Distributed Linear Time Construction of Colored Trees
for Digoint Multipath Routing*

Srinivasan Ramasubramanian, Mithun Harkara, and MarwanXr

Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ 85721

Abstract. Disjoint multipath routing (DMPR) is an effective stratefgyachieve
robustness in networks, where data is forwarded along pheiltink- or node-
disjoint paths. DMPR poses significant challenges in teringbtaining loop-
free multiple (disjoint) paths and effectively forwarditige data over the multi-
ple paths, the latter being particularly significant in daten networks. One ap-
proach to reduce the number of routing table entries foripath forwarding is
to construct two trees, namely red and blue, rooted at andgigtn node such that
the paths from a source to the destination on the two tredmérfaode-disjoint.
This paper develops the first distributed algorithm for ¢arting the colored
trees whose running time is linear in the number of links i@ tietwork. The
paper also demonstrates the effectiveness of employingrgkred low-point
concept rather than traditional low-point concept in theSEtFee to reduce the
average path lengths on the colored trees.

1 Introduction

Multipath routing (MPR) is an effective strategy to achiesbustness [1], load balanc-
ing [2], congestion reduction [3], low power consumptioh fhd increased throughput.
It operates by transmitting data over multiple paths. Inagah the multiple paths from
a source to a destination may have common links (or nodeshgsas the shared links
(or nodes) have sufficient resources. To improve the trasssari reliability and avoid
shared-link (or node) failures, the multiple paths can bected to be link- or node-
disjoint. In this case, the MPR approach is referred talig®int multipath routing
(DMPR). DMPR provides better robustness compared to thergeMPR. However,
it may be inefficient with respect to other metrics such asotrerall energy consump-
tion [4] in a wireless ad hoc or sensor network.

DMPR has been extensively studied in the context of wiredias [5, 6], where
the multiple paths are often employed for failure resiligparposes. Only one of the
paths, referred to as the primary path, is used at any indtgrun a failure, the con-
nection is rerouted over a backup path. If the backup patmeisame for any link (or
node) failure that affects the primary path, then the pringard backup paths must be
link- (or node-) disjoint. In applications such as transsita of multiple description
encoded video streaming, the two link-disjoint paths aegll@multaneously. Two in-
dependently encoded video streams are transmitted alantinkvdisjoint paths [7]. If

* The research developed in this paper is supported by NaSoience Foundation under grants
0325979, 0435490, and EEC-0333046.

multiple paths are employed for increased throughput, therdata may be split over
multiple paths.

Moativation. Implementation of generic MPR and DMPR poses two main chal-
lenges. The first is related to the computation of loop-fregtigle paths. Several cen-
tralized algorithms (or equivalently those that assumeaddajl network knowledge)
have been proposed for the DMPR problem in the context afrailesiliency in wired
connection-oriented networks. For large-scale wired oelss networks, a distributed
solution that relies only on local information is preferr&istributed multipath routing
algorithms in the literature are developed purely in thetexinof wireless networks.
MPR approaches based on Dynamic Source Routing (DSR) [&efjd]re the desti-
nation to select maximally disjoint paths among the reakicrite requests. MPR ap-
proaches based on AODV routing [11-15] do not guaranteerfindisjoint paths. The
only well-known generic multipath routing employed in thied datagram network is
the OSPF algorithm, where the choice of paths is limited ¢s¢hof equal cost.

The second challenge of implementing MPR (or DMPR) techedgs related to
forwarding of data over the multiple paths. In typical coctien-oriented networks, the
end-to-end path is clearly identified using, for examplereetion identifiers or labels.
The nodes maintain a routing table that specifies the outptfpr each label. Each
path requires a unique identifier. Hence, the size of thangtable at each node is di-
rectly proportional to the number of multiple paths. In gast, datagram networks rely
on the destination address in the packet header for fomgutickets over one path.
To implement MPR or DMPR techniques in such networks, evedermust maintain
a set of preferred neighbors to reach a destination, sudhthbgpaths are loop-free
(and disjoint, if needed). Forwarding of packets to meehsianstraints must be based
on destination address and some “additional” informat@mg.(source address, labels,
etc.). The intermediate nodes must be aware of this additioformation or otherwise,
it must be carried in every packet header. The choice of tH#iadal information used
in forwarding along multiple paths determines the overlinaolved.

