Increasing the Coverage of a Cooperative
Internet Topology Discovery Algorithm

Benoit Donnet!, Bradley Huffaker?, Timur Friedman?, ke claffy?

! Université Catholique de Louvain — CSE Department, Belgium,
2 CAIDA - San Diego Supercomputer Center, USA
3 Université Pierre & Marie Curie — Laboratoire LIP6/CNRS, France

Abstract. Recently, Doubletree, a cooperative algorithm for large-scale
topology discovery at the IP level, was introduced. Compared to classic
probing systems, Doubletree discovers almost as many nodes and links
while strongly reducing the quantity of probes sent. This paper examines
the problem of the nodes and links missed by Doubletree. In particular,
this paper’s first contribution is to carefully describe properties of the
nodes and links that Doubletree fails to discover. We explain incomplete
coverage as a consequence of the way Doubletree models the network: a
tree-like structure of routes. But routes do not strictly form trees, due to
load balancing and routing changes. This paper’s second contribution is
the Windowed Doubletree algorithm, which increases Doubletree’s cov-
erage up to 16% without increasing its load. Compared to classic Double-
tree, Windowed Doubletree does not start probing at a fixed hop distance
from each monitor, but randomly picks a value from a range of possible
values.

1 Introduction

Today’s most extensive tracing system at the IP interface level, skitter [1],
uses 24 monitors, each targeting on the order of one million destinations. In
the fashion of skitter, scamper [2] makes use of several monitors to traceroute
IPv6 networks. Other well known systems, such as RIPE NCC’s TTM [3] and
NLANR’s AMP [4], employ a larger set of monitors, on the order of one- to
two-hundred, but they avoid probing outside their own network. Recent work
indicates, however, the need to increase the number of traceroute sources in order
to obtain a more accurate topology measurement. Indeed, it has been shown that
reliance upon a relatively small number of monitors to generate a graph of the
internet can introduce unwanted biases [5], [6].

One way of rapidly creating a large distributed monitoring infrastructure
would be to deploy traceroute monitors in an easily downloadable and read-
ily usable piece of software, such as a screensaver. This was first proposed by
Jorg Nonnenmacher, as reported by Cheswick et al. [7]. The first publicly down-
loadable distributed route tracing tool is DIMES [8], released as a daemon in
September 2004.

However, building such a large infrastructure leads to potential scaling is-
sues: the quantity of probes launched might consume large amounts of network
resources and the probes sent from many vantage points might appear to end-
hosts or firewalls as a distributed attack. These problems were quantified in our
prior work [9].

The Doubletree algorithm [9] is designed to perform large-scale topology dis-
covery in a network friendly manner. Doubletree avoids retracing the same routes
in the internet by taking advantage of the tree-like structure of routes fanning
out from a source or converging at a destination. The key to Doubletree is that
the monitors share information regarding the paths that they have explored. If
one monitor has already probed a given path to a destination then another mon-
itor should avoid that path. Probing in this manner can significantly reduce the
load on routers and destinations while maintaining high node and link coverage.

However, even if Doubletree’s results, in terms of links and nodes coverage,
are high (above 90%, compared to classic probing, such as skitter), some nodes
and links are not reachable by Doubletree. This paper’s first contribution is a
careful study of the topological data missed by Doubletree. Based on a subset of
skitter data, we simulate Doubletree and show that the majority of nodes and
links missed is located between 9 and 20 hops from Doubletree monitors. We
believe that these missed links and nodes are located between routes’ divergence
and convergence points in the network. Doubletree does not take into account
such points due to the way it models the network. Considering the tree-like
structure of routes implies a static view of the network. But convergence and
divergence of routes arise because of network dynamics as such points are created
by load balancing or routing changes. Load balancing refers to the fact that
routers might spread their traffic across multiple paths [10]. Three policies might
be considered: per-flow, per-packet and per-destination. Note that impacts of
load balancing on traceroute-like probing are detailed in [11].

Based on this knowledge of missed information, we propose an improvement
to Doubletree called Windowed Doubletree, this paper’s second contribution.
Instead of starting probing at a fixed point somewhere in the network, Windowed
Doubletree builds a window based on the location of nodes and links missed. For
each destination to probe, a Windowed Doubletree monitor picks up randomly
a value in this window and then, probes in the same way as classic Doubletree.

