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Abstract. The estimation of the expected traffic loss ratio (workload
loss ratio, WLR) is a key issue in provisioning Quality of Service in
packet based communication networks. Despite of its importance, the
stationary (long run) loss ratio in queueing analysis is usually estimated
through other assessable quantities, typically based on the approximates
of the buffer overflow probability. In this paper we define a calculus for
communication networks which is suitable for workload loss estimation
based on the original definition of stationary loss ratio. Our novel cal-
culus is a probabilistic extension of the deterministic network calculus,
and takes an envelope approach to describe arrivals and services for the
quantification of resource requirements in the network. We introduce the
effective w-arrival curve and the effective w-service curve for describing
the inputs and the service and we show that the per-node results can
be extended to a network of nodes with the definition of the effective
network w-service curve.
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1 Introduction

Real time applications in today and future heterogeneous networking environ-
ment require simple and efficient Quality of Service provisioning. The expected
traffic (packet) loss ratio at network nodes is one of the key QoS parameters
which should always be considered and controlled in almost all kind of traffic.
Traffic management functions (like connection admission control, packet schedul-
ing algorithms) strongly rely on loss performance analysis.

During the past few years significant attention has been paid for bounding
the workload loss ratio within the framework of deterministic network calculus
[1]. In [2,3] some long run loss ratio bounds have been presented, which are
founded on buffer saturation probability approximations, hence we call them
indirect bounds'. More recently in [7] [8] a definition based stochastic workload
loss bounding technique has been proposed for deterministic network calculus.

! It is true in general, that most of the papers concerning loss ratio apply buffer
overflow probability for WLR estimation [4], [5], nevertheless, it is shown, that the

ratio % can be arbitrary under certain circumstances [6].



Since the worst-case view of the deterministic network calculus results in an
overestimation of the actual resource requirements of traffic flows in a packet
network, the extension of the network calculus to a probabilistic setting receives
a significant attention nowadays [2,9-13]. The existing probabilistic extensions
share a common property that they assign some kind of violation probability
to the definitions of the arrival and service curves. This property makes the
estimation of the the overflow type quantities much easier as is shown in [14],
however such extensions are not suitable for the direct estimation of the workload
loss ratio which still has to be done in an indirect way. These complications
indicate, that the workload loss ratio bounds cannot be deduced from the current
stochastic versions of network calculus in a straightforward manner [8]. This fact
urged us to compose the problem in a more natural way.

Our paper is organized as follows: In section 3 a short overview of determinis-
tic network calculus is given followed by the most important results of a recently
introduced min-plus algebra [15] [1] based stochastic extension [10] to the deter-
ministic network calculus. After that, a novel calculus is defined which is designed
for direct (definition based) workload loss ratio approximations. We introduce
the effective w-arrival curve and the effective w-service curve for describing the
inputs and the service and we prove fundamental per-node statements for the
backlog, delay and the effective w-arrival curve of the output traffic. It will be
shown that the per-node results can be extended to a network of nodes with the
definition of the effective network w-service curve in section 4. The connection
between the effective w-arrival curve and effective bandwidth [16], is pointed out
in section 5. In section 6 we compare the derived workload loss bound with the
closest existing probabilistic direct bound [7] and some simulation results.

2 Notation and assumptions

In this paper the following notations are used: A;(s,t]?> denotes the number
of bits arrived to a a node from flow ¢ and D;(s,t] the output of flow ¢ from
the node within the interval (s,t]. If we use A;(¢t) and D;(t) that will mean
A;(0,t] and D;(0,t] respectively. If a node has I inputs A(t) := Ele A; (1),
and Dy(t) := Zle D;(t). The backlog at time ¢t is given by B(t) = A(t) — D(¢)
and the delay at time ¢ is given by W(¢) = inf{d > 0: A(t —d) < D(¢)}. In a
network context we denote by A™(t) and D™ (t) the arrivals and departures in
node N. Subscripts and superscripts are dropped whenever possible to simplify
the notation. Let f ® g(t) = info<s<¢{f(t — s) + g(s)} denote the min-plus
convolution and f @ g(t) = supg<, {f(t +u) — g(u)} the min-plus deconvolution
of functions f and g as it is defined in the min-plus algebra [15] [1]. We define
the positive part operator as (expr)™ = max[expr,0]. For the theorems assume
that Ay, Ao, ..., Ar are independent and A; and D; are stationary and ergodic.