To reduce the routing table overhead, hence reduce loole & novel multipath
routing strategy calledolored trees (CT) was developed [16]. Every node in the net-
work has two preferred neighbors to the destinatiedandblue. A packet transmitted
from a source is marked with one of the two colors. An interiatethode that receives
the packet forwards it to its preferred neighbor based ormdther of the packet. Thus,
the routing table at a node has only two entries (for everyimEson node). The net-
work may be viewed as two trees (red and blue) that are rodt#tealrain. The two
paths from a given source to the drain on the two trees arélinle-disjoint.

The goal of this paper is to develop a linear-time distridwtkyorithm for construct-
ing two colored trees. The rest of the paper is organizedlms®. Section 2 describes
the network model and problem definition. Section 3 discaiise related work in ob-
taining colored trees using generalized path augment&idmique and maintaining
the partial order in a distributed manner using local infation. Section 4 develops
the linear-time distributed algorithm for constructing ttwo colored trees. Section 5
presents the performance comparison of the distributeatigtign with traditional and
generalized low-point concepts. Our Conclusions are pteddn Section 6.

2 Problem Statement

Consider a networl (N, £) composed of a set of nod@$ and a set of linkC. The
links are assumed to be bi-directional. The terminologyamf is used to refer to a
directed link between two nodes. An arc from nadi® j is represented as — j.
Given a drain nodé € N, the goal is to construct two tre@sandB (referred to as the
red and blue trees, respectively) rooted #tat minimize the average path length from
a source to the drain such that the CT-LD and CT-ND versionth@problem satisfy
the link-disjoint and node-disjoint path constraints pexgively. These constraints are
stated as follows. LeP’;, andP5, denote the paths from a nodéo the drain on trees
‘R andB, respectively.

Link-digoint path constraint: Vs € N\ {d} andVi,j € N

i=JEP = (i—i¢gPLAG—i¢PY)
Node-digoint path congtraint: Vs € N\ {d} andVi € N'\ {s,d}
i€Pl = (i¢PL).

A network must be two-node-connected (two-edge-conngtbenbtain a solution
to the CT-ND (CT-LD) problem [17].

3 Generalized Path Augmentation

The generalized path augmentation algorithm [18] is a lsdarieveloped in the con-
text of robust multicasting. It may be applied to the problrand by simply reversing
the direction of the links in the trees constructed. It sthst choosing an arbitrary di-
rected cycléd, vy, ..., v, d) in G with at least three nodes (> 2). If this cycle does not
include all the nodes df, then a path that starts and ends on that cycle and that passes
through at least one node not on the cycle is chosen for augtiam The algorithm
continues with path augmentation until all the nodes in #tsvork are considered.

Medard et al. [17] developed a centralized algorithm thigicde a cycle and succes-
sive paths at random. Xue et al. [18] developed a generalizesion of the centralized
path augmentation approach (referred to as the XCT algoiittthe rest of the paper)
by specifying certain criteria for selecting paths for awgtation, which depend on the
problem objective (e.g. minimizing average delay or costximizing bandwidth, etc.).

The XCT algorithm is based on partial ordering of nodes imibvork. The partial
order< of the nodes on the blue trékis defined as follows. . — v € B, thenv pre-
cedes in the partial order, represented@as « (the algorithm in [18] employs partial
order on both the red and blue trees for link-disjoint path®wever, the explanation
here has been simplified based on the partial order on thettales and node-disjoint
paths). The partial ordering satisfies the transitive i@ahip, i.e., ifu < v < w, then
u < w. The generalized approach is now described for the corgtruaf two colored
trees for the CT-ND problem.

The XCT algorithm for constructing two trees that satisfe thode-disjoint path
constraint follows four steps:

1. Initialize R andB to contain the root nodé only. Initialize the partial order of the
nodes to be the empty set.

2. Find a cycle(d, vy, ..., vk, d). Letvy, — vg—1 — ... — v1 — d be thered chain
andv; — vy — ... — v, — d be theblue chain. Add the blue chain t& and the
red chain toR. Update the precedence relation with< vo < ... < v, < d.

3. Stop ifB spans all the nodes iR

4. Find a pati{z, v1,, v, y) that connects any two distinct nodesndy on B and
anyk nodes not o8, k > 1, such thatr < y. Letvy — vg—1 — ... > v; — x be
the red chain and; — vy, — ... — v — y be the blue chain. Add the blue chain
to B and the red chain tR. Update the precedence relation with< v; < vy <
.. = v < y.Goto Step 3.

