
Max-min fair distribution of modular network

flows on fixed paths

P̊al Nilsson1 and Micha�l Pióro12

1 Department of Communication Systems, Lund University, Sweden,
Box 118 SE-221 00, Lund, Sweden

{paln,mpp}@telecom.lth.se
2 Institute of Telecommunications, Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warszawa, Poland

Abstract. In this paper a new aspect of the classical max-min fairness
fixed-path problem is investigated. The considered (multi-criteria) op-
timization problem is almost identical to the continuous-flow problem,
with the additional complicating assumption that flows must be inte-
gral. We show that such an extension makes the problem substantially
more difficult (in fact NP-hard). Through comparison with the closely
related continuous-flow problem, a number of properties for the solution
of the extended problem are derived. An algorithm, based on sequential
resolution of linear programs, that shows to be useful (produce optimal
solutions) for many instances of the considered problem, is given. It fol-
lows that this algorithm can be made exact, through substituting the
involved linear programs by mixed-integer programs.

Keywords: Max-min fairness, Network optimization, Modular flows

1 Introduction

This paper concerns Max-Min Fair (MMF) allocation of bandwidth to demands
(users) in a communication network. The MMF allocation principle is often
considered in the context of IP networks carrying elastic traffic. It is also relevant
when several local networks are to be connected via an overlay network with
given overlay link capacities. In such a situation it has to be decided how much
bandwidth to assign to the pairs of these local networks.

We consider the case when one (fixed) path per demand is used, and when
demands can be assigned bandwidth only in multiples of a predefined module.
This is a practical extension of the frequently cited MMF problem addressed
in [1]. The modular (integral) flow requirement has to the best our knowledge
not been studied in this context before. However, a great deal of work has been
carried out considering other versions of this problem. In [1] it is shown how
MMF is obtained if paths are fixed and demand flows are continuous. It is
also well-known how MMF can be achieved if flows are allowed to split over
several paths and demand flows are continuous [2–4]. The hardness of computing
MMF continuous flows, forcing single-path selection, was pointed out in [5, 6].

2

Integral flow volumes, certainly being the source of difficulty for the problem
considered in this paper, can be well motivated from a practical viewpoint. This
requirement models that each demand volume must be a multiple of a predefined
module, and is a consequence of that in a real network there is always a smallest
trading unit, prohibiting flows from being continuous. It will be assumed that
a problem instance is given as a network with link capacities, a set of source-
destination node-pairs (S-D pairs), where each S-D pair represents a requirement
for bandwidth (demand), and a path for each demand. For such an instance, the
following traffic engineering problem is addressed: the demand between each S-D
pair must be assigned a modular flow volume, such that the sum of flows on each
link does not violate the link capacity. The distribution of flows among the S-D
pairs must obey the MMF principle.

1.1 Notation

Throughout the paper we will use the following notation. Vertices (nodes) are
labeled with index v, where v = 1, 2, . . . , V , and V is the number of vertices.
Vertices are interconnected by edges (links) labeled with index e, where e =
1, 2, . . . , E, and E is the number of edges. Edges are assumed to be undirected.
Each edge e is assigned a certain given capacity denoted by ce. Demands are
labeled with index d, where d = 1, 2, . . . , D, and D is the number of demands.
A demand is a requirement for bandwidth between a vertex-pair in the network.
Each demand d is assumed to be associated with one selected simple path. A
path is a set of edges that connects a vertex-pair. A binary indicator, δed, is used
for the edge-demand incidence relation: δed = 1 if edge e belongs to the path
of demand d, and δed = 0 otherwise. The total flow allocated to demand d (on
its corresponding path) will be identified by xd. Let x = (x1, x2, . . . , xD) denote
the vector where entry number d is the flow xd allocated to demand d (also
called the allocation vector), and let �x be the allocation vector sorted in non-
decreasing order. The sorted allocation vector, �x, is said to be lexicographically
greater than the sorted allocation vector, �x′, �x � �x′, if the first non-zero entry
of �x − �x′ is positive. Consequently, �x � �x′ means �x � �x′ or �x = �x′.

