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Abstract. We re-examine the two reasons for the conservative 1-second
Minimum TCP-RTO to protect against spurious timeouts: i) the OS clock
granularity and ii) the Delayed ACKs. We find that reason (i) is canceled
in modern OSs; we carefully design a mechanism to deal with reason (ii).
Simulation results show that in next generation’s high-speed, wireless-
access networks, TCP-RTO should not be limited by a fixed, conservative
lower bound.
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1 Introduction

The Retransmission Timeout policy of standard TCP is governed by the rules de-
fined in RFC 2988 [11]. The TCP-RTO is calculated upon each ACK arrival after
smoothing out the measured samples, and weighting the recent RTT-variation
history:

RTO = SRTT + 4 × RTTV AR, (1)

where RTTVAR holds the RTT variation and SRTT the smoothed RTT. The
same RFC also specifies that the TCP-RTO should not be smaller than 1 second
[11]. This value is known as the Minimum RTO and constitutes the subject of
interest in the present paper.

Currently, no official instruction exists to address the setting of the Minimum
RTO value for TCP. Allman and Paxson in [1] investigated the impact of the
Minimum RTO and found that TCP results in lower Throughput performance
for Minimum RTO values smaller than 1 second. There were two main limitations
that required a (conservative) lower bound for the TCP-RTO to protect it against
spurious expirations:

1. the Clock Granularity (500ms for most OSs at that time): if the RTT equals
the clock granularity, then the timeout may falsely expire before the ACK’s
arrival at the server.

2. the Delayed Acknowledgments (usually set to 200 ms) [3]: in case an ACK is
delayed for more than the current TCP-RTO value, the timer will spuriously
expire.
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We study each of the above limitations in turn and show that, in fact, there
is a lot of space for improvement in the Minimum RTO setting to improve TCP
performance. In Section 2, we provide details regarding the clock granularity of
modern OSs and find that it is far below the 500ms threshold assumed in [11]. We
define a Cost Function and show (experimentally) the impact of the Minimum
RTO setting on TCP’s performance. We conclude that the timer granularity
does not constitute a limitation for setting the Minimum RTO, anymore. In
Section 3, we investigate the limitation of the TCP Delayed ACK mechanism
on the Minimum RTO. We propose a mechanism that makes the TCP server
aware of whether the next ACK to be received will, possibly, be delayed or not.
Based on that, we assign a Minimum RTO value to each outgoing packet: a
longer Minimum RTO to packets whose ACKs may be delayed and no Minimum
RTO, otherwise. We present our performance evaluation plan in Section 4. In
Section 5.1, we claim that due to limited research studies on the subject of the
Minimum RTO, several OSs implement different values for the lower bound of the
TCP-RTO, leading to communication inconsistencies. In Sections 5.2 and 5.3,
we investigate the impact of a Minimum RTO value on short, web flows and
on long FTP flows, respectively; using simulations, we show that the proposed
mechanism significantly improves TCP performance, especially in case of wireless
losses. We conclude the paper in Section 6.

2 Clock Granularity

We define a Cost Function (Equation 2) to capture the extra time a sender has
to wait before retransmitting, due to the conservative Minimum RTO value.

C(f) =
RTOmin

RTOcurrent

(2)

If C(f) < 1, then the Minimum RTO value adds no extra waiting time, in case
of packet loss, since the TCP-RTO value is larger than the Minimum RTO.
Otherwise, the Minimum RTO value will negatively impact TCP throughput,
by forcing the TCP sender to wait for the Minimum RTO timer to expire, prior
to retransmitting.

We set (both the client’s and the server’s) clock granularity to 500ms and
simulate one flow over a 500ms round-trip propagation delay path, to observe:
i) the rationale behind the conservative 1-second Minimum RTO setting [11], [1]
and ii) the impact of the Minimum RTO value relatively with the actual TCP-
RTO value. We find (see Fig. 1(a)) that: i) the TCP-RTO algorithm adjusts
to values higher than 1 second, hence, C(f) < 1 and ii) the Minimum RTO
value is only needed as a security setting against spurious retransmissions (i.e.,
in case the round-trip propagation delay or the client’s clock granularity equals
the server’s clock granularity and at the same time, the TCP-RTO adjusts to a
smaller value, the sender will spuriously timeout).

We reduce the round-trip propagation delay to 6ms and repeat the previous
experiment (see Fig. 1(b)). Again, we observe that C(f) < 1. We conclude
that in case of coarse-grained clocks the Minimum RTO does not have negative
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Fig. 1. 500ms Clock Granularity

impact on TCP Throughput, since the TCP-RTO adjusts to values higher than
the Minimum RTO. The Minimum RTO, instead, is only needed as a security
setting against spurious timeouts.

