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Abstract. Disjoint multipath routing (DMPR) is an effective strategyto achieve
robustness in networks, where data is forwarded along multiple link- or node-
disjoint paths. DMPR poses significant challenges in terms of obtaining loop-
free multiple (disjoint) paths and effectively forwardingthe data over the multi-
ple paths, the latter being particularly significant in datagram networks. One ap-
proach to reduce the number of routing table entries for multipath forwarding is
to construct two trees, namely red and blue, rooted at a destination node such that
the paths from a source to the destination on the two trees arelink/node-disjoint.
This paper develops the first distributed algorithm for constructing the colored
trees whose running time is linear in the number of links in the network. The
paper also demonstrates the effectiveness of employing generalized low-point
concept rather than traditional low-point concept in the DFS-tree to reduce the
average path lengths on the colored trees.

1 Introduction

Multipath routing (MPR) is an effective strategy to achieverobustness [1], load balanc-
ing [2], congestion reduction [3], low power consumption [4], and increased throughput.
It operates by transmitting data over multiple paths. In general, the multiple paths from
a source to a destination may have common links (or nodes) as long as the shared links
(or nodes) have sufficient resources. To improve the transmission reliability and avoid
shared-link (or node) failures, the multiple paths can be selected to be link- or node-
disjoint. In this case, the MPR approach is referred to asdisjoint multipath routing
(DMPR). DMPR provides better robustness compared to the generic MPR. However,
it may be inefficient with respect to other metrics such as theoverall energy consump-
tion [4] in a wireless ad hoc or sensor network.

DMPR has been extensively studied in the context of wired networks [5, 6], where
the multiple paths are often employed for failure resiliency purposes. Only one of the
paths, referred to as the primary path, is used at any instant. Upon a failure, the con-
nection is rerouted over a backup path. If the backup path is the same for any link (or
node) failure that affects the primary path, then the primary and backup paths must be
link- (or node-) disjoint. In applications such as transmission of multiple description
encoded video streaming, the two link-disjoint paths are used simultaneously. Two in-
dependently encoded video streams are transmitted along two link-disjoint paths [7]. If
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multiple paths are employed for increased throughput, thenthe data may be split over
multiple paths.

Motivation. Implementation of generic MPR and DMPR poses two main chal-
lenges. The first is related to the computation of loop-free multiple paths. Several cen-
tralized algorithms (or equivalently those that assume a global network knowledge)
have been proposed for the DMPR problem in the context of failure resiliency in wired
connection-oriented networks. For large-scale wired or wireless networks, a distributed
solution that relies only on local information is preferred. Distributed multipath routing
algorithms in the literature are developed purely in the context of wireless networks.
MPR approaches based on Dynamic Source Routing (DSR) [8–10]require the desti-
nation to select maximally disjoint paths among the received route requests. MPR ap-
proaches based on AODV routing [11–15] do not guarantee finding disjoint paths. The
only well-known generic multipath routing employed in the wired datagram network is
the OSPF algorithm, where the choice of paths is limited to those of equal cost.

The second challenge of implementing MPR (or DMPR) techniques is related to
forwarding of data over the multiple paths. In typical connection-oriented networks, the
end-to-end path is clearly identified using, for example, connection identifiers or labels.
The nodes maintain a routing table that specifies the output port for each label. Each
path requires a unique identifier. Hence, the size of the routing table at each node is di-
rectly proportional to the number of multiple paths. In contrast, datagram networks rely
on the destination address in the packet header for forwarding packets over one path.
To implement MPR or DMPR techniques in such networks, every node must maintain
a set of preferred neighbors to reach a destination, such that the paths are loop-free
(and disjoint, if needed). Forwarding of packets to meet such constraints must be based
on destination address and some “additional” information (e.g. source address, labels,
etc.). The intermediate nodes must be aware of this additional information or otherwise,
it must be carried in every packet header. The choice of the additional information used
in forwarding along multiple paths determines the overheadinvolved.

