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Abstract. Parallel shared memory (PSM) routers represent an architec-
tural approach for addressing the high memory bandwidth requirements
dictated by output-queued switches. A fundamental related challenge
pertains to the design of the high-speed memory management algorithm
which is responsible for placing arriving packets into non-conflicting
memories. In previous work, we have extended PSM results by intro-
ducing the concept of Fabric on a Chip (FoC). The latter advocates
the consolidation of core packet switching functions on a single chip.
This paper further develops the underlying technology for high-capacity
FoC designs by incorporating a speedup factor coupled with a multi-
ple packet placement process. This yields a substantial reduction in the
overall memory requirements, paving the way for the implementation of
large scale FoCs. We further provide analysis for establishing an upper
bound on the sufficient number of memories along with a description of
an 80Gbps switch implementation on an Altera Stratix II FPGA.

1 Introduction

Recent years have witnessed unprecedented advances in the design, verification
formalism, and deployment of high capacity, high performance packet switching
fabrics. Such fabrics are commonly employed as fundamental building blocks in
data networking platforms that span a wide variety of application spaces. Local
and Metro area network platforms, for example, host fabrics that typically sup-
port up to hundreds of gigabits/sec. However, switching fabrics are not limited
to Internet transport equipment. Storage area networks (SANs) often necessitate
large packet switching engines that enable vast amounts of data to traverse a
fabric, whereby data segments flow from users to storage devices, and vice versa.
The switching capacity of an Internet router is often dictated by the mem-

ory bandwidth required to buffer arriving packets. With the demand for greater
capacity and improved service provisioning, inherent memory bandwidth limita-
tions were encountered rendering input queued (IQ) [1] switches and combined
input and output queued (CIOQ) architectures more practical. Output-queued
(OQ) switches, on the other hand, offer several highly desirable performance
characteristics, including minimal average packet delay, controllable Quality of
Service (QoS) provisioning, and work-conservation under any admissible traf-
fic conditions [2]. However, the memory bandwidth of such systems is O(NR),



where N denotes the number of ports and R the data rate of each port. Clearly,
for high port densities and data rates, this constraint dramatically limits the
scalability of the switch.
In relation to standard switching architectures, the Fabric on a Chip (FoC)

approach seeks to exploit the recent improvements in the fabrication of VLSI
circuitry in order to consolidate many switching functions on a single silicon
die. Advances in packaging technology now make it possible for large amounts
of information to simultaneously be forwarded to a single chip, which was not
possible several years ago. There are several key advantages that are attributed
to the concept of FoC. First, it eliminates the need for virtual output queueing
(VOQ) [3] as well as some output buffering associated with standard switch
architectures. Second, by exploiting the ability to access the multiple on-chip
Mbits of dual-port SRAM, packets can be internally stored and switched without
the need for external memory devices. The crosspoint switches and scheduler,
pivotal components in input-queued switches, are avoided thereby substantially
reducing chip count and power consumption. Third, much of the signaling and
control information that typically spans multiple chips can be carried out on a
single chip. Finally, the switch management and monitoring functions can be
centralized since all the information is available at a single location.
In an effort to retain the desirable attributes of output-queued switches, while

significantly reducing the memory bandwidth requirements of shared memory
architectures, such as the parallel shared memory (PSM) switch/ router, have
recently received much attention [4]. PSM utilizes a pool of slow-running memory
units operating in parallel. At the core of the PSM architecture is a memory
management algorithm that determines, for each arriving packet, the memory
unit in which it will be placed. This paper extends previous work by the authors
[5] on the design of large-scale PSM switches, from a single-chip realization
perspective. By introducing computation and memory speedup components, a
more efficient high-speed memory management algorithm is attained, yielding
higher system scalability.
The rest of the paper is structured as follows. In Section II an overview of

parallel shared memory switch architectures is provided from an FoC standpoint.
Section III describes the proposed switch architecture and memory management
algorithm. Section IV offers a detailed analysis establishing an upper bound on
the sufficient number of parallel memories required. In Section V the hardware
architecture and FPGA-based simulation results are described, while in Section
VI the conclusions are drawn.