1.2 Problem Description

This study concerns the problem of assigning modular flows to demands in a
capacitated network, such that the distribution of flows among demands is MMF.
The MMF principle is to first assure that the demand that gets the least flow
gets as much as possible, then that the demand that gets the second least flow
gets as much as possible, and so on. Formally, in an MMF allocation of flows
each demand is assigned a flow such that it holds for the sorted allocation vector
that an entry can be increased only at the cost of decreasing a previous entry,
or by making the allocation vector infeasible3. It can be shown that obtaining
3 Since this is a property of the sorted allocation vector entries and not for the specific

demands, the definition is valid even for non-convex versions of the problem.

3

an allocation vector, x = (x1, x2, . . . , xD), with this characteristic is equivalent
to solving

lex max �x; x ∈ Q, (1)

where Q is the set of feasible solutions [4]. In other words, (1) seeks for an
allocation vector, x∗ ∈ Q, for which it holds that �x∗ � �x for all x ∈ Q. In this
paper, the set of feasible solutions Q is defined by the following two requirements:

(i)
∑

d δedxd ≤ ce , e = 1, 2, . . . , E, and
(ii) xd ∈ Z

+ for all demands d = 1, 2, . . . , D,

where Z
+ is the non-negative integers. The above two constraints mean in turn

that the sum of flows on an edge cannot exceed the edge’s capacity, and that each
flow must assume a non-negative integer. Let x = (x1, x2, . . . , xD), be a feasible
solution to (1), with Q constituted only by (i), and let xz = (xz

1, x
z
2, . . . , x

z
D),

be a feasible solution to (1), with Q constituted by (i) and (ii). To simplify
notation, let y = (y1, y2, . . . , yD) = �x and yz = (yz

1 , yz
2 , . . . , yz

D) = �xz. We will
denote optimal x an Optimal Continuous Solution (OCS), and optimal xz an
Optimal Integral Solution (OIS). Note that solving for OCS is precisely what is
addressed in [1], and is well known to be accomplished by a simple algorithm
(called “lifting” or “waterfilling”) of polynomial time [1, 4].

Example 1. Consider the network given in Figure 1.2. One demand between each
vertex-pair is assumed. Paths are evident. Edge capacities are given in the figure.
The sorted OCS is y = (0.5, 0.5, 0.5), whereas the sorted OIS is yz = (0, 1, 1).

c = 1 c = 1
A B C

Fig. 1. A simple instance.

1.3 The assumption of modular flows

In practice, an edge cannot have an arbitrary capacity, but is installed in mul-
tiples of a predefined module, M . Moreover, it is reasonable to assume that for
each demand d, d = 1, 2, . . . , d, the demand’s flow, xd, must be a multiple of the
same module. Without loss of generality we may, just changing units, assume
that M = 1, and thus that ce ∈ Z

+ \{0}, and, as is accomplished by (ii), require
that xd ∈ Z

+ for all demands d = 1, 2, . . . , D. Hence, modular flows can be
treated as integral flows.

4

2 Some properties of the optimal integral solution

As the properties of the optimal continuous solution are very well known and
understood [1, 3, 4], we will in this section address characterization of the optimal
integral solution by comparing it to the optimal continuous solution. We assume
that y = �x is the sorted OCS, and yz = �xz is the sorted OIS.

Property 1. If yz �= y then there exists an entry k for which yz
k > yk.

Proof. It is easy to see that y �= yz implies that there exists a demand d such that
xd−�xd� > 0, because if xd ∈ Z

+, for all d = 1, 2, . . . , D, then the OCS would be
an OIS and necessarily y = yz. Without loss of generality we may assume that
x = y (this may be obtained by alternative enumeration of demands). Consider
the non-integral entries xi, xi+1, . . . , xi+m for which it holds that for all entries k,
k < i, (if any) xk ∈ Z

+, and if there exists an entry i+m+1 then xi+m+1 ∈ Z
+.

