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Abstract. Wireless Ad hoc sensor networks are characterized by several con-
straints, such abandwidth delay, power, etc. These networks are examined by
constructing a tree network. A core node usually chosen to beétatanor cen-

ter of the multicast tree network with a tend to minimize a performance metric,
such as delay or bandwidth. In this paper, we present new efficient strategy for
constructing and maintaining a core node in multicast tree for wireless ad hoc
sensor networks that undergo dynamic changes based on local information. The
new core ¢entdiar) function is defined by convex combination that signifies total
bandwidth and delay constraints. We provide two bound8 @f) andO(d + 1)

time for maintaining the centdian using local updates, wheréhe hop count be-
tween the new center and the new centdiandisthe diameter. We also show a
O(nlogn) time solution for finding centdian in the Euclidian complete network
using interesting observations. Finally a simulation is presented.
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Node

1 Introduction

Wireless Ad hoc sensor networks is a network architecture that can be rapidly deployed
without relying on pre-existing fixed network infrastructure . Wireless communication

is used to deliver information between nodes, which may be mobile and rapidly change
the network topology. The wireless connections between the nodes (which later will be
referred as links or edges) may suffer from frequent failures and recoveries due to the
motion of the nodes and due to additional problems related to the propagation chan-
nels (e.g. obstructions, noise) or power limitations. A wireless ad hoc sensor network
consists of a number of sensors spread across a geographical area. Each sensor has
wireless communication capability and some level of intelligence for signal processing
and networking of the data. Recently, wireless sensor networks have been attracting a
great deal of commercial and research interest [13,27,29]. In particular, practical emer-
gence of wireless ad hoc networks is widely considered revolutionary both in terms of
paradigm shift as well as enabler of new applications.

! This research has been partially supported by INTEL and REMON consortium.
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Group communication is the basis for numerous applications in which a single
source delivers concurrently identical information to multiple destinations. This is usu-
ally obtained with efficient management of the network topology in the form of tree
having specific properties. For example, multicast routing refers to the construction of
a spanning tree rooted at the source and spanning all destinations [3,11, 25, 30, 36]. De-
livering the information only through edges that belong to the tree generates an efficient
form of group communication which uses the smallest possible amount of network re-
sources. In contrast, with unicast routing from the source to each destination, one needs
to find a path from the source to each destination and generates an inefficient form of
group communication where the same information is carried multiple times on the same
network edges and the communication load on the intermediate nodes may significantly
increase. We notice that wireless ad hoc sensor networks pose the reliable and efficient
communication services necessary for distributed computing [6, 31], while objective
functions considered are the most classical that involve the minimization of the average
or the maximum distance to service facilities.

Generally, there are two well-known basic approaches to construct multicast trees:
the minimal Steiner tree (SMT) and the shortest path tree (SPT). Steiner tree (or group-
shared tree) tends to minimize the total cost of a tree spanning all group nodes with
possibly additional non group member nodes. The optimal construction of the SMT is
known to be a NP-hard problem [14,22]. Some heuristics that offer efficient solutions to
this problem are given in [21, 37]. The best up today solution has been derived by [38]
and proved factor of 1.55. In contrary, SPT tends to minimize the cost of each path from
the root source to each destination. This can be achieved in polynomial time by using
the well-known algorithm by Dossey et al. [12]. The goal of a SPT is to preserve the
minimal distances from the root to the nodes without any attempt to minimize the total
cost of the tree.

Gupta and Srimani [16] present distributed core selection and migration protocols
for multicast tree in MANET with dynamically changing network topology. The pro-
posed core location method is based on the notionediannode of the current multi-
cast tree instead of the median node of the entire network. The adaptive distributed core
selection and migration method uses the fact that the median of a tree is equivalent to
thecentroidof that tree. Gupta and al. [17] present efficient core migration protocol for
MANET that migrates the core until the multicast tree branches reflect the desired QoS
requirements of the multicast application where the proposed core location method is
based on the notion afenternode of the current multicast tree. Bing-Hong and al. [9]
gave heuristic to the minimum non-leaf multicast tree problem that reduce the number
of non-leaves nodes in the multicast tree and their experimental results show that the
multicast tree after the execution of their method has smaller number of non-leaves than
others in the geometrically distributed network model.