2 Without loss of generality we consider a bit-processing system, since it can be shown,
that the result can be applied for systems with higher granularity (cells, packets).



3 Theoretical background

Network calculus is a method to determine resource requirements of traffic flows
by taking an envelope approach to describe arrivals and services in the network.
One of the first applications of this type of analysis to computer networks was
given in [17] and extensions can be found in [15] [1]. In the followings we recall
the fundamental results.

3.1 Deterministic network calculus

In the deterministic network calculus the characteristics of the input sources
are described in terms of arrival curves and the offered service from the nodes
are given by the so called service curves. In the followings we recall the exact
definitions of these notions from [1]:

Definition 1 (Arrival curve [1]) We say that a given arrival process A(t) has
a as an arrival curve if for all t > s:

A(t) — A(s) < aft —s) (1)

Definition 2 (Service curve [1]) Consider o node N and a flow through N
with input and output function A(t) and D(t). We say that N offers to the flow
a service curve B if and only if

D(t) > A® B(2). (2)

The greatest advantage of the deterministic network calculus is the applica-
bility of the per node results to the concatenation of several nodes. This happens
through the definition of the network service curve which express the offered ser-
vice from a network of nodes. If the hth node within the route (h = 1,2,..., H)
of nodes offers to a flow a service curve By, then the network service curve can
be expressed as fpet = 51 Q f2 @ ... ® BH-

However the deterministic network calculus is a powerful and expressive tool
for describing the properties of communication networks, its worst-case system
view cannot take the effects of the statistical multiplexing into consideration.
This fact usually leads to the overestimation of the resource requirements of
multiplexed traffic sources.

3.2 Probabilistic extensions of the deterministic network calculus

In order to benefit from the statistical multiplexing several probabilistic exten-
sions of the deterministic network calculus have been elaborated in the past few
years. The common property of these studies, that they assign a bound on the
violation probability that the incoming traffic exceeds its statistical envelope.
For example in [13] we found assumptions that the inputs have stochastically
bounded burstiness, in [11] the authors assume that the moment generating
functions of the inputs are exponentially bounded. Probabilistic extensions of



the network calculus are usually referred as statistical network calculus. Since
our novel calculus relies on the min-plus algebra we recall here the results of the
only statistical network calculus approach that is based on the min-plus algebra
[10]. This calculus defines the effective envelope for the arrival processes.

Definition 3 (Effective envelope [10]) An effective envelope for an arrival
process A is a non-negative function G such that for all t and 7:

P{A(t+7)—A{t) <G (1)} >1-¢ (3)

To characterize the available service to a flow or to multiplexed flows the effective
service curve is used which can be seen as a probabilistic measure of the available
service.

Definition 4 (Effective service curve [10]) Given an arrival process A, an
effective service curve is a non-negative function S¢ that satisfies for all t > 0:

P{D(t)>2 A0S ()} =21-¢ (4)

The following theorems recall the statistical bounds for the delay, the out-
put envelope and the backlog using the terminology of the min-plus algebra on
effective envelopes and effective service curves. As we referred earlier, in order
to derive such results appropriate time scale limit assumptions are needed, it is
assumed, that the node offers a service curve S which satisfies the additional
requirement that there exists a time scale T such that for all ¢ > 0:

P{D(t) > iEfT{A(t—T)—l-SE“(T)}} >1—¢, (5)
For all theorems we assume that G* is an effective envelope for the arrivals A to
a node and we have a T < oo in (5). Define ¢, := &, + Te.

Theorem 1 (Output traffic envelope [10]) The function G @ S°* is an ef-
fective envelope for the output traffic.

Theorem 2 (Backlog bound [10]) G*@5%(0) is a probabilistic bound on the
backlog, in the sense that, for all t > 0,

P{B(t) <G"25*(0)} 21-e, (6)

Theorem 3 (Delay bound [10]) If d > 0 satisfies that sup, «{G*(T — d) —
S%s (1)} <0, then d is a probabilistic delay bound in the sense that, for allt > 0:

P{W(t) <d} >1-e, (7)

Similar to the deterministic calculus the effective service curve of a network
can be expressed as the convolution of the service at each node. Consider a
network of nodes where the hth node offers an effective service curve S;* to a
flow. It is assumed that:

P {Dh(t) > inf {AM(t - 1)+ S;° (r)}} >1—¢, (8)

7<Th



Theorem 4 (Effective network service curve [10]) If the service offered at
each node h =1, ..., H on the path of a flow is given by a service curve S;°, then
an effective network service curve St%, for the flow is given by St2, = S7* ®55° ®

.®85 with a violation probability bounded above by e, =5 Y, (14 (h —1)T").