Construct a solution xa by truncating all demand volumes of x, except demand
i + m, which is rounded up. The idea is illustrated in Figure 2. This solution

i i+1 i+m-1 i+mi-1 i+m+1

x
xa

Fig. 2. How to obtain xa from x.

must be feasible since edge capacities are integral. Moreover xa is an integral
solution with the property that xa = �xa(= ya). As it must hold that yz � ya,
we must have that either yz

j > ya
j for some j, i ≤ j < m, or that yz

j = ya
j for all

j, i ≤ j < m and that yz
i+m ≥ ya

i+m. Both cases imply that there exists an index
j, i ≤ j ≤ i + m, such that yz

j > yj .
�
Property 2. If for some entry k, yz

k > yk, then there exists a demand d, such
that xz

d > xd.

Proof. Without loss of generality assume that x = y (if this is not true, reenu-
merate the demands). Suppose x ≥ xz and consider all entries m and n,
1 ≤ m < n ≤ D, such that xz

n < xz
m. Interchanging all such elements in xz,

we will eventually arrive at yz. However, we have that xm ≥ xz
m > xz

n and
xn ≥ xm ≥ xz

m, so it must be true that x = y ≥ yz, which is a contradiction.

�

5

Property 3. Let j be the largest integer for which it is true that yk − yz
k ≥ 0,

1 ≤ k ≤ j. Then, j ≥ 1 and it holds that yk − yz
k < 1, for 1 ≤ k ≤ j.

Proof. By definition such an entry j must exist. Suppose that for some k, 1 ≤
k ≤ j, yk−yz

k ≥ 1. Then we can find a feasible integral solution by just truncating
the OCS. Call this solution yt. Apparently, yt � yz, which is a contradiction
proving the second part of the statement.
�
The following property is a direct analogy to a very well known property of the
OCS [1, 4].

Property 4. For each demand d′, there exists at least one saturated edge e for
which xz

d′ ≥ maxd{xz
d : δed = 1} − 1.

Proof. It is obvious that it is possible to find at least one saturated edge for each
demand, since otherwise that demand could be increased. Denote by

x̂z
e = max

d
{xz

d : δed = 1},

the flow of the maximal demand on edge e, and suppose, contradictory to the
statement, that it holds for all such saturated edges e, for demand d′, that
xz

d′ < x̂z
e − 1. Then, for these saturated edges we have x̂z

e > xz
d′ + 1. Thus for

each of the edges with this property, reassigning the currently maximal flow a
value of x̂z

e − 1 and demand d′ a value of xz
d′ + 1 give a lexicographically larger

solution, which is a contradiction.
�
It should be noted that Property 4 implies that for each demand d′, if there does
not exist a saturated edge for which xz

d′ = maxd{xz
d : δed = 1}, then there must

exist a saturated edge for which xz
d′ = maxd{xz

d : δed = 1} − 1.

Property 5. For a feasible allocation vector xm, xm ∈ (Z+)D, if it holds for each
demand d′, d′ = 1, 2, . . . , D, that xm

d′ = maxd{xm
d : δed = 1} on at least one

saturated link e for which δed′ = 1, then xm is the unique OIS.

Proof. The result is valid for the continuous flows case [4], i.e., a feasible alloca-
tion vector, x, for which it holds that for each demand d′, xd′ = maxd{xd : δed =
1} on at least one saturated link e for which δed′ = 1, is the unique OCS. Now
since xm ∈ (R+)D, xm is the unique OCS and therefore the unique OIS.
�

The following examples illustrate that it may happen, considering the OCS
and the OIS for a given instance, that xz

d < �xd� and that xz
d > �xd
. They

also show that there is no certain throughput domination, i.e., there exist both
instances for which

∑
d xz

d <
∑

d xd, and instances for which
∑

d xz
d >

∑
d xd.