In Table 1 we present details regarding some of the most popular OSs, cur-
rently; we observe that the clock granularity is always set to a value below (or
equal to) 25ms. We repeat the above experiment using, this time, a finer-grained
clock of 10ms.

Table 1. Details on Modern OSs

OS Clock Granularity Delayed ACK
Windows 15-16ms 200ms
Solaris 10ms 50-100ms
Linux ≤ 25ms Dynamically Set

Figure 2 uncovers the significant difference between the TCP-RTO values
and the Minimum RTO limitation. In contradiction to coarser-grained clocks,
simulated previously, we observe that C(f) is now far above 1, obviously leading
to severe performance degradation, in case of packet losses.

For the sake of simplicity, we assume the time interval between the ACK
arrival and the RTO value, in Fig. 2, to be negligible and we modify the Cost

Function (Equation 2) accordingly:

C(f) ≈
RTOmin

T (ACK Arr)
≤

RTOmin

RCG + RTPD + QD
, (3)

where T (ACK Arr) holds the ACK Arrival Time, RCG the Receiver’s Clock

Granularity, RTPD the Round-Trip Propagation Delay and QD the Queuing

Delay. Since we simulate only one flow, we also consider the Queuing Delay to
be insignificant. Hence, from Equation 3 we derive that C(f) ≈ 62.5. Of course,
the cost of extra waiting time due to a high Minimum RTO value will decrease
as the Round-Trip Propagation and Queuing Delay increase. We conclude that:
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Fig. 2. Granularity = 10ms, Round-Trip Propagation Delay = 6ms

i) the clock granularity should not be a matter of concern for the setting of
the Minimum RTO, and ii) the conservative 1-second Minimum RTO will have
major impact on TCP’s performance, in case of packet losses.

3 Dealing with Delayed ACKs

The Delayed ACK mechanism [3] is quite popular among the vast majority of
OSs, currently. According to that mechanism, the TCP client will delay sending
an ACK for an incoming packet, for as long as the Delayed ACK timer suggests
(see Table 1), unless another packet needs to be sent on that connection (pig-
gypacking). In other words, if a stream of packets arrive at the TCP client, the
latter will generate one ACK for every other packet. Otherwise, if one packet
arrives at the TCP client, without being followed by any subsequent packet, then
an ACK will be generated only after the Delayed ACK timer expiration. The
Minimum RTO will prevent spurious RTO expiration in the latter case.

We propose a mechanism to identify the packets whose ACKs are (possibly)
going to be delayed1; the Minimum RTO is extended accordingly, for those
packets only, to prevent spurious TCP-RTO expirations. Our mechanism is based
on the following observations:

– TCP’s Sending Window Management and ACK Processing [2] specifies that
the TCP server should send D back-to-back packets, upon each new-ACK
arrival (ACK-clocking), according to Equation 4:

D = snd.una + min(cwnd, rwnd) - snd.nxt, (4)

where snd.una holds the oldest unacknowledged sequence number, cwnd and
rwnd the congestion and advertised window, respectively and snd.nxt the
next sequence number to be sent.

– At the time when D back-to-back packets are generated, TCP does not know
if the application has more data to send, and even if it does have, we do not

know after how long.

1 We leave interactive applications as a subject of future work.
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– Since the D packets ”travel” back-to-back, only the ACK of the last packet
of the ”train” of packets may be delayed, iff the server’s application stops
generating new data.

– Every 2nd packet will always be ACKed.

Consider that at time t0 all previously transmitted packets are already ACKed
and D = 4 (or, generally, D is even). The TCP client will sent ACKs for the 2nd

and 4th packets. In this case, the client will not delay ACKing any packets and
consequently, there is no need for an extended Minimum RTO. Hence, we ap-
ply no Minimum RTO and leave the TCP-RTO deal with the outgoing packets’
timeout value. Now, consider that at time t0, D = 3 (or, generally, D is odd).
The TCP client will immediately ACK the 2nd packet and will trigger the De-
layed ACK timer for the 3rd packet. If the server’s application does not generate
any other packet (within the Delayed ACK’s timer interval minus the one-way
propagation delay), then the 3rd packet will experience delayed ACK response.
In this case, we need to extend the Minimum RTO, for the 3rd packet only, to
prevent spurious timeout expiration.

We extend the above considerations to cover all possible back-to-back sending
patterns; we use one variable, which we call set odd and is initially set to false.
The proposed mechanism operates in one of the following States:

– State 1: ”noMINRTO”. Do not apply extended Minimum RTO to any out-
going packet (i.e., the receiver will always ACK the last packet of the back-
to-back train of packets); set set odd to false.