To reduce the routing table overhead, hence reduce lookup time, a novel multipath
routing strategy calledcolored trees (CT) was developed [16]. Every node in the net-
work has two preferred neighbors to the destination:red andblue. A packet transmitted
from a source is marked with one of the two colors. An intermediate node that receives
the packet forwards it to its preferred neighbor based on thecolor of the packet. Thus,
the routing table at a node has only two entries (for every destination node). The net-
work may be viewed as two trees (red and blue) that are rooted at the drain. The two
paths from a given source to the drain on the two trees are link/node-disjoint.

The goal of this paper is to develop a linear-time distributed algorithm for construct-
ing two colored trees. The rest of the paper is organized as follows. Section 2 describes
the network model and problem definition. Section 3 discusses the related work in ob-
taining colored trees using generalized path augmentationtechnique and maintaining
the partial order in a distributed manner using local information. Section 4 develops
the linear-time distributed algorithm for constructing the two colored trees. Section 5
presents the performance comparison of the distributed algorithm with traditional and
generalized low-point concepts. Our Conclusions are presented in Section 6.



2 Problem Statement

Consider a networkG(N ,L) composed of a set of nodesN and a set of linksL. The
links are assumed to be bi-directional. The terminology ofarc is used to refer to a
directed link between two nodes. An arc from nodei to j is represented asi → j.
Given a drain noded ∈ N , the goal is to construct two treesR andB (referred to as the
red and blue trees, respectively) rooted atd that minimize the average path length from
a source to the drain such that the CT-LD and CT-ND versions ofthe problem satisfy
the link-disjoint and node-disjoint path constraints, respectively. These constraints are
stated as follows. LetPR

sd andPB

sd denote the paths from a nodes to the draind on trees
R andB, respectively.

Link-disjoint path constraint: ∀s ∈ N \ {d} and∀i, j ∈ N

i → j ∈ PR

sd ⇒ (i → j /∈ PB

sd) ∧ (j → i /∈ PB

sd).

Node-disjoint path constraint: ∀s ∈ N \ {d} and∀i ∈ N \ {s, d}

i ∈ PR

sd ⇒ (i /∈ PB

sd).

A network must be two-node-connected (two-edge-connected) to obtain a solution
to the CT-ND (CT-LD) problem [17].

3 Generalized Path Augmentation

The generalized path augmentation algorithm [18] is a heuristic developed in the con-
text of robust multicasting. It may be applied to the problemat hand by simply reversing
the direction of the links in the trees constructed. It starts by choosing an arbitrary di-
rected cycle(d, v1, ..., vk, d) in G with at least three nodes (k ≥ 2). If this cycle does not
include all the nodes ofG, then a path that starts and ends on that cycle and that passes
through at least one node not on the cycle is chosen for augmentation. The algorithm
continues with path augmentation until all the nodes in the network are considered.

Medard et al. [17] developed a centralized algorithm that selects a cycle and succes-
sive paths at random. Xue et al. [18] developed a generalizedversion of the centralized
path augmentation approach (referred to as the XCT algorithm in the rest of the paper)
by specifying certain criteria for selecting paths for augmentation, which depend on the
problem objective (e.g. minimizing average delay or cost, maximizing bandwidth, etc.).

The XCT algorithm is based on partial ordering of nodes in thenetwork. The partial
order≺ of the nodes on the blue treeB is defined as follows. Ifu → v ∈ B, thenv pre-
cedesu in the partial order, represented asv ≺ u (the algorithm in [18] employs partial
order on both the red and blue trees for link-disjoint paths.However, the explanation
here has been simplified based on the partial order on the bluetrees and node-disjoint
paths). The partial ordering satisfies the transitive relationship, i.e., ifu ≺ v ≺ w, then
u ≺ w. The generalized approach is now described for the construction of two colored
trees for the CT-ND problem.