We can see, that these statements for backlog delay etc. are expressed with
a straightforward calculation from the defined effective envelopes and service
curves, however quantifying packet loss with the existing probabilistic extensions
of network calculus is a highly non-trivial problem even in an indirect way [2]
[7] [8]- One can also observe, that these statements above rely on an accurate
busy period analysis for estimating the appropriate time scale and require that
the infimum in (5) and (8) is taken within a finite interval. In the next section
we define a statistical network calculus, which is designed for direct packet loss
calculations and which application does not require such assumptions for the
time scale.

4 A novel statistical network calculus for workload loss
estimations

We can see in (3) and (4) that the definition of the effective envelope and the
effective service curve happens by assigning some violation probability to the
deterministic arrival and service curves (1) (2). As it was pointed out earlier this
approach is favourable for overflow type quantities like buffer overflow probability
however quantifying packet loss in a direct way turns out to be non-trivial.

In the followings a novel calculus is defined which is suitable for loss exam-
inations. We set out from the definition of the workload loss ratio which looks
like this for stationary and ergodic systems:

E[# of lost bits in a unit time interval] E[(B-¢)7] )
[# of bits arriving in a unit time interval] — E[4] '

WLR = 1o

where B represents the stationary backlog of the system with infinite buffer,
q is the buffer threshold and E[A] = E[A(0,1)] is the number of bits arriving
in a unit time interval®. Based on (9) we assign Z¥ and S¥¢ functions to the
input and the service respectively and we call them effective w-arrival curve and
effective w-service curve hereafter.

Definition 5 (Effective w-arrival curve) We call Z% the effective w-arrival
curve of the flow with arrival process A if for all t and 7:

E[(At+7) - A(t) - 2°(1))"] < ¢ (10)
3 It is proven (e.g. in [6] and [18]) that the expected value of the number of lost bits

in a finite buffer system, can be bounded from above by the number of packets
overflown in the system with infinite buffer.



Definition 6 (Effective w-service curve) For an input with arrival process
A a node offers an effective w-service curve S¥* if for all t > 0:

E[(A® S (t) - D()"] < ¢s (11)

We note that by letting ¢ and ¢ to zero the arrival and service curves of
the deterministic network calculus can be recovered.

Within the framework of the following theorems we formalize stochastic
bounds on some fundamental system characteristics like backlog, delay and out-
put traffic envelope, with min-plus calculus operations on effective w-arrival
curves and effective w-service curves. For the proofs the following lemma is
needed about the positive part operator:

Lemma 1. For given X1, X2, X3, X4 random variables:
E[(X1 — X + X3 — X0)¥] < E[(X1 — Xo)T] + E[(X3 — Xo)¥]  (12)
The proof of this lemma is left to the reader.

Theorem 5 (Statement for the backlog) Z¢®S%+(0) is a probabilistic bound
on the backlog, in the sense that, for all t > 0,

E[B(t) - 2% 0 5*(0)"] < ¢ +¢s (13)

Proof. It follows from the definition of the backlog that

E[(B(t) - Z* @ §*-(0))*] = E[(A(t) — D(¢t) - Z* & §*- (0))*] = E[(A(t) + A ®
S¢:(t) —D(t) — A® S%=(t) — Z¥ @ 8¥=(0))*].

For any choice of an arbitrarily small § > 0, there exists a finite s* such that
At — s*) + 5%+(s*) < A® S¥(t) + § and the whole expression is increased by
the substitution of this s* into the min-plus deconvolution in Z¥ @ S§%<, so we
get that:

E[(A{t)+ A® S?:(t) = D(t) — A® S¥=(t) — Z¢ @ S¥+(0))T] < E[(A(t) + A®
S?:(t) — D(t) — A(t — s*) — SP=(s*) + 0 — Z¥9(s*) + S¥=(s*))T].

After simplification we obtain that:

E[(A(t) — At —s*)+ 0 — Z¢(s*) + A® S¥=(t) — D(t))™].