The bandwidthof a tree is defined as the total distance of packet transmissions
required to deliver packet from core nodé¢o all others nodes. The maximutelayof
the tree is the maximum distance to traversed by any packet in traveling from core node
v to other node. Th&ransportof a node is defined as the total distance of the node to
all others nodes in the tree. The corresponding solution concepts have been considered
in literature as median and center [26, 28, 39]. Since the median approach is based
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on averaging, it often provides a solution in which remote and low-population density
areas are discriminated against in terms of accessibility to public facilities, as compared
with centrally situated and high-population density areas. For this reason, an alternative
approach, involving the maximum distance between any customer and closest facility
can be applied. This approach is referred to as the center solution concept [4]. The min-
max objective primarily addresses geographical equity issues, which are of particular
importance in spatial organization of emergency service systems. On the other hand,
locating a facility at the center may cause a large increase in the total distance, thus
generating a substantial loss in spatial efficiency. The problems of using only center or
median as a core lead to search for a compromised solution concept aatlietian

where centdian function presents some kind of trade-off between the center and the
median functions ( [19]). The centdian function for nadé the network is defined

by D, = X - sum(v) + (1 — A) - dist(v), 0 < X < 1 wheredist(v) is the maximum
distance from node to other nodes in the networkym(v) is the sum of distances
from nodev to all other nodes in the networks.

Halpern [18] introduced the centdian model and studied the properties of the cent-
dian in a tree. In a subsequent work, Carrizosa et al. [10] presented an axiomatic ap-
proach justifying the use of the centdian criterion. Tamir et al. [41] present the first
polynomial time algorithm for the-centdian problem on a tree with(pn%) com-
plexity wherep is the number of facilities. For more results about centdian problem,
see [2,7,20,32,33,40]. Other related notiomafered mediamf a tree ( [5,23,34,35])
generalizes the most common criteria mentioned above, e.g., median, center and cent-
dian. If there are» demand points in a treé€, this function is characterized by a se-
quence of realsg = (k1,...,kn), satisfyingk; > ko... > k, > 0. For a given
subtreeS € T, let X(S) = {z1,...,2,} be the set of weighted distances of the
points toS. The value of the ordered median objectiveSas obtained as follows: Sort
then elements inX (.S) in non-increasing order, then compute the scalar product of the
sorted list with the sequenee It is easy to see thatwhen = 1,i = 1,...,n, we get
the median objective and when = 1 andk; = 0,7 = 2,...,n, we obtain the center
objective. For the case, = 1 andx; = \,7 = 2,...,n we get the centdian objective.
Unfortunately, constructing and maintaining cores by use of ordered median technique
is not suitable for wireless ad hoc sensor networks, since this technique requires keep-
ing some global information about nodes of network which is completely inconceivable
in the case of wireless ad hoc sensor networks.

Most protocols for constructing core node are not suitable for wireless ad hoc sen-
sor networks, since these algorithms are not based on local updates. In this paper, we
present new efficient strategy for constructing and maintaining a core node under cent-
dian criteria in multicast tree for wireless ad hoc sensor networks with dynamic changes
in the network topology. The new core node is defined by convex combination of the
sum of the weighted distance paths (sum of the weighted edges in the path) of all the
nodes in the tree network to the core node and the maximum weighted distance from
the core node to the farthest node in the tree network satisfied center and median core
functions. We also provide two bounds@fd) andO(d + !) time for maintaining the
centdian after a change (add/remove edge/node) in the topology of the tree network,
wherel is the hop count between the new center and the new centdian of the multicast
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tree and! is the diameter of the tree. We show@i log n) time algorithm for finding

a centdian node in the Euclidian complete network bases on observation in [8]. Finally,
we present a simulation that compare our new core solution with well known cores’
strategies to exhibit the advantages and the efficiency of our algorithms.

This paper is organized as follows: Section 2 presents a new algorithm that finds and
maintains a centdian core in a multicast tree. In Section 2.2 we show a solution for a
static Euclidian network. Next we show our simulation results and finally, we conclude
with several ideas for future work.