The above algorithm may be applied to the link-disjoint cageelaxing the con-
dition in Step 4 thatr andy have to be distinct and maintaining partial ordering of
edges instead of nodes. The algorithm is guaranteed tonobwtai trees that satisfy
the link-disjoint (node-disjoint) constraint if the netvkas two-edge-connected (two-
node-connected). The approach may be combined with depthséarch numbering to
obtain anO(L) algorithm to construct the colored trees [19].

The algorithms developed in [18] and [19] assume a completsviedge of net-
work topology; i.e., they are centralized algorithms. gk networks, a distributed
implementation is essential. In such a distributed impletaitgon, nodes are assumed
to have only neighborhood information.

3.1 Maintaining the Partial Order in a Distributed Fashion

The crux in developing such a distributed algorithm is taniifg a mechanism to man-
age the partial order in a distributed fashion, where eade nelies only on local infor-
mation. Consider the example network in Figure 1.

Fig. 1. Example network to illustrate partial ordering and pathraagtation used to develop the
distributed colored-tree construction algorithm.

Let the first cycle selected by the centralized algorithnihe, 2, 3,4, 5, 6, d). Con-
sidering one particular direction in the cycle (corresgngdo say the blue tree), the
partial ordering of the nodes would he< 2 < 3 <4 < 5 < 6 < d. There are two
options for selecting a path for augmentation: 1-7—8-3 8r46—-11+. The algorithm
by Medard et al. selects a path at random while that by Xue sekdcts a path based on
a certain metric. Without loss of generality, assume thatpiith 4—9—10-11Hs cho-
sen for augmentation. The partial ordering of these pathst brisuch that: (1) node 4

precedes node 9 (< 9); node 11 precedes nodg11 < d); and nodes 9, 10, and 11
must appear in the same order as in the patk (L0 < 11). However, it is to be noted
that there is no explicit ordering between the nodes 9, 10,14nin the new path and
the nodes 5 and 6 in the old path. Some of the valid global org@f the nodes that
satisfy the above partial order are:

1.1 <2<3<4<5<6<9<10=<11<d
2.1<2<3<4<9<10<11<5<6<d
3.1<2<3<4<9<5<10<6<11<d

It is the choice of which of these global orderings is selgdteat distinguishes
various approaches. In order to develop a distributed glgnremploying only local
information, we select the first ordering, namélx 2 <3 <4 <5<6<9 <10 <
11 < d. Given that the first cycle is formed, the global orderingh## hodes is fixed.
The path selection starts from the node that is the highakeiorder. If a new path can
be selected for augmentation from the highest node, theim symath is chosen. The
nodes in the new path are added to the global order just b#feraode from which
the path was computed. Once the highest node exhausts sibjtities (adding paths
through each of its neighbor), then the path search begihstiaé next node in the list.

4 Linear-Time Distributed Construction of Colored Trees

The linear-time distributed algorithm for constructing tbolored trees works in two
phases: (1) Distributed DFS numbering and generalizedploint computation, and

(2) Distributed path augmentation. The distributed aliponiis sequential in nature and
requires only neighborhood information.

4.1 Distributed DFS Numbering and Generalized L ow-Point Computation

We assign DFS numbers to the nodes in the network startimg tine drain. The drain
is assigned the DFS number 1. In order to help compute patlasifpnentation without
backtracking, we compute thgeneralized low-point value of a node.

The low-paint value of a noden is traditionally defined as the lowest DFS-index
of a node that can be reached frenby using DFS-trekedges and at most one back
edge. Thdow-point path of noden is the path traversed to reach the low-point node.
The low-point path of a node is of the formn — i1 — is — ... — i — n/ (kK > 0)
such that: (1) node is the DFS-parent of noda, (2) nodei;_; is the DFS-parent
of nodei; (2 < j < k), (3) the DFS-index of.’ is lower than that of:; and (4) the
DFS-index ofn/ is the lowest among all such possible paths. The algorithreldped
in [19] employs the traditional low-point value and path.