– State 2: ”extended MINRTO”. Apply extended Minimum RTO to the last
packet of the next train of back-to-back packets; set set odd to true.

According to the following steps, the proposed mechanism applies an ex-
tended Minimum RTO value only if needed (State 2). Otherwise, the TCP-RTO
algorithm deals with the timeout value (State 1). The flow-diagram of the pro-
posed mechanism is presented in Fig. 3.

– Step 1: Extend the Minimum RTO for the first packet sent in the Slow-Start
phase and proceed to step 2 or 3, depending on the value of D.

– Step 2: If (and for as long as) D is even and set odd is false, remain in State
1.

– Step 3: Once D becomes odd, go to State 2.
– Step 4: If (and for as long as) D is even and set odd is true, remain in State

2.
– Step 5: When D becomes odd again, go to State 1 (i.e., the sum of two odd

numbers is always even and hence, the ACK for the last packet of the next
train will not be delayed).

– Step 6: Proceed to step 2, if D is even, or to step 3, otherwise.

Summarizing, the Minimum RTO is set according to the following equation:

RTOmin =

{

R ms, for the last pkt if set odd = 1,
RTOcur, otherwise,
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1st packet of the Slow-Start phase

extend MINRTO
set_odd:false

noMINRTO
set_odd:false

extend MINRTO for
  last pkt of train
set_odd:true

D:even D:odd

D:odd

D:odd

D:even
D:even

Fig. 3. State Diagram of the Proposed Algorithm

where R is a fixed, extended value for the Minimum RTO. We discuss the setting
of this value in Section 5.1.

We present part of the above process in Fig. 4. Initially (i.e., until packet
1478) set odd is false and D = 2, in which case there’s no need for an extended
Minimum RTO (State 1). Next, D = 3 and hence the proposed mechanism ex-
tends the Minimum RTO of the 3rd packet and sets set odd to true (State 2).
From that point onwands, since set odd is true and D is not odd, the proposed
mechanism will extend the Minimum RTO of the last (i.e., 2nd) packet of the
back-to-back train of packets (State 2).
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We note that the proposed mechanism does not apply for packets sent dur-
ing Fast Retransmit (FR). During FR the Minimum RTO is set to R ms; the
mechanism resumes from Step 6 after FR or timeout expiration.

According to the above, we re-write Equation 2, for the proposed mechanism
as follows:

C(f) =

{

R ms

RTOcur

, for the last pkt if set odd = 1,

1, otherwise.

Obviously, the cost of extra waiting time, due to the conservative Minimum
RTO setting, is now significantly decreased; at the same time, the risk of running
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into spurious timeouts, due to delayed ACK response from the TCP client, is
effectively avoided.

4 Performance Evaluation Plan

We evaluate the performance of the proposed mechanism using ns-2 [10]. We use
realistic protocol settings to reflect the behavior of Internet servers [9], [8], [14].
That is, most OSs use the SACK [7] version of TCP with the timestamps option
enabled [6] and the response against spurious timeouts [5], [13] in place. We set
the Delayed ACK timer to 200ms and the clock granularity to 10ms; we compare
the proposed mechanism with three different Minimum RTO implementations:
i) 200ms implemented in Linux TCP, ii) 400ms implemented in Solaris TCP
and iii) 1 second as proposed by IETF (and probably implemented in Windows
TCP). We use the network topologies shown in Fig. 5, where all buffers use
the RED [4] queuing policy. The buffer sizes are set according to the Delay −

Bandwidth Product of the outgoing links.

(a) Topology 1

10Mbps, 1ms

10Mbps, 5ms

10Mbps, 10ms

�100Mbps,
   10ms

Clients

�30Mbps,
 10ms

Web Server

(b) Topology 2

Fig. 5. Simulation Topologies

We use two traditional performance metrics:

1. the Average Task Completion Time (ATCT) in case of short, web-applications,
and

2. the System Goodput, in case of FTP applications:

Goodput =
Original Data

Connection time
, (5)

where Original Data is the number of Bytes delivered to the high-level
protocol at the receiver (i.e., excluding the retransmitted packets and the
TCP header overhead) and Connection time is the amount of time required
for the data delivery.
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5 Results

We divide the Results Section in three main subsections. Initially (Section 5.1),
we show that due to limited standardization efforts on the subject of the Mini-
mum RTO setting, communication problems may arise when the communicating
ends are supported by different OSs. Next, we present the impact of the Min-
imum RTO setting on: i) short, web-like flows (Section 5.2) and ii) long FTP
flows (Section 5.3). We emphasize on next generation, broadband wireless access
networks, where flow-contention is low and losses occur mainly due to wireless
errors.

