
Route Lifetime based Optimal Hop Selection in VANETs on

Highway: An Analytical Viewpoint

Dinesh Kumar, Arzad A. Kherani, and Eitan Altman

INRIA B.P. 93, 2004 Route des Lucioles, 06902 Sophia Antipolis Cedex, France
{dkumar,alam,altman}@sophia.inria.fr

Abstract. We consider the problem of optimal next-hop selection in a route between two
vehicles, for a simple scenario of Vehicular ad hoc networks (VANETs) on a highway. For a
given approximation of the optimal number of hops, we seek the optimal choice of next-hop
based on its speed and inter-node distances, so as to maximize the expected route lifetime.
Under a Markovian assumption on the process of speed of nodes, we show that the optimal
choice of speeds attempts to equalize the lifetimes of adjacent links. A monotone variation
property of the speed of relay nodes under the optimal policy is proved. These properties
have been confirmed with simulations. The optimal policies and their structures can assist in
enhancing the performance of existing VANET routing protocols.
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1 Introduction

Vehicular Ad Hoc Networks (VANETs) [1–4] tend to exhibit a drastically different behavior from
the usual mobile ad hoc networks (MANETs) [6]. High speeds of vehicles, mobility constraints on
a straight road and driver behavior are some factors due to which VANETs possess very different
characteristics from the typical MANET models. Broadly speaking, four such characteristics are
rapid topology changes, frequent fragmentation of the network, small effective network diameter
and limited temporal and functional redundancy [6]. Due to this fundamental behavioral difference
between MANETs and VANETs, topology-based routing protocols developed for the former cannot
be directly used in the latter. Topology-based protocols are the table-driven proactive protocols
and on-demand reactive protocols [7]. For example authors in [10] have shown that TORA (an on-
demand protocol) is completely unsuitable for VANETs. Instead, position-based routing protocols
such as LAR, DREAM or GPSR [11–13] that require a-priori knowledge of vehicles’ geographic
location (from a GPS service) could be used for VANETs for faster route discovery and improved
performance. But position-based routing protocols suffer from geographic routing failures due to
presence of topology holes [14] and authors in [14] propose spatially aware routing for VANETs to
overcome this drawback. However optimality of spatially aware routing has not been proved and it
could be further enhanced in order to improve performance.

A routing protocol usually has three main functions: route discovery, optimal route selection
(among various candidate routes discovered) and route maintenance. Once an optimal route from a
source to its destination has been discovered and selected, route maintenance must be carried out,
in order to track link failures (due to movement of relay nodes) and perform route re-discovery.
Route maintenance and re-discovery are expensive in signalling and computation, and hence it is
desirable to choose the optimal route comprising links with maximum possible lifetimes during
the optimal route selection phase. In this paper we propose an optimal route selection criteria
from an analytical viewpoint, for the simple scenario of a VANET on a straight line highway. Our
optimal route selection criteria consists of the optimal choice of next-hop, based on maximum route
lifetime. The proposed optimal next-hop selection criteria based on maximum route lifetime is not



a competitor to the optimal route selection methods in any of the existing routing protocols, but
rather it can be used in conjunction with them. Our goal is not to propose a complete routing
protocol along with its implementation aspects. We rather focus to gain an analytical insight into
the route lifetime dynamics of a VANET by considering only a simple scenario and our observations
on the structural characteristics of the optimal policies can assist in enhancing the performance of
any of the existing routing protocols mentioned before or spatially aware routing in particular, for
VANETs. As discussed before, optimal route selection in VANETs can be very different from that
in MANETs and designing a routing protocol for VANETs can be very complex due to the rapidly
changing topology and frequent link breakdowns. In our model, we introduce certain simplifying
assumptions, as compared to a real life scenario, in order to gain an analytical insight into the
dynamics of vehicle mobility and route lifetimes in VANETs. Without these simplifying assumptions
it can be very hard to study these dynamics. For instance, a VANET in city traffic scenario can
be very hard to model and our analysis does not hold good for this case. The contributions of this
paper are twofold. Firstly, the heuristics and structural characteristics of the optimal hop selection
policies developed in this paper can assist in better understanding the dynamics of route lifetime in
VANETs. Secondly, the results can serve in enhancing the performance of existing routing protocols
for VANETs.