Example 2. Consider the network given in Figure 3(a). There are 2 demands
between verticess A and B, 2 between A and E, 2 between A and D, 1 between
C and B, 1 between C and E, and 1 between C and D. The sorted OCS is y =
(7/3, . . . , 7/3︸ ︷︷ ︸

6

, 16/3, 16/3, 31/3) and the sorted OIS is yz = (2, 2, 2, 2, 3, 3, 6, 6, 9).

6

Example 3. Consider the network given in Figure 3(b). There are 4 demands
between verticess A and B, 2 between A and C, 4 between D and B, 2 between
D and C, and 1 between D and B. The sorted OCS is y = (8/3, . . . , 8/3︸ ︷︷ ︸

12

, 22/3)

and the sorted OIS is yz = (2, 2, 2, 2, 3, . . . , 3︸ ︷︷ ︸
8

, 10).

Example 4. Consider the network given in Figure 3(c). Edge capacities are given
in the figure. There is one demand between each vertex-pair. Each demand is
using the associated simple two-edge path. The sorted OCS is y = (5.5, 5.5, 5.5)
and the sorted OIS is yz = (5, 5, 6).

c = 14

c = 15

A

B C D

E

c = 10 c = 10

(a) Example 2.

c = 16 c = 18

c = 16

A B C

D

(b) Example 3.

CB

A

c = 11

c = 11

c = 11

(c) Example 4.

Fig. 3. Example instances comparing the OCS and the OIS.

3 Computational complexity

In this section it will be shown that the problem studied in this paper is NP-
hard. This means that it is unrealistic to aim for a general polynomial time
algorithm that obtains an MMF flow distribution, when integer flows on fixed
paths are required. Mind that the considered optimization problem is exactly
that considered in [1], but with integer-valued flows. As can be verified in Ex-
amples 2 and 3, the basic “lifting” algorithm (sometimes called “waterfilling”)
presented in [1] is in general not applicable for the integer flows case. An at-
tempt to use this basic procedure will show that certain non-trivial, discrete
decisions occasionaly have to be taken. So there are certainly reasons to con-
jecture that this multi-criteria optimization problem is computationally hard.
We will call the associated decision problem FIXED PATHS MMF – MODULAR

FLOWS (FIXMMF-MF):

7

FIXMMF-MF:

INSTANCE: An edge capacity ce ∈ Z
+ for each edge e = 1, 2, . . . , E, a binary

edge-demand incidence coefficient, δed, for each demand d = 1, 2, . . . , D, and a
target vector xT ∈ (Z+)D.
QUESTION: Is there an assignment of flow, xd ∈ Z

+, for each demand d, such
that

∑
d δedxd ≤ ce for each edge e, and such that if x = (x1, x2, . . . , xD), then

�x � �xT ?

Proposition 1. FIXMMF-MF is NP-complete.

Proof. A nondeterministic algorithm needs only to guess an integral flow for
each demand and check if the edges have the required capacity and if it holds for
the resulting allocation vector, x that �x � �xT . Thus clearly, FIXMMF-MF is in
NP . We will transform the decision problem of SET PACKING into an instance
of FIXMMF-MF. It is trivial to verify NP-completeness of the former, restricting
it to EXACT COVER BY 3-SETS, shown to be NP-complete in [7].

SET PACKING:

INSTANCE: A collection of C finite sets and a positive integer K ≤ |C|.
QUESTION: Does C contain at least K mutually disjoint sets?

Consider an arbitrary instance of SET PACKING. A collection C of n finite sets
is given, C = {A1, A2, . . . , An}. We will let each set Ai constitute a demand and
the elements of each such set a chain of edges that is a path for that demand.
Assume that there is N distinct elements in total in all of the sets Ai. For each
such element ak, k = 1, 2, . . . , N , construct two vertices connected by one edge
as in Figure 4. These edges will be referred to as the element edges. For each set

a1 aNa3a2

Fig. 4. Element edges.