We define thegeneralized low-point value (GLPV) of a noden as the lowest DFS-
index of a node that can be reached from nodxy traversing a sequence of nodes with

1 A DFS-tree is a tree rooted at the drain and the arcs in theanmeelirected away from the
drain. A back edge is an edge that connects a higher DFS-imalg to a lower DFS-index
node. Thdow-point node of a noden is the node whose DFS-number is the LPV of nade

increasing DFS-index with the exception of the last hop. Gémeralized low-point
path of a noden is of the formn — iy — iy — ... — 4, — n/ (k > 0), such that:
(1) the DFS-index of: is lower than that of;, (2) the DFS-index of;_, is lower than
that ofi; (2 < j < k), (3) the DFS-index of node’ is lower than that of node, and
(4) the DFS-index of2’ is the lowest among all such possible paths. Gemeralized
low-point neighbor (GLPN) of a node. is defined as that neighbor of nodevhich is
on its generalized low-point path.

The GLPV and GLPN of a node are computed during the distribDieS number-
ing phase. The algorithm to assign the DFS-indices and ctartpa GLPV and GLPN
is shown in Figure 2. The DFS-indices of all the nodes aréaified to -1. We incor-
porate hop count as a metric to compute the shortest gereaddiw-point path among
those available. Note that the linear-time algorithm deped in this paper will work
with the traditional low-point of a node, however, the pathdth optimization cannot
be made as the arcs are forced to be on the DFS-tree, excéasthep.

Notation Comment

dfs(n] DFS-index of node.

dfsparent[n] DFS-parent of node.

glpvn] Generalized low-point value of node

glpn[n] Generalized low-point neighbor of node

glpd[n] Generalized low-point distance (hop count) of nade

DFS(parent, n, currdfs)

1. if dfs[n] > O returncurrdfs;

2. dfs[n] = currdfs; df sparent[n] = parent; currdfs = currdfs + 1;
3. for every neighbot # parent of n do:

3.A. currdfs = DFSfn, i, currdfs);

3.B. if (dfs[i] < dfs[n]) and(dfs[i] < glpv[n])

3.B.i. glpv[n] = dfs[i]; glpn[n] = i; glpd[n] = 1;

3.C. else if(dfs[i] > dfs[n]) and(glpv[i] < glpv|n])

3.C.i. glpv[n] = glpv[i]; glpn[n] = i;glpd[n] = glpd[i] + 1;

3.D. else if(dfs[i] > dfs[n]) and(glpv[i] = glpv(n]) and(glpd[i] < glpd[n] — 1)
3.D.i. glpn[n] = i;glpd[n] = glpd[i] + 1;

4, returncurrdfs;

Fig. 2. Algorithm to assign DFS-indices to the nodes and computergdimed low-point value
and neighbor of a node.

Given a two-edge-connected network, the GLPV of a nodelower than or equal
to the DFS-index of its DFS-parent. Given a two-node-cotetenetwork, the GLPV
of a noden is strictly lower than the DFS-index of its DFS-parent. THERY provides
a mechanism to identify if the network is two-edge or two-eednnected for reaching
the drain in linear time. Every node senddEs message to all its neighbors (except
its parent) and receivesIFSRETURN message in response. The numbebb$ and
DFSRETURN messages sent ag¢L| — (|| — 1) each. At the end of the distributed
DFS-numbering phase, every node in the network is awareeoDfS numbers of its
neighbors. The neighbors of a node are arranged in an inegeaser of their DFS-
indices.

4.2 Distributed Path Augmentation

An overview of the steps involved in the distributed path raegtation is shown in
Figure 3. The drain is initialized to tHEOKEN state, indicating that it is already added
to the trees and has the authority to initiate path search oitier nodes are initialized
to theUNVISITED state.

Distributed Path Augmentation Algorithm

1. Arrange the neighbors in the neighbor list in an incregsirler of their DFS-indices.
2. On receiving aOKEN message, initiate path search along every node in the raigish
one at a time.

(a) Every node that receives tBEARCH message forwards it sequentially to every node in
the neighbor list according to some forwarding rules.
(b) When a SUCCESS message returns from a neighbor, the value of
msg.flagNewNodeAdded is stored in the neighbor list.
3. Forward theTOKEN message to every node if tH@agNewNodeAdded flag for this neigh-
bor is TRUE. The neighbor list is traversed in the reverse directioreriznode finishes its
operation and sendsRETURN message back.
4. After receiving ®RETURN message from all the neighbors to whom the token message was
sent, Sen®@ETURN message to the parent that sentTDEEN message.