2 Algorithm to find centdian of multicast tree in wireless ad hoc
sensor networks

We model the topology of wireless ad hoc sensor networks by weighted undirected
graphG(V, E,W.), whereV is the set of node<£ is the set of edges between neigh-
boring nodes antW, is an edge weight function, e.g. squared distance between the end-
points of edges. Note that the edges represent logical connectivity between nodes, i.e.,
there is an edge between two nodesdyv if they can hear each other’s local broadcast.
Since the nodes are mobile, the network topology graph stochastically changes. Let us
define byT(V’, E’) a weighted multicast tree @f. For a nodey € T' we define byk,

the number of nodes in the connected component contair(itrgated by removing(v,

x)); by W, the total sum of weighted distances from the nodes in the connected compo-
nent containing (created by removing(v, x) to nodev. Centerof a treeT" is a hode

c1 € T such that the maximal distance framto any other node iff” is minimized,
i.e.dist(c1,T) = min,er dist(v, T). In order to find a center of tréE we can use the
distributed algorithm described in [26] that requiré$) + (d(T")/2) time, wherer(I)

is the the maximal weighted distance from the initiator néde any other node if”
andd(T) is the weighted diameter of the tree. This algorithm finds the center node by
starting form an arbitrary node and goes from the internal nodes towards the leaves
and back to the new center using the information from the leaves about the weighted
distance path and the knowledge that the center of the tree lies on the diameter of the
tree.Medianof a treeT is a nodec; € T such that the sum of the weighted distances
from ¢, to any other node iff” is minimized, i.e sum(cqe, T') = min,er sum(v,T). In

order to find a median of a tréé we can use the distributed algorithm in [26] that re-
quiresmaxer(r(I) +d(x, c2)) time, whered(x, c2) is the weighted distance between
nodex and the new median. This algorithm finds the median node by starting form an
arbitrary node and goes from the internal nodes towards the leaves. Each leave propa-
gates the weight of its edge and each internal node propagates the sum of values obtain
from its descendants plus the weight of the edge connecting him to its predecessor in
the tree.

Next, we show a simple algorithm to find the number of nodes in each one onode
branches. We define bl,,,,< = 1...b, to be the number of nodes in tite branch of
nodew, with b standing for the number of branches of ned®y convergecast process
from the leaves towards the center of the tree we can find the total number of nodes in
the tree. By knowing this number, we start a new process from the leaves to find for
each node its valuesk,,,. Each leaf sends to its fatherin a rooted tred” anum(1)
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message. Each internal nodegets from his sons thenummessages and sums all the
values in the messages. The process converges towards

It is a well-known fact that a centdian is located on the path connecting canter
and median:; ( [18]). The following lemma presents an efficient way of calculating
centdian in a multicast tree based on knowledge about location of the center and median.

Lemmal. D, > D, iff \(K, — K,)+1) < L.

Proof: A centdian node: must minimize expressio®, = A - sum(z, T7) + (1 —
A) - dist(xz, T') . Denote byD,, = A-sum(v, T') + (1 — X) - dist(v, T") the cost of
nodewv who is the neighbor of current centdiarwith the minimum value ofD from
x neighbors. We should move the centdian towardmly if D, > D,. Notice that

dist(z, T") = %”;gmﬂ We conclude that
sum(z, T") =W, + (K, + 1) - d(z, v) + W, andsum(v, T') = W, + (K, +1)-
d(z, v) +W,. Therefore D, = A(W,+ (K +1)-d(x, v) + W)+ (1—N)dist(v, T").
It easy to see that there are 5 different cases (out of 9) that we should deaDyhen
Dy,

x, T') and dist(v, T") < dist(z, T")
) (z, T").

um(z, T') and dist(v, T") < dist(xz, T") .
) (z, T")
) (

VA

T’) (z, T") (
T") > sum(z, T') and dist(v, T') < dist

3) sum(v, T'") = ( ) (
) < sum(x, T') and dist(v, T") = dist(z, T").
v, T') < sum(z, T") and dist(v, T') > dist(xz, T").

We present an analysis only for cases 1-3 that are relevant (case 4 is $ivigh(, 7"7) =
sum(xz, T"))) and case 5is equivalent to cases 1-3. In casegllsBx, T')—dist(v, T")| <
d(z, v), therefore

Dy, =AW, + (Ky+1)-d(z, v) + W)+ (1 = Ndist(v, T") = A(W,+

+ (Ky +1)-d(z, v) + W) + (1 — X)(dist(z, T") — dist(x, v)) = A(W,+
+(Ky+1)-d(z,v) + W)+ (1 - /\)(%W —dist(x, v)) =
=AW, + (K;+1) -d(z,v) + W)+ D, — Asum(z, T") — dist(z, v)(1 = \) =
=AW, + MK, +1)-d(z, v) + AWy + Dy — Asum(z, T") — dist(z, v)(1 — \) =
= AW, + MK, +1)-d(z,v) + \W, + Dy — AW, + (K, + 1) - d(z, v) + W,)—

—dist(x, v)(1 = A) = AW, + MKz + 1) - d(z, v) + AW, + Dy — AW, — MK, + 1)-
d(x, v) — AW, —dist(z, v)(1 — X) = Dy + AMd(x, v) (K, — K,) — dist(z, v)(1 = N).