We evaluate Windowed Doubletree and find that it is able to increase the
classic Doubletree coverage by 16% while maintaining nearly the same impact
on destinations and router interfaces as classic Doubletree.

The remainder of this paper is organized as follows: Sec. 2 presents Double-
tree; Sec. 3 discusses Doubletree’s limitations; Sec. 4 introduces and evaluates
Windowed Doubletree, our improvement to Doubletree based on knowledge of
missed information; finally, Sec. 5 concludes this paper by summarizing its main
contributions.

Destination 2 Destination 2

4@1 AQ’

4
= Destination 3 Eao Destination 3

N

DestinE]_atlion 1 @L DestinE_a]ti @L
= A /

VA
4

”

-

&7 § b

1 1
F— /]
Monitor 1 Monitor 1
Monitor 2 Monitor 2
Monitor 3 Monitor 3
(a) Tree rooted at the monitor (b) Tree rooted at the destination

Fig. 1. Tree-like structure of routes

2 Doubletree

Doubletree [9] takes advantage of the tree-like structure of routes in the
context of probing, as illustrated in Fig. 1. Routes leading out from a monitor
towards multiple destinations form a tree-like structure rooted at the monitor
(Fig. 1(a)). Similarly, routes converging towards a destination from multiple
monitors form a tree-like structure, but rooted at the destination (Fig. 1(b)). A
monitor probes hop by hop so long as it encounters previously unknown inter-
faces. However, once it encounters a known interface, it stops, assuming that it
has touched a tree and the rest of the path to the root is also known. Using these
trees suggests two different probing schemes: backwards (monitor-rooted tree —
decreasing TTLs) and forwards (destination-rooted tree — increasing TTLs).

For both backwards and forwards probing, Doubletree uses stop sets. The
one for backwards probing, called the local stop set, consists of all interfaces
already seen by that monitor. Forwards probing uses the global stop set of
(interface, destination) pairs accumulated from all monitors. A pair enters the
global stop set if a monitor receives a packet from the interface in reply to a
probe sent towards the destination address.

A Doubletree monitor starts probing for a destination at some number of hops
h from itself. It will probe forwards at h 4+ 1, h + 2, etc., adding to the global
stop set at each hop, until it encounters either the destination or a member of
the global stop set. It will then probe backwards at h — 1, h — 2, etc., adding
to both the local and global stop sets at each hop, until it either has reached
the distance of one hop or it encounters a member of the local stop set. It then
proceeds to probe for the next destination. When it has completed probing for
all destinations, the global stop set is communicated to the next monitor. Note
that in the special case where there is no response at distance h, the distance is

—
o
[

- 1.00+ -

to skitter

[}
(=
0
su8- - 0.95- -
3 5
0.6~ -2
5 < 0.90
2 g‘ oo qodes
g04- - 8085 weelinks
2 £
s S
502 - ©080- -
£)
3 3
° o
0.0- i | | | | o - 0.757 | | | I T
0 5 10 15 20 25 30 35 40 0.0 0.2 0.4 0.6 0.8 1.0
path length (hop) p

Fig.2. Cumulative mass plot of path Fig.3. Doubletree coverage compared to
lengths from skitter monitor champagne classic probing

halved, and halved again until there is a reply, and probing continues forwards
and backwards from that point.

Doubletree has a single tunable parameter, the initial hop distance h. While
Doubletree largely limits redundancy on destinations once hop-by-hop probing
is underway, its global stop set cannot prevent the initial probe from reaching a
destination if A is set too high. Therefore, each monitor sets its own value for h in
terms of the probability p that a probe sent h hops towards a randomly selected
destination will actually hit that destination. Fig. 2 shows the cumulative mass
function for this probability for skitter monitor champagne. If one considers as
reasonable a 0.2 probability of hitting a responding destination on the first probe,
the champagne monitor must choose h < 14.