Fig. 3. Overview of the steps involved in the distributed algorittencomputing colored trees.

Path search. The drain initiates a path search sequentially along itghi®rs. The
first searchis for a cycle while the others are for a path. ©eiving aSEARCH message,
a node in th&NVISITED state changes itself to th@SITED state, which indicates that
the node is part of the path being chosen for augmentaticgSEARCH message is then
forwarded to one of the neighbors (based on the forwarditegmiscussed later). The
drain always responds toSZARCH message with 8UCCESS. When aSEARCH message
reaches any other node, that node responds vtitaESS message if it is in theYCLE
staté. If a node in theTOKEN state, it is configured to sends#CCESS message, then the
paths for augmentation may start and end at the same nodéijrrgsn a solution for
the CT-LD case. If the node in tITKEN state is configured to respond witlF AILURE,
then the result would be a solution for the CT-ND case.

A node in theCYCLE state responds toSEARCH message with 8UCCESS message
in whichmsg.flagNewNodeAdded is set toFALSE, indicating no new nodes are added
further down the path. This enables the receiving node téomeard the search token to
anode thatis already on the cycle. As a ralpath search token may be forwarded from
node i to node j only if node j; was added to the path through a path search message
from node i to j. Note that as paths are being searched from the highest ndtle in
global-order list (maintained in a distributed mannery; aade that is on the cycle that
receives the search message must be lower in the globall@idthan the node that
initiated the message. Upon receiviniCCESS message, a node in tR@SITED state

2 A node in theCYCLE state indicates that it has already been added to the cdi@es! It has
not received th&@0KEN message to initiate path search.

changes to théYCLE state. It adds the node from which it received$R@RCH message
as its parent on the blue tree and the node from which it redeiveSUCCESS as its
parent on the red tree. THeagNewNodeAddedvariable for that neighbor is set to the
value indicated in the message. The node then seiSUSEESS message to the node
from which it received th&EARCH message with thesg.f1lagNewNodeAdded set to
true, indicating that it was newly added to the path.

Forwarding sear ch token. A node that has the path search token attempts to aug-
ment a path through each of its neighbor. The node then faisvidre token to those
eligible neighbors, traversing the ordered list in the regeadirection (opposite to the
order in which theSEARCH messages were initiated), one at atime. An eligible neighbo
is one for which the variablelagNewNodeAdded is set to true. Such an order reversal
for passing the token helps maintain a consistent globa&rordin a distributed manner
across all the nodes in the network. A node that receNEXEN changes its state from
CYCLE to TOKEN, starts the path search along each of its neighbors, andfdsithe
token to its eligible neighbors.

Once the tokens are returned by all neighbors, the nodetsatsie t&FINISH and
returns the token to the node from which it first received tileeh. The token finally
reaches the drain, indicating that all nodes in the netwoekimtheFINISH state, at
which point the algorithm terminates.

4.3 Forwarding Rulesfor Path Augmentation Without Backtracking

The cycle and paths required for the distributed path auggttien approach are com-
puted using four types of messages. A node sends 8BARCH message to obtain a
path (or cycle) for augmentation. In order to obtain a path distributed fashion with-

out backtracking, we develop certain forwarding rules witine additional information

in every message.

Let a nodex, which has been already added to the trees, attempt a patthsea
by sending a message through its neighhdEvery search messageg contains the
following fields: (1) msg.source is the source of the message, @)g.sourcedfs
is the DFS-index of the source; (8sg.specialFlag is a flag based on which the
message may be routed to a different neighbor other tharetlagitllowest DFS-index
neighbor; and (4ysg.glpv is the GLPV of the source that initiated the message which
could be modified at an intermediate nodeSBARCH message initiated by nodehas
themsg.specialFlag set toDEFAULT. If nodey is not added to the colored trees, it

forwards the message to one of its neighbors according tatle shown in Figure 4.
Case 1. dfs[x] > dfsly].

In this case, there exists a path frgrno the drain by successively traversing the lowest
DFS-index neighbor fromy to reach the drain. As the drain is already a part of the
cycle, the message either reaches the drain or any otherthatis already added to
the trees (inCYCLE state) without backtracking. ThepecialFlag in the message is
set toDEFAULT (refer to Step 4.A of Figure 4).