2 Switch Fabric on a Chip

Initial work has indicated that, assuming each of the shared memory units can
perform at most one packet-read or -write operation during each time slot, a
sufficient number of memories needed for a PSM switch to emulate a FCFS OQ
switch is K = 3N − 1 [4]. The latter can be proven by using constraint sets
analysis (also known as the "pigeon hole" principle), summarized as follows. An



arriving packet must always be placed in a memory unit that is currently not
being read from by any output port. Since there are N output ports, this first
condition dictates at least N memory units are available. In addition, no arriving
packet may be placed in a memory unit that contains a packet with the same
departure time. This results in additional N − 1 memory units representing the
N − 1 packets having the same departure time as the arriving packet, that may
have already been placed in the memory units. Should this condition not be
satisfied, two packets will be required to simultaneously depart from a memory
unit that can only produce one packet in each time slot. The third and last
condition states that all N arriving packets must be placed in different memory
units (since each memory can only perform one write operation). By aggregating
these three conditions, it is shown that at least 3N − 1 memory units must
exist in order to guarantee FCFS output queueing emulation. Although this
limit on the number of memories is sufficient, it has not been shown to be
necessary. In fact, a tighter bound was recently found, suggesting that at least
2.25N memories are necessary [6]. Regardless of the precise minimal number
of memories used, a key challenge relates to the practical realization of the
memory management mechanism, i.e. the process that determines the memories
in which arriving packet are placed. Observably, the above memory-management
algorithm requires O(N) iterations to complete.

In [7],[8] Prakash, Sharif, and Aziz proposed the Switch-Memory-Switch
(SMS) architecture, which is a variation on the PSM switch, as an abstrac-
tion of the M-series Internet core routers from Juniper. The approach consists of
statistically matching input ports to memories, based on an iterative algorithm
that statistically converges in O(logN) time. However, in this scheme, each iter-
ation comprises multiple operations of selecting a single element from a binary
vector. Although the nodes operate concurrently from an implementation per-
spective, these algorithms are O(log2N) at best (assuming O(logN) operations
are needed for each binary iteration as stated above). Since timing is a critical
issue, the computational complexity should directly reflect the intricacy of the
digital circuitry involved, as opposed to the high-level algorithmic perspective.

To address the placement complexity issue, in prior work we proposed a
pipelined memory management algorithm that reduced the computational com-
plexity of placing a packet in a buffer to O (1). The subsequent cost associated
with reducing the placement complexity is an increase in the number of required
parallel memories to O

¡
N1.5

¢
and a fixed processing latency. The justification

resides in the newfound ability to store and switch packets on chip as multiple
megabits of dual-port SRAM are now available. Furthermore, it is now plausible
to consider that all data packets can arrive at a FoC directly, thus eliminating the
need for virtual output queueing [3] as well as some of the output buffering com-
mon employed by existing router designs. The elimination of crosspoint switches
and scheduler, as found in IQ switches, provides an important reduction in chip
count and power consumption. In achieving a greater degree of integration from
such consolidation, a substantial reduction in overall resource consumption is
expected.
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Fig. 1. General architecture of the proposed parallel shared memory (PSM) switch.
Arriving packets are placed in a set of (k > N) memory units.

In extending the architecture to allow for speedup and multiple packet place-
ments, we enable more than one packet decision and placement to occur during
a single packet time. This helps reduce the number of total required parallel
memories, as discussed in the next section.