As we stated above, we move the centdian node onyyit> D,. This happens when
D, — (D + Md(z, v)(K, — K,) — dist(z, v)(1 — X)) > 0 or in other words\(K, —

K, +1) < 1.In case 4ist(x, T') = dist(v, T"), thusD, = \(W, + (K, + 1) -
d(z, v) + Wy) + (1 — N)dist(z, T"). Analysis similar to the previous one shows that
D, > D, only if Ad(z, v)(K, — K,) < 0. In case 5 we get thab, > D, only

if A\(K, — K;)—1) < —1. It follows that the inequalityD, > D, holds when
MK, — K, +1) <1 O
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Based on this lemma, we can locate the centdian in the multicast tree, starting either
at center or the median of the multicast tree and going over the path between them,
locally improving from one neighboring node to another. Thus, the centdian in the tree
can be found ir0(7) time when the location of the center and the median are known,
with [ standing for the number of nodes in the path connecting center and median.

2.1 Maintaining a centdian in a multicast tree

When we have some change in the multicast tree, each node needs to update the number
of nodes in each of its branches. By usikig values of the centdian node, our maintain-

ing algorithms running on the subtree with the highest number of the multicast group
members. In what follows we show two different approaches to maintain centdian in

a multicast tree. Both approaches use the fact that the centdian function is convex and
therefore has only one minimum point.

The first approach is to maintain the center of the tre®{d) time using the al-
gorithm in [24]. The new centdian lies on the path between the center and the median
of the updated tree. Therefore, starting from the new center and finding the node that
locally improves the centdian function value, point us the direction towards the new
centdian of the tree. The centdian, thus, can be maintained in worsf>¢dse!) time,
wherel is the hop count between the new center and the new centdian of the multicast
tree andi is the diameter of the tree.

The second approach uses the fact that the neighbor of the old centtliahthe
most improves the centdian function value lies on the path between the old centdian and
the new centdian. Therefore, the centdian can be maintained in worsb¢dgseme.

Since we want only multicast group members to be assigned the responsibility of
core node, the second approach needs to be modified. If the new centdian node is a
multicast member it becomes the actual new centdian of the tree. If not, we seek the
path towards the old centdian in order to find a node that belongs to multicast group and
declare this node to be the new actual centdian of the multicast tree.

2.2 Algorithm to find centdian in Euclidean plane

We model the topology of planar network as explained above by having the edge weight
function defined as the squared distance between the nodes. The motivation to choose
this function is the common method that power transmitting behaves quadratically to
the distance between transmitting and receiving node. Using the observation in Be-
spamyatnikh et al. [8] we are able to solve the centdian problem in Euclidean plane in
O(nlogn) time. The farthest point Voronoi diagram of a collection of poifit the
plane is a partition of plane into cells, each of which consists of the points further to
one particular points than to any others. This diagram can be construci¥a iog n)
time supporting a query requestsdi(logn) time. For a given poinp, a query asks
about the farthest neighbor pfin S. Thus, inO(nlogn) time we can find, for each
point, its farthest neighbor performing totakjueries. In other words, for every node
in the network, we findlist(v) in total O(nlogn) time.

Bespamyatnikh et al. [8] observed that "squared” Euclidean metric is separable,
i.e. the distance between two points is the sum of their squard y-coordinates’
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differences. We follow the notations from [8]. We sort our points according to their
andy-coordinates. Le{p,...,p,} be the sorted points. For every pojst € S we
can compute the sutBy¥ of the z-distances fronp; to the rest of the points i§. This
is performed efficiently as follows. For the point we computeX? by computing and
summing up each of the — 1 distances. Fot < ¢ < n we defineX? recursively:
assume the-distance betweep;,_; andp; isd, thenX? = X% , +4§-(i—1)—3-(n—
i+ 1). The sumsX? (for i = 1,...n) can be computed in linear time when the points
are sorted. The value 9F! is computed similarly. Next, letum} = 377, (x; — ;).
The recursion formula for computing all the squatedistances is easily computed to
besum? = sum?_; — 2§ Y7 | —ndé?, where ther-distance betweep;_; andp; is 4.