By using Lemma 1 twice we get:

E[(A{t)—A(t—s*)+0—Z%(s*)+ A® S¥=(t) — D(t))T] < E[(A(t) — A(t —s*) —
2% (s"))*] + E[(A ® 5%+ (t) — D(t))*] + E[3*]

From the definition of the effective w-arrival curve and the effective w-service
curve we recover that:

E[(A(t) - A(t— s*) — Z9(s*))*] + E[(A® $9+ (8) = D(H))*] + E[5+] < o+ o, +5.
Since § can be arbitrarily small, letting it shrink to 0 recovers the desired result,
which completes the proof. Q.E.D.

The alert reader may notice that the left hand side of (13) express the ex-
pected value of the number of bits above a certain buffer level Z¢ @ S¢+(0) in
an infinite buffer system. In other words if we imagine a buffered system with a
buffer size Z¥ @ 5%+(0) the statement in (13) establishes an upper bound on the
loss rate. Dividing this upper bound of the loss rate with the expected value of
the bits arriving to the node gives an upper bound on the workload loss ratio.



Theorem 6 (W-arrival curve for the output) The function Z¥@S%+ is an
effective w-arrival curve for the output traffic from the node in the sense that for
all t and 7:

E[(D(t+17) —D(t) = Z° 2 S* (1)) ] < o + s (14)

Proof. E[(D(t+7)—D(t)—Z¢@S%(1))"] = E[(D(t+7)+ A®S%(t)— D(t) —
A®S%(t)— Z¥ @ 8% (1))*]

Using Lemma, 1 and the fact that A(t + 7) > D(t + 7) we obtain that:
E[(D(t+71)+AQ 8% (t)—D(t)— A® S%:(t) — Z¢ @ S¢+(1))T] < E[(A(t+ 1) —
A®S%(t)— Z% @ S% (1))t + E[(A® S¥(t) — D(t))*].

For any choice of an arbitrarily small 6 > 0, there exists a finite s* such that
A(t —s*) +5%+(s*) < A® S%+(t) + § and the whole expression is increased by
the substitution of this s* into the min-plus deconvolution in Z¥ @ S¥=, so we
obtain:

E[(A{t+7)—A®8%:(t)— 2% © S%=(1))*| + E[(A® S¥:(t) — D(t))*] < E[(A(t +
T)—A(t—s*) =S¥ (s*)+ 06— Z¢9(T+8*) + 59 (s*)) |+ E[(A® S¥: (t) — D(t))*].
After some simplification and applying Lemma 1 we get:

E[(At+7) — A(t —s*) = Z9(1 + s*))T]| + E[(A ® S?*(t) — D(t))*] + E[6%] <
@ + s + 6. The last step follows from the definition of the effective w-arrival
curve and the effective w-service curve. Since § can be arbitrarily small, letting
it shrink to 0 recovers the desired result, which completes the proof. Q.E.D.

Theorem 7 (Statement for the delay) Ifd : Z¢(r — d) < S%+(7) for all T
then:
E[A(t —d) — D()] < o + ¢s (15)

Proof. E[A(t —d) — D(t)] < E[A(t —d) — A® S%(t) + A® S¥:(t) — D(t)] <
E[(A(t—d) — A® S¥=(t) + A® S¥:(t) — D(¢))*].

For any choice of an arbitrarily small § > 0, there exists a finite s* such that
A(t — s*) +5%(s*) < A® S%=(t) + § and the whole expression is increased by
the substitution of this s* into the first min-plus convolution:

E[(A(t —d) — A® S%(t) + A® S¥:(t) — D(t))*] < E[(A(t — d) — A(t — s*) —
S?:(s*)+ 8+ A® S¥(t) — D(t))"]

From Lemma 1 it follows that:

E[(A(t—d) — A(t — s*) — S¥<(s*) + 0 + A® S¥:(t) — D(t))*] < E[(A(t — d) —
At —s*) — §%(s*))T] + E[(A® S®:(t) — D(t))*] + E[61].

It follows from the additional assumption of the theorem that:

E[(A(t - d) — At — s*) — §%(s*))+] + E[(A ® S%+(t) - D())*] + E[s*] <
E[(A(t—d)— A(t—s*)— 29 (s*—d)) |+ E[(A®S** (1) = D(t)) "]+ E[0*] < p+p,+0
The last step follows from the definition of the effective w-arrival curve and the
effective w-service curve. Since § can be arbitrarily small, letting it shrink to 0
recovers the desired result, which completes the proof. Q.E.D.