The XCT algorithm for constructing two trees that satisfy the node-disjoint path
constraint follows four steps:



1. InitializeR andB to contain the root noded only. Initialize the partial order of the
nodes to be the empty set.

2. Find a cycle(d, v1, ..., vk, d). Let vk → vk−1 → ... → v1 → d be thered chain
andv1 → v2 → ... → vk → d be theblue chain. Add the blue chain toB and the
red chain toR. Update the precedence relation withv1 ≺ v2 ≺ ... ≺ vk ≺ d.

3. Stop ifB spans all the nodes inG.
4. Find a path(x, v1, ...., vk, y) that connects any two distinct nodesx andy onB and

anyk nodes not onB, k ≥ 1, such thatx ≺ y. Let vk → vk−1 → ... → v1 → x be
the red chain andv1 → v2 → ... → vk → y be the blue chain. Add the blue chain
to B and the red chain toR. Update the precedence relation withx ≺ v1 ≺ v2 ≺
... ≺ vk ≺ y. Go to Step 3.

The above algorithm may be applied to the link-disjoint caseby relaxing the con-
dition in Step 4 thatx andy have to be distinct and maintaining partial ordering of
edges instead of nodes. The algorithm is guaranteed to obtain two trees that satisfy
the link-disjoint (node-disjoint) constraint if the network is two-edge-connected (two-
node-connected). The approach may be combined with depth-first-search numbering to
obtain anO(L) algorithm to construct the colored trees [19].

The algorithms developed in [18] and [19] assume a complete knowledge of net-
work topology; i.e., they are centralized algorithms. For large networks, a distributed
implementation is essential. In such a distributed implementation, nodes are assumed
to have only neighborhood information.

3.1 Maintaining the Partial Order in a Distributed Fashion

The crux in developing such a distributed algorithm is to identify a mechanism to man-
age the partial order in a distributed fashion, where each node relies only on local infor-
mation. Consider the example network in Figure 1.5d1

3 4 68 7 1 15 9 1 02
Fig. 1. Example network to illustrate partial ordering and path augmentation used to develop the
distributed colored-tree construction algorithm.

Let the first cycle selected by the centralized algorithm be(d, 1, 2, 3, 4, 5, 6, d). Con-
sidering one particular direction in the cycle (corresponding to say the blue tree), the
partial ordering of the nodes would be1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ d. There are two
options for selecting a path for augmentation: 1–7–8–3 or 4–9–10–11–d. The algorithm
by Medard et al. selects a path at random while that by Xue et al. selects a path based on
a certain metric. Without loss of generality, assume that the path 4–9–10–11–d is cho-
sen for augmentation. The partial ordering of these paths must be such that: (1) node 4



precedes node 9 (4 ≺ 9); node 11 precedes noded (11 ≺ d); and nodes 9, 10, and 11
must appear in the same order as in the path (9 ≺ 10 ≺ 11). However, it is to be noted
that there is no explicit ordering between the nodes 9, 10, and 11 in the new path and
the nodes 5 and 6 in the old path. Some of the valid global ordering of the nodes that
satisfy the above partial order are:

1. 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 9 ≺ 10 ≺ 11 ≺ d
2. 1 ≺ 2 ≺ 3 ≺ 4 ≺ 9 ≺ 10 ≺ 11 ≺ 5 ≺ 6 ≺ d
3. 1 ≺ 2 ≺ 3 ≺ 4 ≺ 9 ≺ 5 ≺ 10 ≺ 6 ≺ 11 ≺ d

It is the choice of which of these global orderings is selected that distinguishes
various approaches. In order to develop a distributed algorithm employing only local
information, we select the first ordering, namely1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 9 ≺ 10 ≺
11 ≺ d. Given that the first cycle is formed, the global ordering of the nodes is fixed.
The path selection starts from the node that is the highest inthe order. If a new path can
be selected for augmentation from the highest node, then such a path is chosen. The
nodes in the new path are added to the global order just beforethe node from which
the path was computed. Once the highest node exhausts all possibilities (adding paths
through each of its neighbor), then the path search begins with the next node in the list.