Case 2: dfs[x] < dfs[y] and x isthe DFS-parent of y.
In this case, if there exits a nodén the neighborhood of whose DFS-index is lower
than that of, then the message could be forwarded to nadésuch a node does not

Notation Comment

msg Message received by nogle

msg.source Source node of messageg.

msg.sourcedfs DFS-index of the source node of messagg.

msg.specialFlag Special flag field in the message.

msg.glpv Generalized low-point value indicated by a node in the ngessa
newmsg Message sent by noge

Rulesto forward a message.

1. newmsg.source = y; newmsg.sourcedfs = dfs[y];

2. if (msg.specialFlag = PARENTFLAG)

2.A. z = lowpoint[yl;

2.B. if (dfs[z] = glpn[y]) newmsg.specialFlag = DEFAULT;

2.C. elsemewmsg.specialFlag = PARENTFLAG;

3. else if(msg.specialFlag = LOWPOINTFLAG)

3.A if (glpvly] < msg.glpv)

3.A.. z = glpn[y]; newmsg.specialFlag = PARENTFLAG;

3.B. else

3.B.i. z = dfsparently];

3.B.ii. newmsg.specialFlag = LOWPOINTFLAG; newmsg.glpv = msg.glpv;
4. else

4.A. if the lowest DFS-index neighbor is not the samegg.source

4.A. z = lowest DFS-index neighbornewmsg.specialFlag = DEFAULT;
4.B. else if(msg.source = dfsparently])

4.B.i. z = glpn[y]; newmsg.specialFlag = PARENTFLAG;

4.C. else if(msg.source = glpn[y])

4.C.i. z = dfsparent[y]; newmsg.specialFlag = LOWPOINTFLAG;
4.C.ii. newmsg.glpv = msg.sourcedfs;

4.D. else if(msg.sourcedfs < dfsly])

4.D.i. z = glpn[y]; newmsg.specialFlag = PARENTFLAG;

4.E. else //[Comment: msg.sourcedfsifs[y]

4.E.i. z = lowest DFS-index neighbor that is not the samesssource;
4 E.ii. newmsg.specialFlag = DEFAULT;

5. Senchewnsg to nodez.

Fig. 4. Rules to forward 8EARCH message when received by a nadthat is not added to the
trees yet.

exist, then nodg forwards the message to its GLPN. TégcialFlagin the message
is set toPARENTFLAG indicating that the message was received from a DFS-parent,
hence must be forwarded to the GLPN successively (referep &B of Figure 4). The
message is forwarded along the generalized low-point petér(to Step 2 of Figure 4).
The node that forwards this message to the low-point nodasdise flag tdEFAULT.
From the low-point node onwards, the message is forwardéuettowest DFS-index
neighbor until it reaches the drain. Since the generaliaeedoint path does not involve
any loops, a path is chosen for augmentation without backitng.

The above two cases are sufficient if the colored trees argtremted to satisfy the
CT-LD constraint. Hence, steps 1, 2, 4.A, 4.B, 4.E and 5 afficent in the set of

rules to construct the colored trees satisfying CT-LD oa@ist. Note that if conditions
4.A and 4.B fail, then it implies that nodeis the lowest DFS-index neighbor gfand
is not its parent. Then, there must exist one nade the neighborhood of such that
dfs[x] < dfs[z] < dfs[y]. One such obvious node is the DFS-parent dthe message
is forwarded along this neighbor with tb8FAULT flag. The message follows the lowest
DFS-index neighbor successively to reach a node alreadythicthe trees. The node
at which the path augmentation terminates could be the sae that initiated the
path search message, as the construction needs to sa¢isiyithD constraint only.
However, if the colored tree construction were to satisey@T-ND constraint, then
the nodes that start and terminate the paths must be djstimathich the following
rules are developed.

Case 3: dfs[x] < dfs[y] and x isthe GLPN of y.

In this casedfslx] is the GLPV of node;. The message in this case is forwarded to
the DFS-parent of andmsg.specialFlag is set toLOWPOINTFLAG, indicating that
the message was obtained from a low-point node, hence mémtizgrded to the DFS-
parent. In addition, thglpv field in the outgoing message is setdts|x| (obtained
from thesourcedss field of the received message, refer Step 4.C in Figure 4h Suc
forwarding is continued until the message reaches a nodsevBa.PV is lower than
msg.glpv, from where the message follows the generalized low-pcéti pvith the
specialFlag in the message changedRARENTFLAG (refer to Step 3 Fig. 4). From
this point on, the forwarding of the message takes placdainai that of Case 2.