3 Packet Placement Algorithm

3.1 Switch Architecture

We begin with a detailed description of the proposed PSM switch structure,
depicted in Figure 1. The most significant component in the architecture is the
pipelined memory-management algorithm. A departure time is calculated for
each packet, prior to the insertion of packets into the memory management sub-
system. This process is governed by the output scheduling algorithm employed,
and is generally very fast. The most straightforward scheduler is first-come-
first-serve (FCFS), in which packets are assigned departure times in accordance
with their arrival order. To provide delay and rate guarantees, more sophisti-
cated schedulers [2] can be incorporated which is reflected by the departure time
assignments. The main contribution of this paper resides in the memory man-
agement algorithm that distributes the packet-placement process, at a cost of
fixed latency. This is achieved by utilizing a multi-stage pipeline, as illustrated
in Figure 2.
The pipeline architecture consists of L(L+1)

2 cell buffering units arranged in
a triangular structure, where L denotes the number of parallel memory units.
Each row is therefore associated with one memory unit. The notion of speedup,
s, is introduced with the requirement that the pipeline operate s times faster
than the line rate. One desired benefit of operating the pipeline at a higher rate
is reduced latency. Moreover, if the incoming packets from the set of N input
ports are presented to the pipeline in groups of Ns , the number of conflicts from
packets with the same arrival time is reduced from N to N

s .
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Fig. 2. Illustration of the memory management pipeline structure
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The underlying mechanism is that at every time slot, packets are horizontally
shifted one step to the right, with the exception of the diagonal cells. A packet
residing in a diagonal cell is either shifted (moved) vertically to another row in
the same column or placed in the memory associated with the row in which it
resides. Vertical packet shifts occur if the memory associated with the row in
which the packet resides contains another packet with the same departure time.

If a vertical shift is to be performed, the diagonal cell must select a row
in its column that satisfies the following three conditions: (1) the pipeline cell
of the row selected does not already contain a packet; (2) the memory in the
row selected must not contain a packet with the same departure time; (3) all of
the pipeline cells located in the selected row, regardless of their column, must
not contain a packet with the same departure time. Applying these constraints,
vertical moves provide a mechanism for resolving memory placement contentions.
The goal of the scheme is that once a packet reaches a diagonal cell in the
pipeline it has exclusive access to the memory located in its row. If the current
row memory is occupied, an attempt is made to place the packet in a row for
which there are no existing conflicts.

Placement decisions along the diagonal are made concurrently and indepen-
dently as means of maximizing the processing speed of the system. As selections
are independently made for each packet, it is possible for packets along the
diagonal to simultaneously select the same row. In a single packet placement
scheme, there exists only one memory location in a row for any given departure
time. To reduce the number of conflicts associated with packets simultaneously
selecting the same row, the number of memory locations in a row for a given
departure time can be increased to m > 1. As multiple packet placements to a
single memory are now allowed, we must guarantee that m packets can be read
from memory during a single packet time. One might speculate that the pipeline
speedup, s, and the number of placements allowed, m, which is effectively the
memory read rate, must be equal. This is generally not required, since it might
be necessary to operate the pipeline at a slower rate as dictated by potentially



faster on-chip SRAM resources. In this case, it is still prudent to offer additional
placement locations in order to reduce conflict.
In provisioning m packet placement locations for each memory, it would

appear that the reduction in row memories is merely an inconsequential outcome
of increasing the memory depth. Recognizing that as packets shift vertically
from block b to b + 1, the block size, in terms of physical rows, decreases as s
and m increase. This infers that a vertical movement bypasses fewer potentially
acceptable rows with each subsequent placement. In subsequent sections, we
provide analysis that derives optimal values for these parameters. In order to
illustrate the underlying memory-management principal, we refer to the following
example.

3.2 Upper Bound on the Sufficient Number of Memories

In this section, we obtain an upper bound on the number of memories sufficient
for the pipelined memory management architecture, given a speedup factor, s.
Let us view the pipeline rows as arranged in B sequential blocks. Speedup is
introduced into the system through the partition of the N arriving packets into
s distinct segments. Packets that arrive at time t to any of the N ports are
presented to the first block which consists of N

s rows. Arriving packets are then
multiplexed and written to one of the N

s rows in this first block. Once placed in
a row, a packet can only be written to one of m memory locations for a given
departure time, or shift vertically to another row in block b+ 1.