2 Optimization Parameters

We consider VANETs on a straight line highway in which a vehicle can establish connectivity only
with other vehicles traveling in the same direction of its motion. In other words we consider ad hoc
networks formed by only those vehicles that are moving on the same side of a high way and not
the opposite side. Assume vehicles (nodes) traveling on an infinitely long straight highway with L
lanes, moving in the same direction on either side of the highway. Each lane i has an associated
speed limit si. Assume that in a given lane, the nodes travel with a speed corresponding to the
speed limit of that lane. In other words, it is assumed that all nodes move on the highway with a
discrete set of speeds which consists of the speed limits of each lane. We follow the convention that
s1 < s2 < . . . < sL. When a node transits to an adjacent lane due to driver’s natural behavior, it
now travels with the speed associated with the new lane. Now consider 2 tagged nodes, a source and
a destination moving in any two (possibly same) lanes, traveling in the same direction. At time 0,
these nodes are assumed to be distance D apart. If D is large enough then these nodes may not be
able to communicate with each other directly. Intermediate relay nodes are required for these two
tagged nodes to form a VANET. However more than one options (vehicles in front of transmitting
vehicle moving with identical or different speeds in the same lane or adjacent lanes, respectively)
for the choice of next hop may be available. How would one decide whether to choose the vehicle
in the same lane or in adjacent lanes as the next hop. In this paper we address the problem of
coming up with an optimal choice of next hop (relay node) such that the associated link lifetime
and hence the route lifetime, is maximized. The constraints under which this decision should be
made are mentioned in detail in Section 3, but here we emphasize on the fact that making such
a decision may not be as simple as it seems at first. An evident reason being that the underlying
state space over which the route lifetime has to be optimized is composed of different parameters,
each representing as a component parameter of the overall optimization problem. Following are the
possible optimization parameters that should be considered and the motivation behind their choice
is discussed in a predecessor research report [5] on this work:

1. Optimization over Number of Relay Nodes
2. Optimization over Inter-node Distances
3. Optimization over Speeds of the Intermediate Nodes



In the present work, we assume that nodes (vehicles) are equipped with a GPS receiver and we
also assume that the optimal number of relay nodes and the speeds of the source and destination
nodes are somehow known in advance. Avoiding relatively large values for number of relay nodes,
an optimal choice on number of relay nodes can be fairly approximated from the knowledge of
transmission range R and position of source and destination nodes obtained from the GPS receiver.
Approximate speeds of source and destination nodes can also be obtained from a GPS service. Given
this information, we are interested in obtaining the optimal inter-node distances and optimal speeds
of relay nodes that result in a maximum possible route lifetime.

3 System Dynamics and Model

3.1 Dynamics of Individual Nodes

The process of changing speed of any individual node due to lane change on the highway is assumed
to be an independent stationary ergodic stochastic process. We are thus also implicitly assuming
that the vehicles do not leave the highway. It is assumed as well that the vehicles do not change
their direction of motion since we consider VANETs formed by only those vehicles that are traveling
on the same side of highway in the same direction. In this paper, we restrict ourselves to the case
where the changing speed of any node can be modeled as an irreducible aperiodic Markov process,
taking a finite set of constant values {s1, s2, . . . , sL}. We assume that a node continues to move in
lane i with an associated speed si, 1 ≤ i ≤ L for an exponential amount of time before changing
its lane, or its speed equivalently. This time is exponentially distributed with rate μi and we denote
that a node in lane i transits to another lane j with probability Pi,j with Pi,i = 0. Even though
our analysis holds good for generic transition probabilities Pi,j , we assume the following natural
structure on node transitions in our highway scenario: from state (or, lane) i, a node can transit
only to the states (i − 1) ∨ 1 or (i + 1) ∧ L. Clearly, from state 1 a node can transit only to state 2
and from state L the only possible transition is to state L − 1.

3.2 Placement of Nodes

We assume that node spread-out along the highway is dense in the sense that in a sufficiently small
neighborhood of any point on a lane we can always find at least one node on the same lane. This
is like assuming that the transmission range R of a node is significantly large as compared to the
distances between two successive nodes in any lane. Most of the results in this paper can be extended
to the case where we assume that the existence of a node at any point on a lane is itself a stochastic
process. However, since we are more interested in the structural results of optimal distances and
speed selections, we will assume that this stochastic process is a constant process, i.e., there is always
a node at any given point on any lane. It is also assumed that the width of the lanes on an highway
is negligible when compared to the transmission range of mobile nodes along the length of highway.
We call this assumption as the straight line communication assumption.

3.3 Evolution of Inter-node Distances and Node Connectivity

Consider any two nodes i and j (node j is ahead of node i) moving in any two lanes with both
the nodes moving in the same direction. Assume that the two nodes have speeds vi(t) and vj(t)
respectively at time t. Since the two nodes are moving and also have their speeds changing with
time due to lane change, the distance between these nodes will also vary with time. Let us denote
the distance of node j from node i (measured in the direction of motion) at time t as dij(t). Assume
that node i is the source of transmissions meant for node j. We say that a direct link or single hop



route exists between nodes i and j as long as 0 ≤ dij(t) ≤ R, where R is the maximum possible
transmission range of a node i.e. a node can successfully transmit at any range ≤ R.