3 Doubletree Limitations
3.1 Methodology

Our study of Doubletree’s limitations is based on skitter data from August
1%t through 34, 2004. At this time, skitter was deployed on 24 monitors scattered
around the world: the United States, Canada, the United Kingdom, France, Swe-
den, the Netherlands, Japan and New Zealand. The different monitors shared a
common destination set of 971,080 IPv4 addresses. Each monitor cycled through
the destination set at its own rate, taking typically three days to complete a cy-
cle. For the purpose of our studies, in order to reduce computing time to a
manageable level, we worked from a limited set of 50,000 destinations, randomly
chosen from the original set.

We conducted simulations based on the skitter data, assuming that each of
the 24 skitter monitors applied Doubletree, as described in Sec. 2. We imple-
mented the same communication scheme for Doubletree as the one described

ook links 6000+ oo links

104; esee nodes eeee nodes
: S 5000-
10°
: 4000~
> : >
£ 107 - B
s ¢ §3000-
=] z =]
® 0 - v
: 2000-
n; -
10 : 1000~
1071? | | | : 0 | | -
0 10, 20 30 40 50 0 10, 20 30 40 5
distance (from monitors) distance (from monitors)

Fig. 4. Nodes and links at each hop Fig. 5. Nodes and links missed - p = 0.05

by Donnet et al. [9, Sec. IV.B.]. Essentially, a random order was chosen for the
monitors and each one simulated the running of Doubletree in turn. Each moni-
tor added to the global set the (interface, destination) pairs that it encountered,
and passed the set to the subsequent monitor.

A single experiment used traceroutes from all 24 monitors to a common set
of 50,000 destinations chosen at random. Each data point in plots represents the
mean value over fifteen runs of the experiment, each run using a different set
of 50,000 destinations generated at random. No destination was used more than
once over the fifteen runs. We determined 95% confidence intervals for the mean
based, since the sample size was relatively small, on the Student ¢ distribution.
These intervals are typically, though not in all cases, too tight to appear on the
plots.

3.2 Results

Fig. 3 shows the mean Doubletree coverage (nodes and links) compared to
classic probing for some p values (an increment of 0.01 between 0 and 0.2 and
an increment of 0.1 between 0.2 and 1). A coverage value of 1 would indicate
that Doubletree is able to discover the same proportion of nodes and links as
classic probing. A p value of zero means that a Doubletree monitor performs
forwards probing only. At the other extreme, a p value of 1 indicates that a
Doubletree monitor, in all cases when a destination replies to the first probe,
performs backwards probing only.

We see that the coverage increases with p but never reaches 1. A coverage
peak is reached when p = 0.8. After that point, the coverage decreases a little
bit. As we can see, though it can achieve over 90% coverage, Doubletree, in its
basic form, has room for improvement.

Fig. 4 shows the average number, over the fifteen destination subsets, of nodes
and links discovered at each hop by skitter. The vertical axis, in log-scale, gives
the quantity and the horizontal axis the hop count. As a given node might be
located at a distance = from one monitor and at a distance y from another (the
same problem might occur with links), we sort all nodes and links by distance
and plot, for each node or link, the minimum distance. This methodology gives
thus a monitor-independent representation. Further, note that for the links, the
distance plotted is the distance of the start of the link. Finally, one can see that
Fig. 4 shows quantities below 10° for some nodes and links. This is a consequence
of the mean over the fifteen destination subsets. Only a few nodes (or links) might
appear in a few subsets at some distances from the monitors.

In our dataset, skitter discovers, on average, 131,780 nodes and 279,799 links.
Looking at Fig. 4, we note that there is a rapid increase in the number of nodes
and links at each hop until reaching a peak close to the traceroute sources: at hop
8 corresponding to 35,620 different links and at hop 9 corresponding to 19,662
nodes. After this peak, the number of nodes and links per hop decreases slowly
until reaching a minimum (or a value very close to the minimum) after the 35"
hop.

Fig. 5 investigates the nodes and links missed with Doubletree when p = 0.05.
This is in the range of p values recommended by our prior work [9, Sec. IV.B.],
as it provides a good compromise between redundancy reduction and coverage.
Fig. 5 plots the quantity of nodes and links missed at each hop.

We see that the majority of nodes and links missed are located between 9
and 20 hops from a monitor, where the majority of nodes and links are located,
according to Fig. 4. A peak (5,953 links and 1,387 nodes are not elicited) is
reached at 12 hops from the sources. After 20 hops, the amount of topological
information missed becomes negligible.