5.1 The Need for a Standard Mechanism

We have already shown that there exist different implementation settings for
both the Delayed ACK timer and the Minimum RTO value among different
OSs. We report, however, that in case Equations 6 and 7 hold, then the sender
will run into spurious timeout expirations every time the receiver delays the
ACK response.

Server′s Minimum RTO < RTPD + QD + Client′s DelACK Timer (6)

Minimum RTO > RTOcur (7)

We verify the above statement experimentally. We simulate a Linux server
(Minimum RTO = 200ms) and a Windows client (Delayed ACK Timer =

200ms), over a 42ms Round Trip Propagation Delay path (see Fig. 5(b)).
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Fig. 6. The Need for a Standard Mechanism

Indeed, we see in Fig. 6(a) that the Linux server spuriously times-out and
retransmits packet 601 (i.e., the ACK arrives 42ms later).

On the contrary, the proposed mechanism extends the Minimum RTO long
enough to avoid spurious retransmissions (see Fig. 6(b)). In the present work,
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whenever deemed necessary, according to the proposed mechanism, we apply
Minimum RTO = R = 500ms. That is, the proposed mechanism will effectively
deal with situations where RTPD + QD ≤ 300ms (see Equation 6), since we
have not found any implementation, where the Delayed ACK interval is greater
than 200ms.

5.2 Impact on Short Web Flows

We use the topology shown in Fig. 5(b), where 3 flows, download a content-
rich web-page (i.e., 100KBs) every 5 seconds; end-users are connected through
wireless, lossy links to router R2 (PER = 3%). In Table 2, we present the
Average Task Completion Time2 (ATCT) for the Linux TCP implementation,
comparatively with the proposed mechanism, after 20 successfully completed
tasks.

Table 2. Average Task Completion Time (ATCT)

flow 1 flow 2 flow 3
Linux 2.4s 2.5s 2.7s
noMINRTO 2.1s 2.4s 2.55s
Difference ∼ 13.2% ∼ 4.22% ∼ 6%

Since the propagation and transmission delay is the same in both cases, we
subtract them in order to capture the delay difference solely due to the proposed
algorithm; we find that the 200ms Minimum RTO value, implemented in Linux
TCP, increases the ATCT by 8% in average. We note that the difference in the
ATCT is further increased in case of higher Minimum RTO values (e.g., Solaris,
IETF), as well as in case of faster transmission links.

5.3 Impact on Long FTP Flows

We present three different evaluation scenarios considering three network pa-
rameters: i) the PER, ii) the Number of Participating flows and iii) the Band-
width Capacity of the Backbone link. In all cases, we use the topology shown in
Fig. 5(a); the simulation setup for each experiment is shown in Table 3, while
the corresponding results are presented in Figs. 7(a), 7(b) and 7(c).

Table 3. Experiment Details

PER TCP Flows bw bb

Fig. 7(a) see Fig. 3 6 Mbps
Fig. 7(b) 3% see Fig. 100 Mbps
Fig. 7(c) 3% 500 see Fig.

2 Each Task is defined as a complete transfer of a web page.
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Fig. 7. Impact on Long FTP Flows

In all three cases, we observe that the proposed mechanism provides signif-
icant performance increase against the Minimum RTO settings implemented in
Linux TCP, Solaris TCP and the IETF proposal (Windows TCP). When 4%
of the transmitted packets are corrupted due to wireless errors (Fig. 7(a)), for
example, the proposed mechanism improves TCP Goodput performance by ap-
proximately 33% over the Linux/Solaris TCP implementation, while the increase
becomes even larger (i.e., 50%) against the IETF setting. Faster transmission
links provide further advantage to the proposed algorithm (Fig. 7(c)); both the
RTT and the Queuing Delay decrease, making the cost of extra waiting time
an even more dominant factor, performance-wise (see Equations 2 and 3). As
TCP contention increases (Fig. 7(b)) [12], however, the performance difference
decreases, since in that case the queuing delay, reflected in the TCP-RTO value,
minifies the impact of extra waiting time due to the Minimum RTO setting (see
Equations 2 and 3).

6 Conclusion

We have shown that the conservative 1-second Minimum RTO setting causes
severe TCP performance degradation, especially in case of last mile wireless users
connected to high-speed backbone links. We argue that such a (security) setting,
to protect against spurious TCP timeouts, is not needed, since: i) modern OSs use
fine-grained clocks and ii) the Delayed ACK response can be dealt with, using the
proposed mechanism. Simulation results show that under conditions (i.e., high-
speed backbone links, wireless errors at the last mile wireless link), TCP may
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achieve up to 50% higher Goodput performance, when the proposed mechanism
is used; at the same time, spurious timeout expirations, due to delayed ACK
response from the TCP client, are effectively avoided.
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