The distance between any two adjacent nodes i and i+1 (node i+1 is ahead of node i) of a route
denoted simply by di(t), forms a stochastic process that begins with an initial value of di(0) = di

and whose evolution over time, di(t), depends on the initial speeds of the two nodes. We assume
that two successive nodes i and i + 1 of a route remain connected only until when di(t) takes a
value outside the interval [0, R] for the first time (see Figure 1). The convention followed is that the
link between two successive nodes i and i + 1 of a route, breaks, if either, 1) node i + 1 overtakes
node i in the direction of motion and the distance between node i and node i + 1 exceeds R so that
node i + 1 is outside the maximum transmission range of node i, or, 2) node i overtakes node i + 1
in the direction of motion. This convention can be easily relaxed to incorporate the case where the
link between node i and i + 1 breaks only when node i overtakes node i + 1 by a distance R, in the
direction of motion. The results of our analysis will still hold good with this relaxed convention.
In brief, we consider nodes i and j to be connected if node j lies within the maximum transmission
range of node i only in the direction of motion and not otherwise. Note that since the communication
devices mounted in the vehicles operate on car battery which is recharged by the vehicle engine,
battery-life of nodes is not an issue in our model. All these simplifying assumptions above and in
previous Section 2, have been adopted to avoid a very complex modeling scenario, since the main
focus is to get an approximate first glimpse of the underlying dynamics of mobility of nodes and
route lifetimes in a VANET.

Assume M relay nodes in a route between the source and its destination, with the source being
the 0th node and the destination as the (M + 1)th node. Let v0 and vM+1 be the velocities of the
source and destination nodes and let D be the distance between them. For a given value of M , let
di, 0 ≤ i ≤ M be the distance between node i and node i + 1. We impose that

∑M
i=0 di = D so that

the last hop distance dM = D−∑M−1
i=0 di. For a non-broken route formed by nodes 0, 1, 2, . . . , M +1,

we require that 0 ≤ di ≤ R and let vi, 0 ≤ i ≤ M + 1 be the velocity of the ith node with v0 and
vM+1 known in advance. Note that vis may take any one of the set of constant values {s1, . . . , sL}
and there are LM different possible values that the vector v = (v1, . . . , vM ) can take.

4 The Problem Formulation

In our model described in the previous section, we assume a dense vehicle traffic scenario on the
highway. Due to this assumption multiple candidate routes may exist for choosing an optimal route.
If multiple candidate routes are available then we want to choose the route with the maximum
lifetime. We are given that there are M + 2 nodes, indexed 0, 1, . . . , M + 1, constituting a route.
Node 0 is the source node and node M +1 is the destination node. Now consider any two successive
nodes i and i+1 in the route, that are distance d apart at time zero. Assume also that at time zero,
node i is in lane k and node i + 1 is in lane l such that di(0) = d, vi(0) = sk and vi+1(0) = sl. Let
T (d, vi, vi+1) be the expected time after which the link between these two nodes breaks (see Section
3). We refer to the quantity T (d, vi, vi+1) as the link lifetime of the link between the successive
nodes i and i + 1 in a route.

For a route comprised of M + 1 links, our problem is to find an optimal inter-node distance
assignment denoted by d∗ = (d0, . . . , dM−1), and an optimal speed assignment, denoted by v∗ =
(v1, . . . , vM ), to the M relay nodes such that maximum route lifetime is attained. We thus seek the
optimal distance vector d∗ and speed vector v∗ such that the least of the link lifetimes of the route
is maximized. Our optimization problem is therefore the following,

Maximize
v,d

Minimum
i=0..M

T (di, vi, vi+1) . (1)

Instead of solving the above problem directly, we can also attempt to optimize a different,
parameterized, objective function. This objective function will coincide with the original one in



Equation 1 when the parameter takes a special value. We state here the following theorem whose
proof can be found in [5].

Theorem 1. The solution of the optimization problem in Equation 1 is identical to that of the
optimization problem below as α → ∞.

Minimize
v,d

⎡
⎣ M∑

j=0

(T (dj, vj , vj+1))−α

⎤
⎦

1
α

, (2)

In fact, we can say something more about the relation between the two optimization problems
of Equation 1 and 2 in the following theorem.

Theorem 2. There exists a finite α∗ such that the maximizers of optimization problem of Equa-
tion 1 are identical to that of Equation 2 for all values of α > α∗.

The proof of this theorem can be referred to in the research report [5]. Theorem 2 ensures that
there is no discontinuity in the solution of the optimization problem of Equation 2 with respect to
the solution of Equation 1, as α → ∞. Working with the objective function of Equation 2 in fact
has an advantage that we can optimize it for some finite value of α > α∗ and elegantly obtain the
solution to the optimization problem of Equation 1.