One can notice that Theorem 7 establishes a bound on the expected value of
the number of bits that suffers from a delay larger than d. In order to establish
end-to-end bounds from the single node results we are going to express the



effective w-service curve of a network of nodes. In the following theorem the
effective w-service curve of two concatenated nodes is given. Let S’ mean the
effective w-arrival curve of input process A; at node N.

Theorem 8 (Concatenation of nodes) Assume that a flow traverses nodes
Ny and Ny in sequence. If E[(AN' @ SE (t) — AN2($))*] < o1 and E[(AM? ®
SKa(t) = DMA())*] < 2, then

(AN @ S5, ® S53(t) - DVX(1)*] < p1 + 02 (16)

which means, that SY ® S5 is a stochastic w-service curve for the system which
consists of the concatenation of these two nodes with w1 + w2 parameter.

Proof. E[(AN! ® S§} ® S{3(t) — DN2())1] = E[(AN! ® S{, @ S35 (t) — AM?2 @
S55,(t) + AN @ Sg5,(t) - DV (1)),
From Lemma 1 it follows that:
E[(AN' @ S5 @ S£3,(H) — AV? © S83,(t) + AV © 585 (1) - DN2(1))*] < E[(AN' @
SZh ® S5 (1) — AN @ SE,(0)7] + E[(AN? @ S55(1) — DV2(1))+].
Using the definition on the min-plus convolution and the effective w-service curve
we recover that :
E[(4N' © S5 ® S§ (1) — AN? @ S55(0)*] + E[(AN? ® Sg5(1) — DN2(1)+] <
E[(infogsgt{infogugt—s{ANI (t —8— U) + SK,II (u)} + SK% (8)} - infOSsSt{ANz (t —
5) + SN + v

For any choice of an arbitrarily small § > 0, there exists a finite s* such that
AN2(t — s*) + S§3(s*) < infocs<t {AN(t — s) + Sk5(s)} + 0 we get:
E[(infosss,g{infosugt_s{ANI (t —S— U) + S;‘%ll (u)} + SK(QZ (S)} - infOSsSt{ANz (t -
)+ GO N+ g2 < Bl(infocucs e AVt — 5" —u) + 55, (u)] + 525 () -
AN2(1=5) Z 5% (s") 16) 1+ = BI(AN 0 SG, (t— ")~ AN2(t—5) +9) H+a.
Applying Lemma 1 and using the definition of the effective w-service curve we
get:
E[(AN' @ S{L(t — s*) — AN2(t — s*) + 8)F] + 92 < o1 + 02 + 6.
Since § can be arbitrarily small, letting it shrink to 0 recovers the desired result,
which completes the proof. Q.E.D.

The application of Theorem 8 iteratively to a network of nodes the gives the
following corollary.

Corollary 1 (Effective network w-service curve) If the service offered at
each node h = 1,.... H on the path of a flow is given by an effective w-service
curve Sp°", then an effective network w-service curve Sy, for the flow is given
by:

S =87 ®55° Q... 85" (17)
with a parameter:
H
Puw = Z Psh (18)
h=1

Using corollary 1 we are able to draw up end-to-end workload loss ratio bounds
according to Theorem 13.



5 The effective w-arrival curve and the effective
bandwidth

The theory of effective bandwidth [16] defines a framework for service provision-
ing, that describes the minimum bandwidth requirement of a traffic source in
terms of the effective bandwidth, which is a probabilistic quantity between the
average and peak rate of the input source. This concept provides a measure of
resource usage which takes proper account of the varying statistical character-
istics and QoS requirements of traffic sources. A widely referenced definition of
effective bandwidth is the following.

Definition 7 (Effective bandwidth [16]) The effective bandwidth of the source
with arrival process A(t) is defined as:

ae(s,T) = sup { 1 log E[es(A(HT)A(t))]} ,0< 8,7 < o0. (19)
t>0 st

The following theorem makes contact between the effective w-arrival curve
and the effective bandwidth.