We believe that this information missed is located between routes’ divergence
and convergence points. Doubletree encounters difficulties in discovering nodes
and links within such points because of its stopping rules. For the sake of ex-
planation, let us consider the destination-rooted tree (see Fig. 6). Suppose that
Monitor 2 has h < 4 and probes Destination 2. It will, as explained in Sec. 2,
probe forwards from h and backwards from h— 1. It will also populate the global
stop set with the (interface, destination) pairs it encounters. When Monitor 2
has finished probing, it sends its global stop set to Monitor 3. Suppose that
Monitor 8 has h < 2. When discovering the path to Destination 2, it will probe
forwards until reaching the gray interface (A). As this interface towards Desti-
nation 2 was previously discovered by another monitor in the system, Monitor
8 stops probing, considering that the rest of the path to the root of the tree is
already known. However, because of load balancing or routing change, the path
from the gray interface towards Destination 2 has changed. As a consequence,
in this example, one node (E) and two links (dashed lines - A — FE and F — C)
will not be discovered. The same reasoning applies for the monitor-rooted tree
but with backwards probing and a stopping rule based on the local stop set.

Destination 2

—
o
|

|

Destination 1 E]
=

<
(o]
]

o
>
|

cumulative mass of missed nodes

@
5
L
)

w = M5 10 120 % s 35 1
Mo 2 distance (from monitor)
Monitor 3
Fig.6. Route’s convergence point in the Fig.7. Windowed Doubletree - the
case of destination rooted tree champagne monitor

This case occurs because of the way Doubletree models the network. As
explained in Sec. 2, Doubletree assumes, in the context of probing, that the
routes have a tree-like structure. This is true in a large proportion as suggested
by Doubletree’s coverage results (see Fig. 3), but this hypothesis implies a static
view of the network. When a Doubletree monitor stops probing towards the
root of a tree, it assumes that the rest of the path to the tree is both known
and unchanged since earlier probing. The existence of routes’ convergence and
divergence points, however, imply a dynamic view of the network, as some parts
of the network might change due to load balancing and routing.

4 Windowed Doubletree

As explained in Sec. 3, Doubletree will miss node E (see Fig. 6) if it first
probes path A — B — C and then A — F — C. E will be hidden behind the
shared interfaces of A and C'. That is unless Doubletree starts its probing on the
second hop in the paths between A and C. This will allow it to discover both
B and E. However, as explained in Sec. 2, Doubletree, in its classic form, starts
probing from a fixed value of h for all destinations. Consequently, unless the
inconsistency between the paths occurs at its fixed h, it will not be discovered.

Our idea is to randomize the distance at which probing will start. Rather than
launching the first probe at a constant value of h, each monitor will randomly
pick a value of h in the window of missing nodes and links. This is illustrated in
Fig. 7. The horizontal axis gives the distance to monitors of missed nodes and the
vertical axis the cumulative mass of missed nodes. The window, between 9 and 20
hops, is shown by the shaded area. Note that taking into account smaller values
for the window would raise the risk of intra-monitor redundancy [9, Sec. IILA.],

—
o
S
=)
=
(=]
w
f=]

o
o
S
|
|
Lo
S

c

T

[

=

T
— nodes - Windowed DT g
®eee nodes - classic DT 5
---- links - Windowed DT
»oe links - classic DT § 400~ -10

8

-

Q

=

£

|
Do
(=}

|
>
destination redundancy

%
‘

> interface - classic DT

w
o
f=]
|
ot

— interface - Windowed DT
eeee destination - classic DT
---- destination - Windowed DT

coverage compared to skitter

0.757 ‘ ‘ ‘ ‘ T300+ ‘ | \
0.0 0.2 0.4 0.6 0.8 1.(0.0 0.2 0.4 b 0.6 0.8 1.0

Fig. 8. Coverage in comparison to classic Fig. 9. Windowed Doubletree redundancy
Doubletree and classic probing (95" percentile)

i.e., the duplication of a monitor’s own work, that leads to inefficiency. Introduc-
ing this element of randomness in probing dramatically increases the probability
that at least one Doubletree trace will start probing inside a route’s divergence
and convergence segment. Thus allowing Doubletree to discover the nodes and
links hidden within this segments.