5 Determining the Expected Lifetimes

Having done with the problem formulation, here we seek to obtain explicit expressions for the link
lifetimes, to be able to explicitly define the objective function of either Equation 1 or Equation 2. We
study the expected lifetime of the connection between two nodes that are d distance apart at time 0
and have speeds si and sj respectively. We use the notation that a pair of nodes k and l is in state
sij when node k is in lane i with associated speed si and node l is in lane j with associated speed sj.
Here onwards, along with T (d, vk, vl), we will also use the notation T (d, sij) for the link lifetimes of
any two nodes, interchangeably. With some abuse of notation we use the same notation for the state
sij and the relative speeds between the two nodes sij

Δ= sj − si, interchangeably. Consider a pair
of successive nodes forming a link in a route as shown in Figure 1. If the second node is within the
range R of the first node then using the straight line communication assumption mentioned before
in Section 3, the expected remaining link lifetime is given by T (d, sij) and we state the following
theorem whose proof can be referred to in [5].

Theorem 3. T (d, sij) satisfies the following renewal-type recursions

sij > 0 T (d, sij) = e
−(μi+μj)

R−d
sij

R − d

sij
+

∫ R−d
sij

0

(μi + μj)e−(μi+μj)u
[
u+

∑
l

Pi,l
μi

μi + μj
T (d + siju, slj) +

∑
l

Pj,l
μj

μi + μj
T (d + siju, sil)

]
du,

(3)

sij < 0 T (d, sij) = e
−(μi+μj) d

|sij | d

|sij | +
∫ d

|sij |

0

(μi + μj)e−(μi+μj)u
[
u+

∑
l

Pi,l
μi

μi + μj
T (d − |sij |u, slj) +

∑
l

Pj,l
μj

μi + μj
T (d − |sij |u, sil)

]
du,

(4)

sij = 0 T (d, sij) =
∫ ∞

0

(μi + μj)e−(μi+μj)u
[
u +

∑
l

Pi,l
μi

μi + μj
T (d, slj)+

∑
l

Pj,l
μj

μi + μj
T (d, sil)

]
du.

(5)
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Instead of solving the system of Equations 3, 4, and 5 explicitly in its most general form, we solve
it only for some special cases. The main reason for considering only these special cases is that these
are the only cases which are of relevance in a real life highway scenario and solutions for cases other
than these cannot be applied to real life traffic movement on highways. Another interesting aspect of
considering these special cases is that the results that we obtain for these cases constitute a simple
form and provide important insights into the structure of the corresponding optimal distance and
speed policies. Later with the help of simulations we will attempt to validate the obtained structure
for any general case.

In the following sub-sections we attempt to solve the link lifetime recursion equations for par-
ticular cases of L = 2 and L ≥ 3. The case L = 1 is trivial because there is no breakdown of routes,
since all nodes are always traveling with the same speed s1. Firstly, we consider the case L = 2 and,
assuming μ1 = μ2, we obtain explicit expressions for the quantities T (d, sij)’s. We then solve the
optimization problem of Equation 1 directly for M = 1 and R

s12
< 1

2μ . For values of M > 1, the
global optimization problem can be solved by splitting it into several optimization problems each
one of them optimizing over a pair of two adjacent links (i.e., M = 1). The solution of these split
problems can then be combined to obtain solution to the global optimization problem (for M > 1)
after taking care of certain coupling issues related to adjacent pairs of links. Second, we consider
the case with general values of L ≥ 3 and 1

μi
>> R

si
so that a node remains in lane i for a very

long period as compared to the lifetime of a link. For this case we derive only the optimal speed
assignment policy, an interesting property of the optimal speed vector solution to the problem of
Equation 1 and develop some structural heuristics about the optimal speed vector solution to the
problem of Equation 2. Both these cases provide important guidelines on optimally choosing the
inter-node distances and speed of next hop.

5.1 L = 2

Consider the case where the number of lanes is L = 2. There are only two possible speeds s1 and s2

in this case with s2 > s1. At any time t, let the source have speed v0(t) and destination have speed
vM+1(t). Recall that the processes {v0(t)} and {vM+1(t)} are assumed to be independent Markov
processes over the state space {s1, s2}. The infinitesimal generator matrix is then given by:

s1 s2

s1 −μ1 μ1

s2 μ2 −μ2



Here μi is the rate of the exponentially distributed sojourn time when the process {v0(t)} (or,
{vM+1(t)}) is in state si. We state the following lemma without proof.

Lemma 1. If μ1 = μ2 = μ then,

1. The process of the speed of destination node with respect to the source node, i.e., {v0(t)−vM+1(t)}
forms an irreducible periodic Markov process over (finite) state space {0, s12, s21} with the mean
sojourn time in any state being exponentially distributed with rate 2μ.

2. The state transition probability matrix is of the form

s12 0 s21

s12 0 1 0
0 0.5 0 0.5
s21 0 1 0

In words, from the states with non-zero relative speed, transition is always to the one with a
relative speed of 0 and from the state with relative speed 0, the transition is to either of the other
two states, each with probability 0.5.