Note that when a message is forwarded to the DFS-parentposipecialFlag =
LOWPOINTFLAG, the message cannot reach the node that started the path peacess,
namelyx. This would imply that the path search for augmentatiortasteand ended at
the same node. This in turn implies that no node in the DFSHBmeath node had a
GLPV lower thandfs[x]. This contradicts the fact that when a network is two-vertex
connected, then the GLPV of a child efis strictly lower thandfs[x]. Hence, there
exists an intermediate node whose GLPV is lower than thaf fx].

It can also be easily shown that the generalized low-poitit fken from the in-
termediate node does not loop back to any of the nodes in thetip@ugh the DFS-
parents as the intermediate nodes in the former path wowkld&LPV value strictly
lower than that at the intermediate nodes in the latter pdg¢ince, a path is chosen for
augmentation without backtracking.

Case 4: dfs[x] < dfs[y] and x is neither the DFS-parent nor the GLPN of node y.
In this case, node is the lowest DFS-index node in the neighborhoog @fnd is not
the GLPN ofy. This implies that the GLPV of is strictly lower thandfs[x]. The
generalized low-point path of noge by definition, does not contain Therefore, the
message is forwarded to the GLPN ypfvith the specialFlag set toPARENTFLAG.
The path taken by the message from then on is similar to tsatidsed in Case 2.
If the construction were to satisfy the CT-ND constraing tbhrwarding algorithm
will not reach Step 4.E as one of the earlier four cases woefichitiely hold true.
Every node attempts to find a path through each of its neigtdarept through
the node from which it received the token), the numbegEXRCH messages sent in
the network i2|£| — (JA| — 1). EverySEARCH message has a correspondéugCESS

message. In addition, every node except the drain recéie@SKEN message to initiate
a path search and send8ETURN message. The total number of messages sent in the
network is8|£| — 2|N| 4+ 2. As the distributed algorithm is sequential in nature, the
number of messages sent directly provides the running tirteealistributed algorithm,
which is linear in the number of links in the network.

Proof of correctness. The distributed algorithm is based on the path augmentation
technique [17]. Hence, the proof of correctness of the @lyorfollows from [17] and
is not repeated in this paper due to space constraints.

5 Performance Evaluation

The linear-time distributed algorithm developed in thip@ais evaluated on random
topologies with 100, 200, 300, and 400 nodes. The topologére constructed using
Waxman'’s model [20]. The effectiveness of employing theggalized low-point (GLP)
is studied by comparing the performance of the algorithnhwitit employing the tra-
ditional low-point (TLP) concepts. For each network sizeenty different topologies
were simulated and the average results are shown in TablethgdCT-ND case. The
“average minimum (maximum) path length” refers to the low(@gyhest) path length
among the two paths, averaged over all the nodes in the rletWtés observed that a
significant reduction in the average path lengths is obthineemploying the general-
ized low-point concept, which allows optimization of hopuait on the low-point path.
The number of messages used in both the approaches werentke Sanilar results
were obtained for the CT-LD case and are not shown here dymatesonstraints.

Average Average Red Path | Average Blue Path | Average Minimum | Average Maximum| Average Total Reduction

Number Length Length Path Length Path Length Path Length in Average
. Total Path

ofLinks | 11p GLP TLP GLP TLP GLP TP GLP TP GLP Length

Number
of Nodes

100 774.2 6.82 5.53 10.85 5.69 4.81 3.80 12.86 7.42 17.67 11.22 36.5%

200 1382.65| 11.68 11.49 14.36 8.10 7.65 6.08 18.39 13.51 26.04 19.59 24.8%

300 2585.56 | 15.21 14.24 20.40 9.05 9.78 7.10 25.83 16.19 35.61 23.29 34.6%

400 4540.45 | 16.49 15.99 20.56 8.67 10.82 6.93 26.23 17.73 37.05 24.66 33.4%

Table 1. Comparison of the results of the distributed algorithm tmpate colored trees satisfying
CT-ND constraint employing traditional low-point and gealéezed low-point concepts.