Assume the poinp € S is i*" in the = order and;j*" in the y order. The sum of
squared Euclidean distances frerto the points inS is sum(p) = sum{ + sum/.

It remains to compute, for every nodethe value of centdian function based on
values of computed alreadyum(v) anddist(v) values. This is done in linear time.
Thus, we can conclude,

Theorem 1. Given a setS of n nodes in Euclidean complete graph with a cost of
every edge that equals the squared Euclidean distance between nodes, we can find the
centdian node in this graph i@ (n log n) time.

3 Simulation

This section describes the medium-scale experiment in details. The objectives of the
experiment were to test whether the suggested maintaining algorithm actually works,
and to compare its results to the performance of other core algorithms. For this simu-
lation we choose to implement the second approach. As we performed our simulation
we made an interesting observation about the runtime bound of the first approach of
maintaining the centdian node.

3.1 Environment
The following assumptions have been made:

— For each node, the transmission and reception range are equal; however different
nodes can have different ranges. The radius value refers to the transmission range.

— All the nodes are equal in their functionalities and abilities.

— The movement of each node is based on mobility model of random walk based on
random directions and speeds ( [15]).

— There is no dependence between the nodes and the boundary of the network is
predefined.

In our simulation we used 5 different types of cores: center, median, continuous median,
centdian and continuous centdian (with different value&)ofThe difference between
continuous and non continuous core is that non continuous core can "jump” from one
node to another while continuous core keep continuous track of the path of previous
core towards the newly computed core.

2 |n this model each node moves from its current location to a new location by randomly choos-
ing speed and direction in which to travel.
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3.2 Results

The main goal of our simulation is to examine the influence of the multicast group on
the cores’ behavior. One of the parameters we wish to exam is the period of time that
cores are co-located at the same node (defined by collision). From the obtained results
we can learn that the behavior of the cores in the multicast tree is sometimes similar to
the behavior of the cores in regular network tree, for example:

— When)\ = 1 the collision between the centdian core and center core is 100%.
— When\ < 0.5 the collision between the centdian core and median core is 100% as
has been proved in [18].

In some cases, the collision value between the median/center core and centdian
core should be 1, but in our simulation the collision value in those cases are less then
1. The reason for that is the well known fact that in a tree two centers/medians may
possibly exist. In the simulation we choose them in arbitrarily fashion. We simulate ad
hoc sensor network with 100 nodes and 50 multicast nodes with a variety range of radius
and\ values in network boundary of 600x600 meters. Figures 1-7 show the influence
of the radius on the constraints’ values of the network. In particular, Figures 1-2 show
the transport and delay values of the tree network as an unimodal linear function with a
break point being a maximal value. The reason for that is as long as the radius is growing
the network becomes more connected and more nodes are participating in the network.
Starting at some point of time the network becomes to be connected and the pathes from
nodes to the core contain small amount of hops. Figure 3 shows the connection between
the radius and the life span of the cores, with life span being the period of time/rounds
that the core does not change its location. It easy to see that as we increase the radius
the life span also grows up.

The collision between the cores with various values @ind radius is depicted in
Figures 4-7. In Figure 4 we focus on the collision between the centdian and median,
while in Figures 5—6 we have examined the collision between the continuous centdian
and the well known cores. Figure 7 shows the collision between the new centdian and
the new center. From Figure 8 we can learn that for most radius’ values, thelvalue
(number of hops between center and centdian) is small. The continuous centdian core
achieves improved convergence to delay performance than median core and better trans-
portation performance than center core. The continuous centdian core achieves these
properties in a well connected networks, as well as in sparse networks too.

4 Conclusion and Future Work

We have developed a new distributed algorithm for finding and maintaining centdian
core in ad hoc sensor network that is based on processing local information of the
network. Analytic analysis to bound vallseems to be very interesting. One interesting
future direction is by adapting self-stabilizing algorithm to core selection problem in ad
hoc sensor network when it gets partitioned and partitions get connected. The analysis
of the model where one assumes some distribution for the velocities of the nodes seems
also attractive.
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