The rest of Doubletree’s behavior is left unchanged. Probing continues for-
wards from h and backwards from h — 1 while using global and local stop set
to decide when probing must stop. Finally, all monitors continues to cooper-
ate in order to exchange their global stop set. We call this improved algorithm
Windowed Doubletree.

4.1 Evaluation

Our study was based on the same data set as the one described in Sec. 3.1.
We assumed that Windowed Doubletree is running, as described in Sec. 4, on the
skitter monitors, during the same period of time that the skitter data represents.
In addition, we simulated randomness to pick a value for h within the window
with the Mersenne Twister MT19937 pseudorandom number generator [12].

The main performance metric for a probing system is the extent to which it
discovers what it should. Fig. 8 shows the Windowed Doubletree node and link
coverage compared to classic probing and classic Doubletree. The horizontal axis
gives the probability p (i.e., the probability of hitting a destination with the first
probe sent) between 0 and 1. The vertical axis gives the coverage proportion
in comparison to classic probing, i.e., skitter. A value of 1 would mean that
Doubletree is able to discover the same proportion of nodes and links as classic
probing. We compare Windowed Doubletree (the horizontal lines) with classic
Doubletree (the curves).

Looking first at the node coverage (upper curve), we see that Windowed
Doubletree (plain line) is able to discover more nodes than classic Doubletree.
The increase is slight: between 9% (p = 0) and 0.3% (p = 0.8). Therefore, reach-
ing nearly the same proportion of nodes discovered by using classic Doubletree
would mean considering a p value of 0.8. Previous work [9] pointed out that
such a value for the parameter p is not advisable due to the load on destina-
tions. Indeed, a value of p = 0.8 means that in 80% of the cases, the first probe
sent by a Doubletree monitor will hit a destination, which can be interpreted by
final hosts and firewalls as an attack. With link coverage, the difference is much
greater: Windowed Doubletree captures between 16% (p=0) and 0.7% (p=0.8)
more links than classic Doubletree.

Windowed Doubletree is thus able to discover more than 98% of the nodes and
93% of the links discovered in classic probing. Windowed Doubletree increases
the coverage of classic Doubletree.

The goal of applying Doubletree is to reduce the load on network interfaces
in routers and, more importantly, at destinations. If Windowed Doubletree in-
creased this load, it would be a concern.

Fig. 9 shows the redundancy for routers interfaces (left vertical axis) and for
destinations (right vertical axis). With regard to router interface redundancy,
we are concerned by the overall load. We therefore count the total number of
visits to an interface. We call this metric gross redundancy. We evaluate the
destination redundancy by counting the number of monitors that hit a given
destination. The maximum value is thus the total number of monitors in the
system, i.e., 24 in our case. For both destination and router interfaces, we are
concerned with the extreme values, so we plot the 95" percentile.

Looking first at the gross redundancy, we see that Windowed Doubletree
produces the same amount of redundancy than the classic Doubletree with p =
0.14. This corresponds to a value within the range of p values advised by previous
work [9, Sec. IV.B.]. Note that the 95" percentile for the internal interface
gross redundancy using a skitter-like approach is 1340 (not shown on Fig. 9).
If we compare Windowed Doubletree to the skitter-like approach, Windowed
Doubletree allows a reduction in redundancy of 67.09%.

The destination redundancy caused by Windowed Doubletree corresponds to
that produced by classic Doubletree with p = 0.18 (i.e., 18), which belongs to
the advised range of p values. The small increase in destination redundancy is
due to the fact that the choice of the h value with Windowed Doubletree is no
longer trying to minimize the risk of hitting a destination with the first probe
sent. However, Fig. 9 shows that randomly picking a value within a range of
values does not lead to disastrous destination redundancy. Finally, note that
classic probing generates a destination redundancy of 24 (not shown in Fig. 9),
i.e., the number of monitors in our simulations.

