the intersection of all the received 

responses. Therefore, the mean number of received documents is proportional to the 

query accuracy, while the final result is inversely proportional to this parameter, 

which is awkward. Moreover, as shown by figure 7, the use of a reverse hash table 

leads to a huge waste of bandwidth. The use of Bloom filters and cache methods [13] 

may reduce this loss; but it is only a partial enhancement and not a complete solution 

to this problem. 

 

 

Fig. 7. Bandwidth cost per query: the query accuracy effect. 

This waste of bandwidth appears again during the registration phase. In fact, when 

a new resource is indexed in the system, a registration message is sent for each of its 

keywords. While, in our approach, only one message is produced and sent during the 

registration phase, which is more efficient.  

10. Conclusion 

Advanced keyword searching is not feasible in large scale networks using the usual 

reverse hash table approach, because of its various limitations. For that reason, we 

have proposed and detailed a new solution to handle this important requirement. This 

solution exhibits the following strengths: it extends the efficient DHT-based peer-to-

peer frameworks, in a generic way; it minimizes the bandwidth and storage costs; and 

it reduces the unfairness related to the index distribution. All these assertions have 

been demonstrated through various simulations and experiments. Despite these 

improvements, the index distribution problem is still open and therefore we are 

investigating an efficient load balancing algorithm in order to improve.  

As a future work, we will use our enhanced localization system in a global service 

discovery architecture for large ambient networks, where the number of resources can 

be extremely large and dynamic. This architecture should overlap the existing local 

service discovery systems. 
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