6 Conclusions

This paper develops a linear-time distributed algorithmtti@ construction of colored
trees for link/node-disjoint multipath routing to a padiar drain in the network. The
total number of messages sent in the network is shown ®|Be— 2|NV| + 2. The
paper also demonstrates that significant reduction in teeage path lengths may be
obtained by employing generalized low-point concept in éSBfee rather than the
traditional low-point concept.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Ye, Z., Krishnamurthy, S., Tripathi, S.: A framework faliable routing in mobile adhoc
networks. In: Proceedings of IEEE INFOCOM'03. (2003) 2786-2

Pham, P.P., Perreau, S.: Performance analysis of reattdrtest path and multipath routing
mechanism with load balance. In: Proceedings of IEEE INF®IC@Ilume 1. (2003) 251—
259

. Murthy, S., Garcia-Luna-Aceves, J.J.: Congestionmbeie¢ shortest multipath routing. In:

Proceedings of IEEE INFOCOM. Volume 3. (1996) 1028-1036

. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Miggilient energy-efficient multi-

path routing in wireless sensor networks. ACK SIGMOBILE MelComputing and Com-
munications Review(5) (2001) 11-25

. Bhandari, R.: Survivable Networks: Algorithms for DigserRouting. Kluwer Academic

Publishers (1999)

. Grover, W.D.: Mesh-based Survivable Networks: Optiard &trategies for Optical, MPLS,

SONET and ATM Networking. Prentice Hall Publishers, Newsdgr USA (2003)

. Begen, A.C., Altunbasak, Y., Ergun, O.: Multi-path sél@e for multiple description en-

coded video streaming. In: Proceedings of IEEE Internati@onference on Communica-
tions. Volume 3. (2003) 1583-1589

. Lee, S., Gerla, M.: Split multipath routing with maximatlisjoint paths in ad hoc networks.

In: Proceedings of IEEE ICC. (2001) 3201-3205

. Nasipuri, A., Das, S.R.: On-demand multipath routing fwbile ad hoc networks. In:

Proceedings of IEEE International Conference on Computen@unications and Networks.
(1999) 64-70

Wu, J.: An extended dynamic source routing scheme in adwhieless networks. In:
Proceedings of 35th Annual Hawaii International Confeeenn System Sciences. (2002)
3832-3838

Marina, M.K., Das, S.R.: On-demand multipath distareetar routing in ad hoc networks.
In: Proceedings of IEEE ICNP. (2001) 14-23

Park, V.D., Corson, M.S.: A highly adaptive distributedting algorithm for mobile wireless
networks. In: Proceedings of IEEE INFOCOM. (1997) 1405-3141

Raju, J., Garcia-Luna-Aceves, J.J.: A new approach-eonand loop-free multipath rout-
ing. In: Proceedings of IEEE International Conference om@ater Communications and
Networks (ICCCN). (1999) 522-527

Valera, A., Seah, W.K.G., Rao, S.V.: Cooperative packehing and shortest multipath in
mobile adhoc networks. In: Proceedings of IEEE INFOCOMO@®60-269

Lee, S., Gerla, M.: Aodv-br: Backup routing in ad hoc retw In: Proceedings of IEEE
WCNC. (2000) 1311-1316

Ramasubramanian, S., Krishnamoorthy, H., Krunz, M.sjd)it multipath routing using
colored trees. Technical Report, University of Arizonad2p

Medard, M., Barry, R., Finn, S., Gallager, R.: Redundiags for preplanned recovery in ar-
bitrary vertex- redundant or edge redundant graphs. IEEEIAransactions on Networking
7(5) (1999) 641-652

Xue, G., Chen, L., Thulasiraman, K.: Quality-of-seeviend quality-of-protection issues
in preplanned recovery schemes using redundant trees. Ja&fBal on Selected Areas in
Communicatior?1(8) (2003) 1332-1345

Zhang, W., Xue, G., Tang, J., Thulasiraman, K.: Lineaetconstruction of redundant trees
for recovery schemes enhancing QoP and QoS. In: ProceeatfitlgEE INFOCOM, Miami,
FL, USA (2005) 2702-2710

Waxman, B.M.: Routing of multipoint connections. |EE®&uthal of Selected Areas in
Communication$(9) (1988) 1617-1622