Lemma 1. There should be at least
¡
s+m
sm

¢
N − b rows in block b, for b ∈

[2, 3, ...B]

Proof. Consider a packet moving from block b to b+1. For a system with speedup
s, it will find at most N

s − 1 packets having the same arrival time. Furthermore,
there are at most N − bm− 1 packets with the same arrival time, since at least,
bm packets with the same arrival time are served inthe first b blocks. Therefore,
in block b + 1, there are at most N

s − 1 rows occupied with packets with the
same arrival time. Since up to m packets with the same departure time can be
served with one memory, we need N−bm

m additional rows for packets with the
same departure time. Hence, we need N

s − 1 +
N−bm
m rows for block b + 1, or¡

s+m
sm

¢
N − b rows for block b ∈ [2, 3, ...B].

For a switch with N ports and P blocks, the total number of rows (parallel
memories) can be expressed as:

L(N) =
N

s
+

µµ
s+m

sm

¶
N − 2

¶
+ .. (1)

+

µµ
s+m

sm

¶
N − B

¶
=

N

s
+N

µ
s+m

sm

¶
(B − 1)−



(B + 2) (B − 1) /2

= N
((s+m) (B−1) +m)

sm
−

(B + 2) (B − 1) /2 (2)

To compute the total number of rows (or memory units), we must determine
the maximum number of B(N) blocks, or vertical shifts, required to successfully
assign all packets to memory.

Lemma 2. The maximum number of packets with the same departure time in

the fourth block is P4 ≤
³√

N −m
´2

.

Suppose there are P1 packets with the same departure time in the first block.
Recall that there can be no more than N

s packets with the same arrival time in
the first block and no more than N packets with the same departure time in
the system, such that P1 ≤ N . Packets only move vertically from the first block
if a given packet resides in a row that contains m other packets with the same
departure time. Let us state that there are P1 packets residing in R1

¡
R1 ≤ N

s

¢
rows of the first block, then the number of packets that propagate vertically to
the second block must equal the number of conflicting packets given by

P3 = P1 −mR1 (3)

Decisions regarding which row destination for a given packet are made indepen-
dently such that packets with the same departure time can shift simultaneously
to the same row. Note that a maximum of R1 packets can shift simultaneously
such that the resulting number of rows with conflicts in the second block is given
by

R2 ≥
¹
P1 −mR1

R1

º
(4)

The value of R2 represents the number of unique rows that received packets, with
the same departure time, from the first block. Applying these same principles,
we can further state the maximum number of packets with the same departure
time that can shift to the third block block is given by

P3 = P2 −mR2 ≤ P1 −mR1 −m

µ¹
P −mR1

R1

º¶
(5)

If P1 −mR1 is divisible by R1, then

P3 ≤ P1

µ
1− m

R1

¶
−mR1 +m2 (6)

otherwise, since P4 ≤ P3 − 1, we have

P3 ≤ P1

µ
1− m

R1

¶
−mR1 +m2 + 1

P3 ≤ P1

µ
1− m

R1

¶
−mR1 +m2 (7)



The maximum value of (7) is obtained when R1 =
√
P1. Substituting P1 = N ,

yields the following inequality

P4 ≤
³√

N −m
´2

(8)

Note that if N is a complete square we have,

P3 ≤
³√

N −m
´2

. (9)

Corollary 1. A sufficient number of parallel memory blocks required for an

NxN switch, employing the proposed architecture, is O
³√

N
´

Proof. Equation (8) shows that for an N -port switch, the maximum number of

conflicting packets with the same departure time in the fourth block is
³√

N − 1
´2
.

Let B (N) represent the number of stages required for an N -port switch. We can
thus express the total number of stages required using the recursive relationship,

B (N) = 1
...

B (N) = B
³
N − 2

√
N + 1

´
+ 3

from which we conclude that B (N) = O
³√

N
´
.