4 Linear-Time Distributed Construction of Colored Trees

The linear-time distributed algorithm for constructing the colored trees works in two
phases: (1) Distributed DFS numbering and generalized low-point computation, and
(2) Distributed path augmentation. The distributed algorithm is sequential in nature and
requires only neighborhood information.

4.1 Distributed DFS Numbering and Generalized Low-Point Computation

We assign DFS numbers to the nodes in the network starting from the drain. The drain
is assigned the DFS number 1. In order to help compute paths for augmentation without
backtracking, we compute thegeneralized low-point value of a node.

The low-point value of a noden is traditionally defined as the lowest DFS-index
of a node that can be reached fromn by using DFS-tree1 edges and at most one back
edge. Thelow-point path of noden is the path traversed to reach the low-point node.
The low-point path of a noden is of the formn → i1 → i2 → . . . → ik → n′ (k ≥ 0)
such that: (1) noden is the DFS-parent of nodei1, (2) nodeij−1 is the DFS-parent
of nodeij (2 ≤ j ≤ k), (3) the DFS-index ofn′ is lower than that ofn; and (4) the
DFS-index ofn′ is the lowest among all such possible paths. The algorithm developed
in [19] employs the traditional low-point value and path.

We define thegeneralized low-point value (GLPV) of a noden as the lowest DFS-
index of a node that can be reached from noden by traversing a sequence of nodes with

1 A DFS-tree is a tree rooted at the drain and the arcs in the treeare directed away from the
drain. A back edge is an edge that connects a higher DFS-indexnode to a lower DFS-index
node. Thelow-point node of a noden is the node whose DFS-number is the LPV of noden.



increasing DFS-index with the exception of the last hop. Thegeneralized low-point
path of a noden is of the formn → i1 → i2 → . . . → ik → n′ (k ≥ 0), such that:
(1) the DFS-index ofn is lower than that ofi1, (2) the DFS-index ofij−1 is lower than
that ofij (2 ≤ j ≤ k), (3) the DFS-index of noden′ is lower than that of noden, and
(4) the DFS-index ofn′ is the lowest among all such possible paths. Thegeneralized
low-point neighbor (GLPN) of a noden is defined as that neighbor of noden which is
on its generalized low-point path.

The GLPV and GLPN of a node are computed during the distributed DFS number-
ing phase. The algorithm to assign the DFS-indices and compute the GLPV and GLPN
is shown in Figure 2. The DFS-indices of all the nodes are initialized to -1. We incor-
porate hop count as a metric to compute the shortest generalized low-point path among
those available. Note that the linear-time algorithm developed in this paper will work
with the traditional low-point of a node, however, the path length optimization cannot
be made as the arcs are forced to be on the DFS-tree, except thelast hop.

Notation Comment
dfs[n] DFS-index of noden.
dfsparent[n] DFS-parent of noden.
glpv[n] Generalized low-point value of noden.
glpn[n] Generalized low-point neighbor of noden.
glpd[n] Generalized low-point distance (hop count) of noden.

DFS(parent, n, currdfs)
1. if dfs[n] > 0 returncurrdfs;
2. dfs[n] = currdfs; dfsparent[n] = parent; currdfs = currdfs + 1;
3. for every neighbori 6= parent of n do:
3.A. currdfs = DFS(n, i, currdfs);
3.B. if (dfs[i] < dfs[n]) and(dfs[i] ≤ glpv[n])
3.B.i. glpv[n] = dfs[i]; glpn[n] = i; glpd[n] = 1;
3.C. else if(dfs[i] > dfs[n]) and(glpv[i] < glpv[n])
3.C.i. glpv[n] = glpv[i]; glpn[n] = i; glpd[n] = glpd[i] + 1;
3.D. else if(dfs[i] > dfs[n]) and(glpv[i] = glpv[n]) and(glpd[i] < glpd[n] − 1)
3.D.i. glpn[n] = i; glpd[n] = glpd[i] + 1;
4. returncurrdfs;

Fig. 2. Algorithm to assign DFS-indices to the nodes and compute generalized low-point value
and neighbor of a node.