An important consequence of the observation of Lemma 1 is that the function T (d, vi, vj) depends on
vi and vj only via vi−vj with vi−vj ∈ {0, s12, s21}. We will see later that the observation of Lemma 1
also helps us to compute the function T (d, 0) directly via a simple application of Wald’s lemma [8,
Chapter 7] without solving any integral equation for T (d, 0). We have the following recursions for
T (d, s12) and T (d, s21) from Equations 3 and 4:

T (d, s12) = e−2μ (R−d)
s

R − d

s
+

∫ R−d
s

u=0

(u + T (d + su, 0))2μe−2μudu, for s12 > 0, s = s2 − s1 (6)

T (d, s21) = e−2μ d
s
d

s
+

∫ d
s

u=0

(u + T (d − su, 0))2μe−2μudu, for s21 < 0, s = s2 − s1 (7)

For obtaining T (d, 0) we follow the approach of random walks. Recall that T (d, 0) is the expected
time for which the distance between the two nodes remains in the interval [0, R], starting with
distance d apart and 0 relative speed. Clearly, the distance between the nodes can change only when
the relative speed between the two nodes is non-zero. The periods of zero and non-zero relative
speed alternate and the instants of the beginning of zero relative speed form renewal instants for
the relative speed process.

Consider a particle starting at point d. As in random walks, in each time unit the particle moves
to either left or right (each with probability 1

2 ) and moves by an exponentially distributed amount.
The mean of the jump size is 1

m where m = 2μ. Let Sn, n ≥ 1 be the position of particle just
after nth jump. It is then seen that Sn = d +

∑n
i=1 Xi where |Xi|s are exponentially distributed

random variables (with rate m) corresponding to the jump sizes (see Figure 2). Xi takes negative
and positive values with probability 1

2 each. Let N be the random variable corresponding to the
number of jumps required by the particle to exit the interval [0, R] with R > d. Let q be the
probability that the particle exits via R. The treatment of [8, Chapter 7] can then be used to
show that, since |Xi|s are independent and identically distributed, E

∑N
i=1 |Xi| = E[N ]E[|X1|]

and E[(SN − d)2] = E[N ]E[|X1|2]. To compute E
∑N

i=1 |Xi|, we need E[N ] which is derived from
the second relation above as follows. Since |Xi| are exponentially distributed, we can invoke the
memoryless property of exponential distribution to see that

SN − d =
{

R − d + Y w.p. q
−d − Y w.p. 1 − q

, (8)



where Y is an exponentially distributed random variable with rate m. Hence, E[(SN − d)2] =
E[N ]E[|X1|2] = qE[(R−d+Y )2]+(1−q)E[(d+Y )2] = (d2+E[Y 2]+2dE[Y ])+q(R−2d)[R+2E[Y ]].
From the above expression, since E[Y ] = E[X1] = 1

m , we can obtain E[N ] if we know q. We now
obtain q using the fact that E[SN − d] = E

∑N
i=1 Xi = E[N ]E[X1] = 0 [8]. Now, using the possible

values of SN−d mentioned in Equation 8, E[SN−d] = 0 = q(R−d+E[Y ])+(1−q)(−d−E[Y ]), hence
q = d+E[Y ]

R+2E[Y ] = md+1
mR+2 where we have used the fact that E[Y ] = 1

m . From this value of q, we get (using

the fact that E[Y ] = 1
m and E[X2

1 ] = 2
m2 ) E[N ] = ((R− 2d)(d + 1

m )+ d2 + 2
m2 +2 d

m )m2

2 . Assuming
s = 1 with out loss of generality, it is then seen that T (d, 0) = E[

∑N
i=1(Zi + |Xi|) − (

∑N
i=1 Xi −

(R − d))I
{R−d<

N�

i=1
Xi}

− (−d − ∑N
i=1 Xi)I

{−d>
N�

i=1
Xi}

], where Zis are also exponentially distributed

random variables with rate m and they correspond to the time when the distance between the two
nodes does not change because of zero relative speed (see Figure 2). Using the memoryless property
of exponential distribution, we see that if I

{R−d<
N�

i=1
Xi}

= 1 then
∑N

i=1 Xi − (R−d) is (independent

and) exponentially distributed with rate m. Similarly, if I
{−d>

N�

i=1
Xi}

= 1, then (−d − ∑N
i=1 Xi) is

exponentially distributed with rate m. Also, E[I
{R−d<

N�

i=1
Xi}

] = q = 1 − E[I
{−d>

N�

i=1
Xi}

]. Hence,

T (d, 0) = 2E[N ]
m − 1

m = (R − d)md + R + 1
m . We can thus write explicit expressions for the link

lifetimes from Equations 6 and 7 as T (d, 1) = md(R−d)+2(R−d) and T (d,−1) = md(R−d)+2d,
respectively.