Ai ∈ C perform the following operations. Construct a source vertex si and a sink
vertex ti. Label the elements of set Ai such that Ai = {z1, z2, . . . , zm}, and note
that there is one-to-one correspondence between these labeled elements and m of
the element edges. Denote the upper vertex of the element edge corresponding to
zj , j = 1, 2, . . . , m by vu

j , and the lower vertex by vl
j . Add new edges connecting

8

si to vu
1 , vl

1 to vu
2 , vl

2 to vu
3 , and so on. Finally, add an edge that connects vl

m

with the sink vertex ti. This constitutes a path between si and ti, traversing all
element edges of Ai. Note that all edges on this path that are not element edges
can only be used by vertex-pair (demand) (si, ti). Assign a capacity of 1 to all
edges. Let xT = (0, . . . , 0︸ ︷︷ ︸

n−K

, 1, . . . , 1︸ ︷︷ ︸
K

). This constitutes an instance of FIXMMF-MF,

with n demands. Suppose that we have a positive answer to SET PACKING. This
implies that there exist at least K mutually disjoint sets Ai. Assigning a flow
of 1 to each of the corresponding vertex-pairs (si, ti), and 0 to the rest will give
�x = (0, . . . , 0︸ ︷︷ ︸

n−H

, 1, . . . , 1︸ ︷︷ ︸
H

), H ≥ K. Thus �x � �xT , and we have a positive answer to

FIXMMF-MF. Contrarily, suppose that we have a positive answer to FIXMMF-

MF, i.e., that there exists a feasible allocation x, with �x � (0, . . . , 0︸ ︷︷ ︸
n−K

, 1, . . . , 1︸ ︷︷ ︸
K

).

Since capacities are equal to 1, no edges can be shared by demands and xd ≤ 1
for all d = 1, 2, . . . , D. This implies that paths of demands that are assigned
flow 1 must be disjoint. As constructed, these paths define at least K mutually
disjoint sets Ai, and a positive answer to SET PACKING follows. Hence, since
SET PACKING is NP-complete, FIXMMF-MF is NP-complete.
�
Knowledge of the lifting algorithm and a bit of reflection reveals that the above
result will not hold (unless P = NP) if xT = c · e, where e is the unity vector
of size D, and c is a positive integer (corresponding to the optimization problem
of finding the maximal first entry of the sorted allocation vector) nor if each de-
mand’s path has at most one shared link, both cases for which modified versions
of the lifting algorithm solves the problems in polynomial time [8].

4 An algorithm

In this section we present an algorithm for the considered problem. The ap-
proach is in essence exploiting the “distribution approach” described for non-
convex MMF problems in general in [9]. The distribution approach makes use
of that if an MMF problem only has a discrete (finite) set of possible outcome
values, then it can be stated as a lexicographic minimization. Even though the
presented algorithm does not offer any general optimality or running time guar-
antees, we show that if the algorithm terminates with an integral solution, it
must be optimal for the considered problem. In the following section this will be
shown to happen quite frequently. If this is not the case, it is possible to mod-
ify the algorithm (although with the risk of making it heavily computationally
complex) such that the output is guaranteed to be an optimal integral solution.
The considered algorithm consists in successive resolution of Linear Programs
(LPs). As there exist efficient methods for solving LPs (it will become evident
that the algorithm solves at most r LPs with at most D + rD variables and at
most rD + (r − 1) + E constraints, where r ≤ maxe{ce}) the algorithm may be
an appealing way of approaching an instance of the problem. Define the linear

9

programming problem Pk,

Pk : τk = min
∑

d

tkd (2)

s.t. l − xd ≤ tld, l = 1, 2, . . . , k, d = 1, 2, . . . , D (3)∑
d

tld ≤ �τl
, l = 1, 2, . . . , k − 1 (4)

∑
d

δedxd ≤ ce, e = 1, 2, . . . , E (5)

xd, tld ≥ 0, (6)

and consider Algorithm 1.