Given a two-edge-connected network, the GLPV of a noden is lower than or equal
to the DFS-index of its DFS-parent. Given a two-node-connected network, the GLPV
of a noden is strictly lower than the DFS-index of its DFS-parent. The GLPV provides
a mechanism to identify if the network is two-edge or two-node connected for reaching
the drain in linear time. Every node sends aDFS message to all its neighbors (except
its parent) and receives aDFSRETURN message in response. The number ofDFS and
DFSRETURN messages sent are2|L| − (|N | − 1) each. At the end of the distributed
DFS-numbering phase, every node in the network is aware of the DFS numbers of its
neighbors. The neighbors of a node are arranged in an increasing order of their DFS-
indices.



4.2 Distributed Path Augmentation

An overview of the steps involved in the distributed path augmentation is shown in
Figure 3. The drain is initialized to theTOKEN state, indicating that it is already added
to the trees and has the authority to initiate path search. The other nodes are initialized
to theUNVISITED state.

Distributed Path Augmentation Algorithm

1. Arrange the neighbors in the neighbor list in an increasing order of their DFS-indices.
2. On receiving aTOKEN message, initiate path search along every node in the neighbor list,

one at a time.

(a) Every node that receives theSEARCH message forwards it sequentially to every node in
the neighbor list according to some forwarding rules.

(b) When a SUCCESS message returns from a neighbor, the value of
msg.flagNewNodeAdded is stored in the neighbor list.

3. Forward theTOKEN message to every node if theflagNewNodeAdded flag for this neigh-
bor isTRUE. The neighbor list is traversed in the reverse direction. Every node finishes its
operation and sends aRETURN message back.

4. After receiving aRETURN message from all the neighbors to whom the token message was
sent, sendRETURN message to the parent that sent theTOKEN message.

Fig. 3. Overview of the steps involved in the distributed algorithmfor computing colored trees.

Path search. The drain initiates a path search sequentially along its neighbors. The
first search is for a cycle while the others are for a path. On receiving aSEARCHmessage,
a node in theUNVISITED state changes itself to theVISITED state, which indicates that
the node is part of the path being chosen for augmentation. TheSEARCHmessage is then
forwarded to one of the neighbors (based on the forwarding rules discussed later). The
drain always responds to aSEARCH message with aSUCCESS. When aSEARCH message
reaches any other node, that node responds with aSUCCESSmessage if it is in theCYCLE
state2. If a node in theTOKEN state, it is configured to send aSUCCESSmessage, then the
paths for augmentation may start and end at the same node, resulting in a solution for
the CT-LD case. If the node in theTOKEN state is configured to respond with aFAILURE,
then the result would be a solution for the CT-ND case.

A node in theCYCLE state responds to aSEARCH message with aSUCCESS message
in whichmsg.flagNewNodeAdded is set toFALSE, indicating no new nodes are added
further down the path. This enables the receiving node to notforward the search token to
a node that is already on the cycle. As a rule,a path search token may be forwarded from
node i to node j only if node j was added to the path through a path search message
from node i to j. Note that as paths are being searched from the highest node inthe
global-order list (maintained in a distributed manner), any node that is on the cycle that
receives the search message must be lower in the global-order list than the node that
initiated the message. Upon receiving aSUCCESSmessage, a node in theVISITED state

2 A node in theCYCLE state indicates that it has already been added to the coloredtrees. It has
not received theTOKEN message to initiate path search.



changes to theCYCLE state. It adds the node from which it received theSEARCHmessage
as its parent on the blue tree and the node from which it received theSUCCESS as its
parent on the red tree. TheflagNewNodeAddedvariable for that neighbor is set to the
value indicated in the message. The node then sends aSUCCESS message to the node
from which it received theSEARCH message with themsg.flagNewNodeAdded set to
true, indicating that it was newly added to the path.

