
Light-Weight Control of Non-Responsive Traffic

with Low Buffer Requirements

Venkatesh Ramaswamy1, Leticia Cuéllar1, Stephan Eidenbenz1, Nicolas
Hengartner1, Christoph Ambühl2, and Birgitta Weber ‡,3

1 CCS-3, Los Alamos National Laboratory, USA
{vramaswa,leticia,eidenben,nickh}@lanl.gov

2 University of Liverpool, Liverpool, Great Britain christoph@csc.liv.ac.uk
3 Unilever R&D, Port Sunlight, UK birgitta.weber@unilever.com

Abstract. We propose ESREQM (Efficient Sending Rate Estimation
Queue Management), a novel active queue management scheme that
achieves Salmost perfect max-min fairness among flows with minimum
(constant) per-flow state and a constant number of CPU operations to
handle an incoming packet using a single queue with very low buffer
requirements. ESREQM estimates sending rates of flows through a his-
tory discounting process that allows it to guarantee max-min fairness
by automatically adapting parameters. It can also be used to punish
non-responsive flows. The per-flow state is limited to a single value per
flow, which allows the flow memory to be in SRAM, thereby making
packet processing scalable with link speeds. ESREQM results in good
link utilization with low buffer size requirements because it provably de-
synchronizes TCP flows as a by-product. We show our results through
a mixture of analysis and simulation. Our scheme does not make as-
sumptions on what transport protocols are used.

1 Introduction

Congestion in a network occurs when the sum of demand on any resource in
the network is greater than its available capacity. Most common resources in
a network are link bandwidth, network processors and buffer space. Conges-
tion, if left uncontrolled, will lead to a situation known as congestion collapse,
a deadly situation in which the throughput of the network approaches zero
and the packet delays approach infinity. The key measures of performance of a
congestion control scheme are (i) fairness in resource allocation, (ii) efficiency
in resource utilization (in particular link utilization and buffer requirements1),
and (iii) computational efficiency2. We propose an Active Queue Management

1 Small buffers requirements are desirable as traditional rules of thumb result in huge
memory requirements for high-speed routers.

2 We can define computational efficiency in terms of CPU cycles used and memory
required by the scheme
‡ This work was done while the author was working for Swiss Federal Institute of
Technology, Zurich

2 V. Ramaswamy et al.

(AQM)-scheme called Efficient Sending Rate Estimation Queue Management
(ESREQM) that optimizes all three measures while previous work addresses
at most two of the three measures. In addition, ESREQM has the desirable
features of allowing punishment of unresponsive flows and of straight-forward
maximum buffer size provisioning.

Congestion control schemes can be implemented at the source or at the
forwarding router. When congestion control is implemented at the source, the
source is expected to curtail its sending rate when it detects congestion in
the network. In the TCP congestion control algorithm, a source will reduce its
sending rate when it detects congestion in the form of packet loss, ECN or source
quench [1]. Congestion control at the source is effective only if all the sources in
the network implement a common congestion control algorithm. Unfortunately,
for a heterogeneous network such as the Internet, the TCP assumption that
all the sources will implement a common congestion control algorithm is naive:
network nodes are owned and operated by a multitude of commercial (and
governmental) entities that might choose to optimize the throughput of their
own traffic in a selfish manner without regard for network-wide optimization.
While TCP congestion control has worked well in practice for a while, recent
advances in streaming applications have led to increased use of UDP as the
transport protocol. The unresponsive nature of UDP makes it TCP-unfriendly:
a UDP flow can starve a TCP flow by taking all available bandwidth [1]. Because
the malicious UDP flow is sending at a very high rate, the TCP flow gets very
low throughput. Real-life occurrences of TCP starvation have been reported
with increasing intensity [1]. Source-based congestion control cannot guarantee
fair resource allocation. Assuming it is used in combination with reasonably
configured FIFO drop-tail routers, source-based congestion control scores high
on the other two metrics: resource utilization and computational efficiency.

Congestion control at the router can be classified into two main groups
- scheduling algorithms and queue management algorithm [2]. Scheduling al-
gorithms usually require a separate queue for each flow at the output port
of the router. Each queue is then serviced in some predetermined order, usu-
ally in a round-robin way. Well-known scheduling algorithms are Weighted Fair
Queueing (WFQ) and its variants such as Worst-case Fair Weighted Fair Queue-
ing (WF2Q), Self-clocked Fair Queueing (SCFQ) and Stochastic Fair Queueing
(SFQ) [1]. Scheduling algorithms can typically guarantee quality of service in
terms of throughput and delay [1]. As the number of flows increases, maintain-
ing per-flow queue becomes computationally prohibitive. In terms of congestion
control measures, scheduling algorithms provide fairness and efficient resource
utilization, but they are not computationally efficient.