Algorithm 1

k := 1, improvement:=TRUE, r := maxe{ce}
while improvement and k ≤ r do

solve problem Pk for x∗ and τk

if max{x∗} < k then
improvement:=FALSE

end if
k := k + 1

end while
x′ := x∗

Proposition 2. Let x′ be the output of Algorithm 1. If x′ ∈ (Z+)D, then
x′ ∈ Q, and x′ is an optimal solution to the considered problem, i.e., �x′ =
lex max {�x : x ∈ Q}, where Q is the constraint set of (i) and (ii).

Proof. Note that we may assign r = maxe{ce}, as for sure it must hold that
xd ≤ maxe{ce} for all d, d = 1, 2, . . . , D. Note further that Proposition 2 does
not require that solutions to intermediate LPs (Pk, k < r) are integral.

We will need some additional notation. As earlier we will use y to denote a
sorted (in non-decreasing order) version of allocation vector x, i.e, y = �x. Let

f : R
+ × R

+ → R
+ be the function for which f(l, x) =

{
l − x if l ≥ x

0 if l < x
. Let

xi = (xi
1, x

i
2, . . . , x

i
D), 1 ≤ i ≤ r, be a solution to

lex max �x (7)

s.t.
∑

d

δedxd ≤ ce, e = 1, 2, . . . , E (8)

xd ∈ {0, 1, . . . , i}, d = 1, 2, . . . , D, (9)

and note that it always holds that
∑

d f(i, xi
d) =

∑
d f(i, xj

d), for any (i, j) such
that 1 ≤ i < j ≤ r. For the proof we will assume that that the algorithm

10

terminates after r iterations, since if it halts after u (u < r) iterations, we may
redefine r as r := u. As the solution in that case does not improve for k = u + 1,
it follows that the (sorted) allocation vector being the solution to problem Pu+j

cannot be lexicogaphically greater than the sorted solution to problem Pu, for
any integer j ≥ 1. Without loss of generality we may also assume that for a
solution x∗ to Pk it holds that x∗

d ≤ k, for all d = 1, 2, . . . , D, since if ∃d : x∗
d > k,

we may assign x∗
d = k for all such d, maintaining feasibility and objective function

value. Further it must hold for x′ that
∑

d f(l, x′
d) = �τl
, for all l, 1 ≤ l ≤ r. For

l = r this follows directly from the fact that τr = �τr
 (as x′ ∈ (Z+)D) and that
τr =

∑
d f(r, x′

d) by definition. For l < r, suppose that
∑

d f(l, x′
d) > �τl
. Then

x′ is infeasible for Pr, which is a contradiction. On the other hand, suppose that
i, i < r, is the smallest positive integer for which

∑
d f(i, x′

d) < �τi
, holds. As
x′ ∈ (Z+)D,

∑
d f(i, x′

d) ∈ Z
+ and

∑
d f(i, x′

d) < τi must be true, contradicting
that τi is the optimal objective function value for Pi.

Let x∗ be an optimal solution to P1. We have that τ1 =
∑

d f(1, x∗
d) and

�τ1
 =
∑

d f(1, x′
d), so 0 ≤ ∑

d f(1, x′
d) − ∑

d f(1, x∗
d) < 1. Now suppose that

y1 � y′. Then
∑

d f(1, x′
d)−∑

d f(1, x1
d) ≥ 1 and thus

∑
d f(1, x1

d) <
∑

d f(1, x∗
d),

which is a contradiction. Hence y′ � y1.
Assume that y′ � yk−1. Then y′ � yi, 1 ≤ i ≤ k − 1. Let m be the

number of entries of xk−1 that are strictly smaller than k − 1. We will start
by proving that yk

j = y′
j for j ≤ m. Again aiming for contradiction, suppose

that entry p, p ≤ m, is the first entry for which yk
p �= y′

p. Then either yk
p < y′

p

or yk
p > y′

p. Suppose yk
p < y′

p = t. This facilitates derivation of a solution x′′

from x′ by assigning x′′
d = x′

d if x′
d ≤ t and x′′

d = t if x′
d > t. It will hold that∑

d δedx
′′
d ≤ ce, e = 1, 2, . . . , E, and that x′′

d ∈ {0, 1, . . . , t}, d = 1, 2, . . . , D,
and, which is contradictive, that y′′ � yk � yt. On the other hand suppose
that y′