Forwarding search token. A node that has the path search token attempts to aug-
ment a path through each of its neighbor. The node then forwards the token to those
eligible neighbors, traversing the ordered list in the reverse direction (opposite to the
order in which theSEARCHmessages were initiated), one at a time. An eligible neighbor
is one for which the variableflagNewNodeAdded is set to true. Such an order reversal
for passing the token helps maintain a consistent global ordering in a distributed manner
across all the nodes in the network. A node that receives aTOKEN changes its state from
CYCLE to TOKEN, starts the path search along each of its neighbors, and forwards the
token to its eligible neighbors.

Once the tokens are returned by all neighbors, the node sets its state toFINISH and
returns the token to the node from which it first received the token. The token finally
reaches the drain, indicating that all nodes in the network are in theFINISH state, at
which point the algorithm terminates.

4.3 Forwarding Rules for Path Augmentation Without Backtracking

The cycle and paths required for the distributed path augmentation approach are com-
puted using four types of messages. A node sends out aSEARCH message to obtain a
path (or cycle) for augmentation. In order to obtain a path ina distributed fashion with-
out backtracking, we develop certain forwarding rules withsome additional information
in every message.

Let a nodex, which has been already added to the trees, attempt a path search
by sending a message through its neighbory. Every search messagemsg contains the
following fields: (1)msg.source is the source of the message, (2)msg.sourcedfs
is the DFS-index of the source; (3)msg.specialFlag is a flag based on which the
message may be routed to a different neighbor other than the default lowest DFS-index
neighbor; and (4)msg.glpv is the GLPV of the source that initiated the message which
could be modified at an intermediate node. ASEARCH message initiated by nodex has
the msg.specialFlag set toDEFAULT. If nodey is not added to the colored trees, it
forwards the message to one of its neighbors according to therules shown in Figure 4.
Case 1: dfs[x] > dfs[y].
In this case, there exists a path fromy to the drain by successively traversing the lowest
DFS-index neighbor fromy to reach the drain. As the drain is already a part of the
cycle, the message either reaches the drain or any other nodethat is already added to
the trees (inCYCLE state) without backtracking. ThespecialFlag in the message is
set toDEFAULT (refer to Step 4.A of Figure 4).

Case 2: dfs[x] < dfs[y] and x is the DFS-parent of y.
In this case, if there exits a nodez in the neighborhood ofy whose DFS-index is lower
than that ofx, then the message could be forwarded to nodez. If such a node does not



Notation Comment
msg Message received by nodey.
msg.source Source node of messagemsg.
msg.sourcedfs DFS-index of the source node of messagemsg.
msg.specialFlag Special flag field in the message.
msg.glpv Generalized low-point value indicated by a node in the message.
newmsg Message sent by nodey.

Rules to forward a message.
1. newmsg.source = y; newmsg.sourcedfs = dfs[y];
2. if (msg.specialFlag = PARENTFLAG)
2.A. z = lowpoint[y];
2.B. if (dfs[z] = glpn[y]) newmsg.specialFlag = DEFAULT;
2.C. elsenewmsg.specialFlag = PARENTFLAG;
3. else if(msg.specialFlag = LOWPOINTFLAG)
3.A. if (glpv[y] < msg.glpv)
3.A.i. z = glpn[y]; newmsg.specialFlag = PARENTFLAG;
3.B. else
3.B.i. z = dfsparent[y];
3.B.ii. newmsg.specialFlag = LOWPOINTFLAG; newmsg.glpv = msg.glpv;
4. else
4.A. if the lowest DFS-index neighbor is not the same asmsg.source

4.A.i z = lowest DFS-index neighbor;newmsg.specialFlag = DEFAULT;
4.B. else if(msg.source = dfsparent[y])
4.B.i. z = glpn[y]; newmsg.specialFlag = PARENTFLAG;
4.C. else if(msg.source = glpn[y])
4.C.i. z = dfsparent[y]; newmsg.specialFlag = LOWPOINTFLAG;
4.C.ii. newmsg.glpv = msg.sourcedfs;
4.D. else if(msg.sourcedfs < dfs[y])
4.D.i. z = glpn[y]; newmsg.specialFlag = PARENTFLAG;
4.E. else //Comment: msg.sourcedfs< dfs[y]
4.E.i. z = lowest DFS-index neighbor that is not the same asmsg.source;
4.E.ii. newmsg.specialFlag = DEFAULT;
5. Sendnewmsg to nodez.