Optimal Speed Vector Solution to Optimization Problem of Equation 1 for the case of
R
s

< 1
m

: We consider the case where R
s < 1

m . This scenario is of relevance since in normal real
life highway traffic, a node remains in its lane for an average time greater than the lifetime of the
link formed by this node and its next hop. Assuming s = 1 with out loss of generality, it is easy
to see that for this case T (d, 1) ≤ T (d, 0), d ≤ R, and T (d,−1) ≤ T (d, 0), d ≤ R. Now, let
the distance between the source and destination be D such that R < D < 2R. Thus one needs at
least two hops or equivalently one intermediate relay node for communication. Let the number of
intermediate relay nodes be M = 1. Also, let the speed of destination with respect to the source
be s = 1 (i.e. sij > 0). Here we find the optimal speed assignment for a fixed inter-node distance
assignment and then later in the next paragraph, we optimize over inter-node distances. So for a
given distance d between the source and the intermediate node, the decision is to be made on the
speed v of the only intermediate relay node. Let the expected lifetime of the link between source
and relay node be L1(v) and that of the link between relay node and destination be L2(v). The
value of these quantities then are

v L1(v) L2(v)
s1 T (d, 0) T (D − d, 1)
s2 T (d, 1) T (D − d, 0)

Now, T (D−d, 0)−T (d, 0) = m(D−R)(2d−D) and T (D−d, 1)−T (d, 1) = (m(D−R)+2)(2d−D).
Hence, for d > D

2 , argmaxv∈{s1,s2}(L1(v) ∧ L2(v)) = s1 and for d < D
2 , arg maxv∈{s1,s2}(L1(v) ∧

L2(v)) = s2. Thus, we see that by the solution to the optimization problem of Equation 1, for sij > 0
the speed of the intermediate node should be the same as the speed of the farther node. Similarly, it
is easy to derive that when the source node has speed s2 and destination node has speed s1 (i.e.
sij < 0) the speed of the intermediate node should be the same as the speed of the nearer node.

Optimal Distance Vector Solution to Optimization Problem of Equation 1 for the case of
R
s

< 1
m

: As before, let the distance between the source and destination be D such that R < D < 2R.



Let the number of intermediate relay nodes be M = 1 and without loss of generality, let the speed of
destination with respect to the source be normalized with s = 1. Then for d > D

2 , it has been shown
in the previous paragraph that the optimal speed selection is s1. Now, it can be shown after simple
algebra that for T (d, 0) < T (D − d, 1) to hold good we must have d >

D(m(D−R)+2)−R+ 1
m

2(m(D−R)+2) . Let us
denote the RHS of the previous equation by K. Now, if m is such that K < R (and D

2 < K). Then
for d < K we have min(T (d, 0), T (D−d, 1)) = T (D−d, 1). For obtaining optimal d∗ we differentiate
T (D−d, 1) w.r.t. d and equate it to zero, from which we get d∗ = D−(

R
2 − 1

m

)
. For d > K we have

min(T (d, 0), T (D − d, 1)) = T (d, 0). For obtaining optimal d∗ we differentiate T (d, 0) w.r.t. d and
equate it to zero to get d∗ = R

2 . For d < D
2 , it has been shown in the previous paragraph that the

optimal speed selection is s2. It can be shown after simple algebra that for T (d, 1) < T (D− d, 0) to
hold good we must have d >

m(D−R)D+R− 1
m

2(m(D−R)+2) . Denote the RHS of the previous equation by K ′. Now,
if m is such that K ′ > D − R (and K ′ < D

2 ) then for d > K ′ we have min(T (d, 1), T (D − d, 0)) =
T (d, 1). For obtaining optimal d∗ we differentiate T (d, 1) w.r.t. d and equate it to zero. We thus get
d∗ = R

2 − 1
m . For d < K ′ we have min(T (d, 1), T (D − d, 0)) = T (D − d, 0). For obtaining optimal

d∗ we differentiate T (D − d, 0) w.r.t. d and equate it to zero and get d∗ = D − R
2 .

5.2 L ≥ 3

Some Properties of Solution to Optimization Problem of Equation 2 with R
si

<< 1
µi

:
Here we derive some structural properties of the solution to the optimization problem of Equation 2
for the particular case of interest when R

si
<< 1

μi
so that a node stays in its lane for a time much

greater than its link lifetimes. Assume any value of L ≥ 3 and consider the link lifetime dynamics
of two nodes in lanes i and j that are separated by an initial distance d < R. It can be easily seen
that for i 	= j and R

si
<< 1

μi
, Equations 3 and 4 can be rewritten as T (d, sij) = R−d

sij
∀sij > 0

and T (d, sij) = d
sij

∀sij < 0. If both the nodes are initially in the same lane, then the distance
between these two nodes remains constant till the instant when any one of them changes lanes, so
that ∀sii = 0, T (d, sii) = 1

2μi
+

∑
j �=i

Pi,j

2 (T (d, sij)+T (d, sji)). Now consider a route consisting of M
intermediate nodes so that the source and destination nodes have speeds v0 and vM+1 respectively,
and let the distance vector d = (d0, . . . , dM ) be fixed. For obtaining the speed vector v = (v1, . . . , vM )
that maximizes the route lifetime, we can consider minimizing the objective function of Equation 2.
Let us make a simplifying assumption here that T (d, 0) = ∞ so that 1