Theorem 9 |
29(r) = inf {rau(s,r) — 2B¥)y (20)
s>0 S
Proof.
eS(=Z%(T)+7ae(s,T))
E[(Alt+7) - A@t) - Z°(1))*] < . (21)
for all values of s. Let ¢ defined as:
es(—Z“"(T)—i-Tae(s,T)) 99
. = . (22)
For Z¥(7) we obtain:
1
Z9(7) = 105, 7) — @. (23)

By taking the infimum over s we obtain the smallest effective w-arrival curve:

Z% (1) = ;r;% {Tae(s,r) - @} . (24)

Since the effective bandwidth expressions of various traffic sources have been
developed in the last decade the effective w-arrival curve for those sources can
be calculated according to Theorem 9. For demonstration the effective w-arrival
curve of multiplexed regulated input flows is shown in Figure 1. The w-arrival
curve is normalized by the number of flows and the per flow deterministic arrival
curve is also shown for easier interpretation of the figure. One can see that the
effective w-arrival curve exploits a significant statistical multiplexing gain.
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Fig. 1. The statistical multiplexing gain

6 Numerical results

In this section we investigate the novel workload loss ratio bound deduced from
our novel statistical calculus and compare it with the best existing deterministic
calculus based probabilistic bound [7] and also with simulation results under
NS2. For analysis the following scenario is used. We have 100 input flows, which
are token bucket constrained with some deterministic arrival curve a;(t) = @;t +
ag; (5&1__50 = 1333, J1.50 = 8, as1..100 = 666, 051..100 = 5), and the packet
forwarder satisfies a rate latency service curve property, with 3(¢t) = 12500 -
max(t — 8 - 1075,0), in a work-conserving manner?. The sustainable rate of the
inputs and the size of the bucket is given in packets and the service rate is given
in packets during a second (pps). These parameter values are close to many
practical, common applications.

Based on the effective bandwidth for regulated inputs in [16] we use the fol-
lowing formula for the calculation of the effective w-arrival curves in accordance
with equation (24):

Z*(t)= inf {Zzélog <1+%(e<sai<t>>—1)) —@}. (25)

ic ¢

The calculation of the workload loss ratio happens according to Theorem 5.
For simulation purposes we made an implementation of the evaluation sce-
nario under the NS2 network simulator [19]. We used random packet generators
as inputs, which send packet to the server through a token bucket traffic regula-
tor. For the token bucket regulator we used the Differentiated Services module
of the NS2 and set the bucket size and the token generating rate according to

4 For the proper comparison of the performance of the arrival and w-arrival curves
the same deterministic service curve is used for the server.



the values of the input scenario. The server was a non-preemptive constant rate
server with the appropriate service rate. Besides the 100 inputs we set up an-
other packet generator, which sends lower priority packets to the server with
the same packet size. This way we ensured the given rate-latency service curve
for the input flows among realistic conditions, since there is no service for the
higher priority packets, while the server finishes the inchoate. The interesting
case from the point of the packet loss is when the inputs exploit the entire input
profile, so we set up the packet generators to generate different traffic bursts of
alternating sizes with exponentially distributed random inter arrival times. We
also controlled the average rate of the generators in order to meet the maximum
input rate requirement. We run the simulation ten times for some queue sizes
and took the average of the results. Figure 2 show the results of the bounds and
the simulation.

T

Newcal
Detcal -
Simwlr -

log WLR

-4+ 4

_5 1 1 i 1 1 1 1 1 1 \\ 1
20 40 60 80 100 120 140 160 180 200
Buffer size (packets)

Fig. 2. The comparison of the bounds and the simulation results

We can observe that the novel bound provides a significant improvement of
the existing closest result. Comparing with the simulation we state that within
the range of interest (10=2 — 107%) the result of Theorem 5 gives a considerably
well bound on the workload loss ratio.

7 Conclusions

In the focus of this paper was to establish a novel probabilistic calculus for
packet networks which is designed for direct workload loss ratio approximations.
We introduced the effective w-arrival curve and the effective w-service curve
and proved fundamental statements about the backlog, delay and output traffic
envelope. We also showed that the per-node results can be carried over to a
network of nodes with the definition of the effective network w-service curve and



a performance evaluation was given on the workload loss ratio bound that follows
from our new theory. Besides these fundamental results our novel calculus raises
a lot of questions that have to be answered. The determination of the effective w-
service curve for various packet schedulers is a possible topic of further research.
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