Fig. 10 and 11 compare classic Doubletree with Windowed Doubletree in
terms of nodes and links missed. The vertical axis gives the quantity of infor-
mation (nodes or links) missed and the horizontal axis the distance (in term of

I !] I
»e classic DT _ 6000~ »e classic DT

1400 - eeee Windowed DT »» Windowed DT
1200- - 5000~ -
1000~ T 000~ -
(7]
7] (7]
'E 800~ - 2
- E3000- -
(4]
| 600- - £
2 =2000- -
400- -
200~ 1000~ -
0+ | | - 0 | | _
0 10, 20 30 40 50 0 10, 20 30 40 50
distance (from monitors) distance (from monitors)

Fig.10. Nodes missed with Windowed Fig. 11. Links missed with Windowed Dou-
Doubletree compared to classic Doubletree bletree compared to classic Doubletree

number of hops) from the monitors. In the fashion of Fig. 4, nodes and links are
sorted by distance and for each node and link, we plot the minimum distance.

Obviously, as suggested by Fig. 8, by introducing an element of randomness
in probing, we are able to reduce the quantity of nodes and links missed by
classic Doubletree. Looking first at the nodes (Fig. 10), we see that the maximum
quantity of nodes missed is located further from monitors: 16 hops (328 nodes)
instead of 12 hops (1387 nodes). The same phenomenon appears for links: the
maximum quantity of links missed is located 14 hops (2,528 links) from monitors
instead of 12 hops (5,953 links). We finally notice that, unlike classic Doubletree,
Windowed Doubletree is able to discover nodes and links that are located beyond
30 hops from monitors.

5 Conclusion

In this paper, we improved a cooperative topology discovery algorithm, Dou-
bletree, in order to increase its node and link coverage. We first studied the
properties of Doubletree losses and found that these losses are due to the hy-
pothesis Doubletree makes on how the routes are modeled when probing. We
also determined that the nodes and links missed are located between routes’
divergence and convergence points.

Based on knowledge of nodes and links missed, we proposed Windowed Dou-
bletree. Instead of starting probing at a fixed point in the network as classic
Doubletree does, Windowed Doubletree builds a window based on the location
of nodes and links missed. For each destination to probe, Windowed Doubletree
randomly picks up a value in this window and starts probing from this point.
We demonstrated that, by introducing an element of randomness in probing,

Windowed Doubletree is able to discover more nodes and links than classic Dou-
bletree while maintaining a low impact on routers and destinations.

Acknowledgements

Mr. Donnet’s work was partially supported by the European Commission-

funded 034819 OneLab project and by an internship at CAIDA.

References

10.

11.

12.

. Huffaker, B., Plummer, D., Moore, D., claffy, k.: Topology discovery by active

probing. In: Proc. Symposium on Applications and the Internet. (2002)

Luckie, M.: (IPv6 scamper) WAND Network Research Group.

Georgatos, F., Gruber, F., Karrenberg, D., Santcroos, M., Susanj, A., Uijterwaal,
H., Wilhelm, R.: Providing active measurements as a regular service for ISPs. In:
Proc. Passive and Active Measurement (PAM) Workshop. (2001)

McGregor, A., Braun, H.W., Brown, J.: The NLANR network analysis infrastruc-
ture. IEEE Communications Magazine 38(5) (2000)

Lakhina, A., Byers, J., Crovella, M., Xie, P.: Sampling biases in IP topology
measurements. In: Proc. IEEE INFOCOM. (2003)

Clauset, A., Moore, C.: Traceroute sampling makes random graphs appear to have
power law degree distributions. cond-mat 0312674, arXiv (2004)

Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In:
Proc. USENIX Annual Technical Conference. (2000)

Shavitt, Y., Shir, E.: DIMES: Let the internet measure itself. ACM SIGCOMM
Computer Communication Review 35(5) (2005)

Donnet, B., Raoult, P., Friedman, T., Crovella, M.: Deployment of an algorithm
for large-scale topology discovery. IEEE Journal on Selected Areas in Communi-
cations, Sampling the Internet: Techniques and Applications 24(12) (2006) 2210—
2220

Thaler, D., Hopps, C.: Multipath issues in unicast and multicast next-hop selection.
RFC 2991, Internet Engineering Task Force (2000)

Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., T., F., Latapy, M., Magnien,
C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute. In: Proc.
Internet Measurement Conference (IMC). (2006)

Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator. ACM Transactions on Model-
ing and Computer Simulation 8(1) (1998) 3-30