T (d,0) = 0. Though this
assumption is not necessary for the analysis that follows, it is well justified here for the case under
consideration. We see that the objective function of Equation 2 for any given value of α is given

by,
[∑M

j=0

[
1

T (dj ,vj ,vj+1)

]α] 1
α

. Define fi(x, y) = 1
T (di,vi,vj)

such that x = vi and y = vj . Clearly,
if it is allowed to chose an intermediate node i with any arbitrary continuum speed x (thus not
restricting to the discrete set of speeds si, 1 ≤ i ≤ L), the following condition should be satisfied
for an optimal speed assignment to node i, d

dx [(fi−1(vi−1, x))α + (fi(x, vi+1))α]
1
α = 0. This implies,

in particular, that fi−1(vi−1,x)
fi(x,vi+1)

=
[
− dfi(x,vi+1)

dfi−1(vi−1,x)

] 1
α−1

. Now it is easy to show that dfi(x,vi+1)
dfi−1(vi−1,x) < 0.

Taking α → ∞, we see that we need fi−1(vi−1,x)
fi(x,vi+1)

= 1, implying that the lifetimes of adjacent links
should be equalized in order to optimize the objective function of Equation 2. Note that this is only a
necessary condition and not a sufficient one, i.e., not all configurations that result in equal lifetimes
of adjacent links will be the solution of the optimization problem under consideration. However,
any solution of the optimization problem will satisfy the above mentioned property. This property
also holds good for the case where the speeds of the relay nodes are restricted to a finite discrete
set. However, it is obvious that exact equalization of the lifetimes of adjacent links is not achieved
due to the lack of the choice of continuum set of speeds for the relay nodes. This issue and another



property of monotone transition of speeds of relay nodes in an optimal policy has been discussed
with detail in [5].

Generic Formula for choice of Optimal Speed of Relay Nodes when R
si

<< 1
µi

: Here we
derive a generic formula for the choice of optimal speed of a relay node (solution to the optimization
problem of Equation 1) for the particular case of interest when R

si
<< 1

μi
so that a node stays in

its lane for a time much greater than its link lifetimes. Assume any value of L ≥ 3 and consider
the link lifetime dynamics of two nodes in lanes i and j that are separated by an initial distance
d ≤ R. As before, it can be shown that for i 	= j and R

si
<< 1

μi
, Equations 3 and 4 can be rewritten

as T (d, sij) = R−d
sij

∀sij > 0 and T (d, sij) = d
sij

∀sij < 0. Let the speed of source and destination
nodes be sS and sD and for a 2-hop communication we have M = 1. Now, if we assume continuum
set of relay node speeds, then for a fixed distance vector, the relay node speeds should be such
that the link lifetimes of both links are equal (as seen in the previous paragraph). Therefore if s
denotes the continuum speed of the relay node and R < D < 2R then from R−d

s−sS
= R−D+d

sD−s we get

s = sD(R−d)+sS(R−D+d)
2R−D . This shows that the relay node’s optimal speed is a convex combination of

speeds of source and destination for a two hop route. In particular, at d = R we have s = sS and
at d = D − R we have s = sD. To approximate this continuum speed s with one of the available
discrete speeds, we take the following approach. Let si be the best approximation to s and let
expected lifetimes of the two links be denoted by L1(v) and L2(v), where v is speed of relay node.
Case s < si: If s < si then s can either be approximated by si or si−1. For the choice of si we have
L1(si) = R−d

si−sS
, L2(si) = R−D+d

sD−si
and L1(si) < L2(si). Similarly, we also have L1(si−1) > L2(si−1).

Therefore for si to satisfy the optimality of Equation 1 we must have L1(si) > L2(si−1) which
results in the following condition on d, d < R(sD−si−1)+(D−R)(si−sS)

sD−si−1+si−sS
.

Case s > si: As in the previous case, with s > si, s can be approximated by si+1 or si. For
the choice of si+1 we have L1(si+1) < L2(si+1) and for si we have L1(si) > L2(si). Now for si

to satisfy the optimality of Equation 1 we should have L1(si+1) < L2(si) which gives the bound,
d > R(sD−si)+(D−R)(si+1−sS)

sD−si+si+1−sS
.

Combining the two aforementioned cases and generalizing for any L ≥ 3, following is a generic
formula for the choice of optimal speed of a relay node. Choose si as the speed of the intermediate
node, if d ∈

[
R(sD−si)+(D−R)(s(i+1)∧L−sS)

sD−si+s(i+1)∧L−sS
,

R(sD−s(i−1)∨1)+(D−R)(si−sS)

sD−s(i−1)∨1+si−sS

]
. Note that here sS < sD

and sS and sD can take any values from s1, . . . , sL. For M = 1, if we assume continuum set of
intermediate node speeds as before, then for a fixed distance vector, the intermediate node speeds
should be such that the link lifetimes of both links are equal (as seen in the previous paragraph).
This implies (it can be shown after some algebra) that the link lifetimes are independent of the choice
of inter-node distances, thus implying a non-unique solution for the choice of relay node speeds.