Fig. 4. Rules to forward aSEARCH message when received by a nodey that is not added to the
trees yet.

exist, then nodey forwards the message to its GLPN. ThespecialFlag in the message
is set toPARENTFLAG indicating that the message was received from a DFS-parent,
hence must be forwarded to the GLPN successively (refer to Step 4.B of Figure 4). The
message is forwarded along the generalized low-point path (refer to Step 2 of Figure 4).
The node that forwards this message to the low-point node resets the flag toDEFAULT.
From the low-point node onwards, the message is forwarded tothe lowest DFS-index
neighbor until it reaches the drain. Since the generalized low-point path does not involve
any loops, a path is chosen for augmentation without backtracking.

The above two cases are sufficient if the colored trees are constructed to satisfy the
CT-LD constraint. Hence, steps 1, 2, 4.A, 4.B, 4.E and 5 are sufficient in the set of



rules to construct the colored trees satisfying CT-LD constraint. Note that if conditions
4.A and 4.B fail, then it implies that nodex is the lowest DFS-index neighbor ofy and
is not its parent. Then, there must exist one nodez in the neighborhood ofy such that
dfs[x] < dfs[z] < dfs[y]. One such obvious node is the DFS-parent ofy. The message
is forwarded along this neighbor with theDEFAULT flag. The message follows the lowest
DFS-index neighbor successively to reach a node already added to the trees. The node
at which the path augmentation terminates could be the same node that initiated the
path search message, as the construction needs to satisfy the CT-LD constraint only.

However, if the colored tree construction were to satisfy the CT-ND constraint, then
the nodes that start and terminate the paths must be distinct, for which the following
rules are developed.

Case 3: dfs[x] < dfs[y] and x is the GLPN of y.
In this case,dfs[x] is the GLPV of nodey. The message in this case is forwarded to
the DFS-parent ofy andmsg.specialFlag is set toLOWPOINTFLAG, indicating that
the message was obtained from a low-point node, hence must beforwarded to the DFS-
parent. In addition, theglpv field in the outgoing message is set todfs[x] (obtained
from thesourcedfs field of the received message, refer Step 4.C in Figure 4). Such a
forwarding is continued until the message reaches a node whose GLPV is lower than
msg.glpv, from where the message follows the generalized low-point path with the
specialFlag in the message changed toPARENTFLAG (refer to Step 3 Fig. 4). From
this point on, the forwarding of the message takes place similar to that of Case 2.

Note that when a message is forwarded to the DFS-parent uponmsg.specialFlag=
LOWPOINTFLAG, the message cannot reach the node that started the path search process,
namelyx. This would imply that the path search for augmentation started and ended at
the same node. This in turn implies that no node in the DFS-tree beneath nodex had a
GLPV lower thandfs[x]. This contradicts the fact that when a network is two-vertex
connected, then the GLPV of a child ofx is strictly lower thandfs[x]. Hence, there
exists an intermediate node whose GLPV is lower than that ofdfs[x].

It can also be easily shown that the generalized low-point path taken from the in-
termediate node does not loop back to any of the nodes in the path through the DFS-
parents as the intermediate nodes in the former path would have a GLPV value strictly
lower than that at the intermediate nodes in the latter path.Hence, a path is chosen for
augmentation without backtracking.

Case 4: dfs[x] < dfs[y] and x is neither the DFS-parent nor the GLPN of node y.
In this case, nodex is the lowest DFS-index node in the neighborhood ofy and is not
the GLPN ofy. This implies that the GLPV ofy is strictly lower thandfs[x]. The
generalized low-point path of nodey, by definition, does not containx. Therefore, the
message is forwarded to the GLPN ofy with the specialFlag set toPARENTFLAG.
The path taken by the message from then on is similar to that discussed in Case 2.