p < yk
p = t. Then

∑
d f(t, x′

d) >
∑

d f(t, xk
d). However, we also have that

y′ � yt (as t < k − 1), which implies that y′ = yt or y′ � yt. If y′ = yt

then clearly
∑

d f(t, x′
d) =

∑
d f(t, xt

d) =
∑

d(t, xk
d), which is a contradiction. If

y′ � yt then there must exist an entry s, such that y′
s > yt

s and y′
i = yt

i , if
i < s. Now yt

i = yk−1
i for i = 1, 2, . . . , e, so necessarily s > p. But this yields

that
∑

d f(t, x′
d) =

∑
d f(t, xt

d) =
∑

d f(t, xk
d), which is a contradiction. Hence,

if yk � y′ there must exist an entry q such that yk
q = k, and y′

q = k − 1.
This in turn implies that

∑
d f(k, xk

d) <
∑

d f(k, x′
d) = �τk
. But

∑
d f(i, xk

d) =∑
d f(i, x′

d) = �τi
, 1 ≤ i ≤ k − 1, as yk
i = y′

i for i ≤ m. Hence τk cannot be the
optimal value of the objective function for Pk, and summarizing, it cannot hold
that yk � y′. Thus y′ � yk. By induction over k, it follows that y′ = yr.
�
It is an immediate consequence that if we put as an explicit constraint in Pk,
k = 1, 2, . . . , r, that xd ∈ Z

+, d = 1, 2, . . . , D, then the algorithm is guaranteed
to solve problem (7)-(9) with i = r. Thus this is an option for an instance for
which Algorithm 1 does not produce an integral solution. However, this makes
Pk a Mixed Integer Programming (MIP) problem.

There are some implementational issues of Algorithm 1 that ought to be
mentioned. First of all, it is convenient to recycle the sparse constraint matrices
of the successive LPs, as they change only marginally between consecutive steps.

11

Secondly, special care should be taken in the rounding of τ . For large instances
(many variables), aggregation of small numerical errors in the computed variables
may cause an erroneous rounding of τ (typically making the right-hand side of
(4) too large). Finally, it is essential that the LPs are solved for vertex solutions,
as is done by Simplex. This is easily realized if one considers a network of two
vertices connected by one edge of capacity 1. Assume that there are two demands
between the vertices. As opposed to Simplex, an interior point solution to this
instance cannot belong to {0, 1}2.

5 A numerical experiment

In this section we apply Algorithm 1 (the original LP-based version) to randomly
generated problem instances ranging from 36 to 435 demands (corresponding
to demands between all vertex-pairs in a 9-vertex network to all vertex-pairs
in a 30-vertex network). In all instances r = 50 and each edge capacity, ce,
e = 1, 2, . . . , E belongs to {5, 10, 15, . . . , 50}. The results can be found in Table
5. The first 4 columns give, in turn, the number of vertices, V , the number of
edges, E, the number of demands, D, and the average length (hops) of a path,
E(|p|). The 5:th column indicates if the algorithm halts with an integral solution
(int). Column 6 gives the number of solved LP:s (iterations) that did not produce
an integral solution (NILP), and the 7:th column gives the number of iterations
for which τ was rounded up (�τ
), i.e., when optimal τ was non-integral (due
to rounding errors there is no one-to-one correspondence between rounded τ ’s
and non-integral solutions). The following two columns give the total running
time (t) and the required number of iterations (it), respectively. The columns
are then repeated for more instances. The computations were carried out on a
PC with an Intel PIII-1GHz CPU, RAM of 256 MB, and Windows 2000 OS.
The algorithm was implemented in MATLAB6.5, and the LPs are solved using
a MATLAB interface (mex-function) to CPLEX 9 (Simplex LP-solver).