6 Simulation Study of a VANET

In order to validate the analysis, we have developed a simulator for a VANET. With this simulator
we study and validate only the structural characteristics of the optimal speed assignment policies
assuming a fixed inter-node distance assignment. Due to the limitations of this simulator, we do not
study the optimal inter-node distance solution. The simulator is based on the model and assumptions
proposed in Section 3 and is implemented such that the nodes move in their lanes in a discrete time
space. A node in lane i transits to any of the adjacent lanes at the beginning of a time slot of
length 0.1 seconds and the transition takes place with probability 1 − pi. Given that a node in
lane i transits, the transition is to lane j with the same lane transition probability Pi,j . For our
simulations we consider the probabilities p1 = · · · = pL = p to be identical for all the lanes. The
probability p is related to μi by the relation 1

1−p = 0.1
μi

and for R
si

<< 1
μi

, it is equivalently said



that p → 1. The simulator computes the expected link lifetimes of all possible links by exhaustively
simulating over all possible speed assignments v of the intermediate nodes for a given scenario of M
intermediate nodes, L lanes, the inter-node distance vector d, speeds of source and destination v0

and vM+1, transmission range R, source and destination separation D and the probability p. Once
an exhaustive set of link lifetimes for all possible values of v is obtained by employing this brut-force
method, either of the objective functions of Equation 1 or 2 is applied over this set to obtain an
optimal speed assignment policy.

6.1 Simulation Scenarios

A car battery operated mobile device has a typical transmission range of around 200 meters. We
therefore consider the possible space of inter-node distances in a VANET to vary from 140 to 200
meters and transmission range of 200 meters is considered for all the simulation scenarios. It has
been shown in a previous work [9] that large number of hops in an ad hoc network can significantly
degrade the TCP throughput performance. Based on this result, we consider the number of hops
(M + 1) to vary from 2 to 7 only and the distance between the source and destination nodes is
varied from 800 to 1200 meters. We perform simulations for the number of lanes L varying from 2
to 6 and unless explicitly stated in the discussion on the simulation results, the associated speeds
are taken as shown in the table that follows,

l 1 2 3 4 5 6
sl (m/s) 14 17 22 30 42 55

≈ sl (km/hr) 50 60 80 110 150 200

In the following part of this section we discuss some of the scenarios that were simulated and com-
pare their results with the structural results obtained analytically. A more comprehensive simulation
study can be found in [5].

1. Structure of Optimal Policy for L = 2 (Section 5.1): Figure 3 shows plots of optimal policies
obtained from Equation 1 for L = 2, M = 1, p = 0.9995, D = 300m and d = (158, 142). The
figure clearly illustrates that under optimality, an intermediate node is assigned the speed of the
farther node for sij > 0 and that of the nearer node for sij < 0.
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Fig. 4. Lifetime equalization over continuum of speeds

2. Lifetime Equalization over Continuum set of Speeds for L ≥ 3 and R
si

<< 1
μi

(Section 5.2):
In Figure 4 we consider the scenario L = 3, M = 1, v0 = s3 = 22m/s, v2 = s1 = 14m/s,
p = 0.99999, D = 300m and d = (143, 157). In order to be able to validate the equalizing



structure obtained in Section 5.2 over a continuum set of intermediate node speeds, we vary the
speed associated with lane 2 from 14m/s to 30m/s in small steps of 1m/s and plot the link
lifetimes for each such speed of lane 2 separately. This allows the only intermediate node 1 to be
assigned one of the quasi-continuum set of speeds for the optimization problem of Equation 2.
It is seen in the figure that under optimality, for varying values of v1, the optimal lifetimes of
the links between node 0 and 1 and node 1 and 2 are different. However at v1 = 23m/s the
optimal lifetimes of the two adjacent links are almost equal thus confirming our result obtained
in Section 5.2 that the lifetimes of adjacent links should be equalized in order to optimize the
objective function of Equation 2. In fact, it can be observed that we obtain the maximum of
the least of the two lifetimes for speed v1 = 23m/s and the optimal lifetimes obtained for other
values of v1 are not truly optimal because of the unavailability of the choice of speed 23m/s in
those scenarios.

7 Conclusion

Designing efficient routing protocols for VANETs is quite a challenging task owing to the fast speed
of nodes and mobility constraints on the movement of nodes. An attempt has been made in this
paper to help accomplish this task better. Under some simplifying assumptions, the analysis of this
paper has established that the solution of the optimization problem under consideration tends to
equalize the lifetimes of adjacent links in a route. Moreover, there is a monotone variation of the
speeds of intermediate relay nodes under the optimal policy. These solution structures have also
been confirmed with simulations. The structures obtained are of considerable practical interest as
they reduce the space over which an existing VANET routing algorithm would search for the optimal
routing policy.
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