Theorem 1. For an N = k2 k ∈ {1, 2, ...} and s = m, the number of memories
is

L (N) ≤ 4k
3

m2
+

µ
3

m
− 6

m2

¶
k2 −

µ
5

m
− 4

m2

¶
k

−
µ
2− 5

m
+

2

m2

¶
(10)

with equality if N = k2

Proof. We prove the equality for N = k2, suggesting that the general case triv-
ially follows. We first show by strong induction that the number of required row
blocks are

B
¡
k2
¢
≤ 2k

m
+

µ
2− 2

m

¶
(11)

For k = 1, the result is trivial. In order to prove it for k ≤ m, it is sufficient
to show B

¡
m2
¢
= 2 To that end, for k = m, notice the number of rows in the

first block is,

R1 =
N

s
=

k2

s
=

m2

m
= m (12)



Therefore, the maximum number of packets that can move simultaneously to
the same row in the second block is m (one packet from each row in the first
block). Since each memory can serve up to m packets with same departure time,
all packets in the second block rows can be scheduled and there is no need to
have third block rows. So far, we have proved the result for k = 1, . . . ,m. Next
we use, the strong induction step to prove it for k > m. We assume it is true for
1, . . . , k {k ≥ m} and prove it for k + 1. For N = (k + 1)2, using lemma 2 and
(9) (given that N is a complete square), we have

B
³
(k + 1)

2
´
≤ B

³
(k + 1−m)

2
´
+ 2

≤ 2 (k + 1−m)

m
+ 2− 2

m
+ 2

=
2 (k + 1)

m
+

µ
2− 2

m

¶
(13)

Now, we let s=m, then substitute (13) into (1) to obtain,

L
¡
k2
¢
= k2

2 (B − 1)
m

− (B + 2) (B − 1)
2

≤ k2
2
¡
2 k
m −

2
m + 1

¢
+ 1

m

−
¡
2k
m + 4− 2

m

¢ ¡
2k
m + 1− 2

m

¢
2

=
4k3

m2
+

µ
3

m
− 6

m2

¶
k2 −

µ
5

m
− 4

m2

¶
k2

−
µ
2− 5

m
+

2

m2

¶
(14)

4 Hardware Implementation

To establish the viability of the FoC architecture, the proposed memory man-
agement algorithm was implemented in hardware targeting an Altera Stratix
II EP28S60 FPGA device. The implementation consisted of eight ports, each
operating at 10 Gbps, representing a switch with an aggregate capacity of 80
Gbps. The maximum departure time, k, was set to 64. Further, the system was
designed with a placement decision speedup (s) of four, requiring packet place-
ment decisions to be performed in approximately 12.5ns.Additionally, there were
four unique locations for each departure time in each row memory, i.e. m = 4.
The prototype system, with speedup and multiple packet placement, utilized
eight physical memories consuming a total of 26.624 kb, including logic mapped
to memory. This assumed that only packet headers are processed (as payload
is irrelevant to the decision making process). However, if a 64-byte payload is
assumed, the aggregate on-chip memory requirements increased to 1.05 Mbit.



Switch Ports (N) Speedup (s) Memory Units
8 2 19
8 4 5
16 2 58
16 4 18
32 4 51
64 4 144

Table 1. Number of memories in the proposed PSM switch

While eight physical memories were implemented, principally for symmetry and
test purposes, no more than five memories were actually required (as stated in
Table 1).
The design required 17,383 adaptive look-up tables (ALUTs), or 35% of the

ALUTs available on the target device. Proper evaluation of the switch was es-
tablished by attaching a packet generator, implemented using an Altera Cyclone
EP1C6Q-240C8 device, to apply both Bernoulli i.i.d. as well as bursty traffic
to the PSM switch fabric. In varying the traffic load and patterns over a wide
range of possible scenarios, the viability of the proposed algorithm in a real-time
environment was established. The overall latency contributed by the architec-
ture with respect to a pure output-queued switch was 100 ns (8 stages of 12.5ns
each).

5 Conclusions

The notion of designing a packet switching fabric on a chip was introduced
and discussed from a theoretical as well as practical perspective. In the context
of emulating an output-queued switch, it has been argued that a fundamental
challenge pertains to the memory-management algorithm employed. A packet-
placement algorithm and related high-speed parallel architecture were described
in detail, emphasizing the feasibility attributes. Future work will focus on further
reducing memory requirements and the incorporation of quality of service (QoS)
provisioning. The switch model and framework presented here can be broad-
ened to further investigate the concept of consolidating multiple switch fabric
functions on silicon.
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