V E D E(|p|) int NILP �τ� t(s) it V E D E(|p|) int NILP �τ� t(s) it

9 20 36 5.3 yes 0 0 2.50 26 20 41 190 10.8 yes 0 0 14.95 28
10 20 45 4.7 yes 0 0 7.03 43 21 50 210 11.8 yes 1 1 47.22 42
11 21 55 6.4 yes 1 1 9.47 46 22 55 231 11.7 yes 0 1 40.28 36
12 27 66 6.8 yes 4 1 11.56 41 23 59 253 13.6 yes 1 14 53.77 40
13 28 78 7.2 yes 0 7 14.16 48 24 54 279 13.7 yes 2 10 55.41 37
14 34 91 7.7 yes 1 1 10.27 35 25 54 300 13.7 yes 0 0 43.43 32
15 29 105 9.0 yes 0 0 11.29 37 26 72 325 14.4 yes 0 0 147.34 50
16 34 120 8.6 yes 2 2 17.42 38 27 66 351 14.6 yes 0 0 38.77 26
17 39 136 8.8 yes 0 0 16.86 34 28 69 378 15.7 yes 0 0 144.45 42
18 43 153 10.3 yes 2 7 16.59 30 29 59 406 7.3 yes 0 0 351.72 49
19 45 171 10.3 yes 0 0 18.74 36 30 65 435 8.5 yes 1 0 426.30 49

Table 1. Testing the algorithm.

12

Although Algorithm 1 performs satisfactorily on all of the instances consid-
ered in Table 5, there exist situations for which it fails. Consider for instance
the network given in Figure 3(c). Suppose that the same demands and paths as
in Example 4 are given, and that edge capacities are all equal to 1. Then the
(sorted) solution generated by Algorithm 1 is y′ = (0.5, 0.5, 0.5) but the true
OIS is yz = (0, 0, 1).

6 Conclusions

This paper presents a study that addresses a realistic modification of the classical
max-min fairness bandwidth assignment problem. As in the classical problem,
we consider a set of node-pairs (demands) that are to be assigned bandwidth on
fixed single paths in a capacitated network, such that the resulting distribution
of flows among node-pairs is max-min fair. However, in this paper it is addition-
aly assumed that a demand can only be assigned a modular flow volume. The
solution to the modified problem is first characterized. Then it is shown that
even though the classical problem is solvable in polynomial time, the modified
problem is NP-hard. An algorithm based on linear programming (necessarily
Simplex) is described and shown to be useful, both in terms of solution quality
and running times, for a number of example instances. We prove that if this
algorithm (in its basic linear programming form) produces an integral solution,
then this must be the solution to the considered problem. It follows that the
algorithm can, of course at the cost of increasing comlexity, instead be based on
mixed integer programming, and then guarantee that the output is optimal.

References

1. Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall (1987)
2. Nace, D.: A linear programming based approach for computing optimal fair split-

table routing. In: IEEE International Symposium on Computers and Communica-
tions. (2002) 468–474

3. Pióro, M., Nilsson, P., Kubilinskas, E., Fodor, G.: On efficient max-min fair routing
algorithms. In: IEEE International Symposium on Computers and Communications.
(2003) 465–472

4. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and
Computer Networks. Morgan Kaufmann (Elsevier) (2004)

5. Kleinberg, J., Rabani, Y., Tardos, E.: Fairness in routing and load balancing. Jour-
nal of Computer and System Sciences 63(1) (2001) 2–20

6. Nilsson, P., Pióro, M.: Unsplittable max-min demand allocation - a routing problem.
In: HETNETs’05. (2005) P26.

7. Garey, M., Johnson, D.: Computers and intractability – a guide to the theory of
NP-completeness. Freeman (1979)

8. Nilsson, P.: Some simple special cases of FIXMMF-MF. Technical report, Dept. of
Communication Sytems, Lund University (2005)

9. Ogryczak, W., Pioro, M., Tomaszewski, A.: Telecommunications network design
and max-min optimization problem. Journal of telecommunications and information
technology 3 (2005)