If the construction were to satisfy the CT-ND constraint, the forwarding algorithm
will not reach Step 4.E as one of the earlier four cases would definitely hold true.

Every node attempts to find a path through each of its neighbor(except through
the node from which it received the token), the number ofSEARCH messages sent in
the network is2|L| − (|N | − 1). EverySEARCH message has a correspondingSUCCESS



message. In addition, every node except the drain receives theTOKENmessage to initiate
a path search and sends aRETURN message. The total number of messages sent in the
network is8|L| − 2|N | + 2. As the distributed algorithm is sequential in nature, the
number of messages sent directly provides the running time of the distributed algorithm,
which is linear in the number of links in the network.

Proof of correctness. The distributed algorithm is based on the path augmentation
technique [17]. Hence, the proof of correctness of the algorithm follows from [17] and
is not repeated in this paper due to space constraints.

5 Performance Evaluation

The linear-time distributed algorithm developed in this paper is evaluated on random
topologies with 100, 200, 300, and 400 nodes. The topologieswere constructed using
Waxman’s model [20]. The effectiveness of employing the generalized low-point (GLP)
is studied by comparing the performance of the algorithm with that employing the tra-
ditional low-point (TLP) concepts. For each network size, twenty different topologies
were simulated and the average results are shown in Table 1 for the CT-ND case. The
“average minimum (maximum) path length” refers to the lowest (highest) path length
among the two paths, averaged over all the nodes in the network. It is observed that a
significant reduction in the average path lengths is obtained by employing the general-
ized low-point concept, which allows optimization of hop-count on the low-point path.
The number of messages used in both the approaches were the same. Similar results
were obtained for the CT-LD case and are not shown here due to space constraints.N u m b e ro f N o d e s A v e r a g eN u m b e ro f L i n k s A v e r a g e R e d P a t hL e n g t h A v e r a g e B l u e P a t hL e n g t h A v e r a g e M i n i m u mP a t h L e n g t h A v e r a g e M a x i m u mP a t h L e n g t h A v e r a g e T o t a lP a t h L e n g t h R e d u c t i o ni n A v e r a g eT o t a l P a t hL e n g t hT L P G L P T L P G L P T L P G L P T L P G L P T L P G L P1 0 0 7 7 4 . 2 6 . 8 2 5 . 5 3 1 0 . 8 5 5 . 6 9 4 . 8 1 3 . 8 0 1 2 . 8 6 7 . 4 2 1 7 . 6 7 1 1 . 2 2 3 6 . 5 %2 0 0 1 3 8 2 . 6 5 1 1 . 6 8 1 1 . 4 9 1 4 . 3 6 8 . 1 0 7 . 6 5 6 . 0 8 1 8 . 3 9 1 3 . 5 1 2 6 . 0 4 1 9 . 5 9 2 4 . 8 %3 0 0 2 5 8 5 . 5 6 1 5 . 2 1 1 4 . 2 4 2 0 . 4 0 9 . 0 5 9 . 7 8 7 . 1 0 2 5 . 8 3 1 6 . 1 9 3 5 . 6 1 2 3 . 2 9 3 4 . 6 %4 0 0 4 5 4 0 . 4 5 1 6 . 4 9 1 5 . 9 9 2 0 . 5 6 8 . 6 7 1 0 . 8 2 6 . 9 3 2 6 . 2 3 1 7 . 7 3 3 7 . 0 5 2 4 . 6 6 3 3 . 4 %
Table 1. Comparison of the results of the distributed algorithm to compute colored trees satisfying
CT-ND constraint employing traditional low-point and generalized low-point concepts.

6 Conclusions

This paper develops a linear-time distributed algorithm for the construction of colored
trees for link/node-disjoint multipath routing to a particular drain in the network. The
total number of messages sent in the network is shown to be8|L| − 2|N | + 2. The
paper also demonstrates that significant reduction in the average path lengths may be
obtained by employing generalized low-point concept in a DFS-tree rather than the
traditional low-point concept.
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