Queue management algorithms such as Random Early Drop, CHOKe, or
Stochastic Fair Blue (SFB) decide upon packet arrival whether to drop the
incoming packet and usually maintain a single FIFO queue that is shared by
all flows [2]. These schemes are usually computationally efficient as they do not
need to maintain multiple queues and most can be configured to achieve good

Light-Weight Control of Non-Responsive Traffic 3

resource utilization for bandwidth and buffer size, but they do not guarantee
fairness among flows [2].

The key idea of our scheme ESREQM is that dropping decisions are pri-
marily based on the sending rates of traffic flows and only secondarily depend
on aggregate queue length, which represents a departure from the traditional
AQM paradigm that drops almost exclusively based on aggregate queue length.
The implementation overhead of ESREQM is much lower compared to schedul-
ing schemes such as WFQ because it only needs a single queue in contrast to
per-flow queues in WFQ. ESREQM requires to store only the bare minimum
state to guarantee fairness, which allows the flow memory to be Static Ran-
dom Access Memories (SRAM) instead of Dynamic Random Access Memories
(DRAM), thereby making packet processing scalable with link speeds [3]. These
features make ESREQM very attractive compared to other similar schemes.

We describe the conceptual approach to estimating sending rates in Section
2. In Section 3 we develop ESREQM. After discussing control parameter settings
in Section 4, we present simulation results that validates our fairness claim.
Section 6 describes ESREMQ’s buffer requirements: it turns out that buffer can
be provisioned according to a simple function of link bandwidth and number of
flows. ESREMQ has very small buffer requirements which finds an explanation
in the de-synchronization of TCP flows that ESREMQ achieves as a side effect.
We conclude in Section 7.

2 Conceptual Design

Most queue management schemes at the router either do not allocate band-
width fairly to the flows or do not scale. While current approaches base packet
dropping decisions on the aggregated queue size, we believe that the key to fair
bandwidth allocation is to base dropping decision on the characteristics of each
individual traffic flow and also on the aggregate instantaneous queue length. In
this work we propose a novel queue management scheme called Sending Rate
Estimation based Queue Management (SREQM) that drops a packet of flow
j that arrives at time t with a probability Pj(t) that depends on an estimate
of the relative sending rate of flow j at time t and the aggregate queue size at
time t. That is,

Pj(t) = f(Hj(t), Q
+(t)), (1)

where Hj(t) is an estimate of the sending rate of flow j at time t, Q+(t) is
the instantaneous queue length and f(Hj(t), Q

+(t)) is a function of the esti-
mated sending rate of flow i and the instantaneous queue length. This approach
does not require per-flow queues, but only requires sending rate estimate book
keeping. In order to enforce max-min fairness with bounded errors, a queueing
scheme must maintain per-flow state [4]. We maintain minimum per-flow state
information in the form of the relative sending rate of each flow.

4 V. Ramaswamy et al.

Estimating the relative sending rates of flows can be very complex in terms of
computation and memory. In [5] we systematically develop a scalable estimator
easily amenable to high speed implementations. Here we define the estimator
without providing the details of its development.

Without loss of generality, assume that time is divided into discrete time
slots with a single packet from one of the flows in each time slot. A flow has a
unique identifier given by the four tuple : (source address, source port, destina-
tion address, destination port). The relative sending rate of each flow, fi, can
be estimated by an exponentially weighted filter, Hi(·), given by

Hi(t) =















(

1 − 1
T

)

Hj(t − 1) + 1
T

if the packet at time slot t

is from flow j
(

1 − 1
T

)

Hj(t − 1) otherwise.

where T is a parameter corresponding to the number of packets in history
considered for estimation [5]. Hi(·) is an exponential smoother, where the most
recent observation is weighted by

(

1 − 1
T

)

, the second most recent observation

is weighted by
(

1 − 1
T

)2
and so on. This makes Hi(·) adapt easily to changes

in the sending rate of flows. Moreover, we only need to keep track of a single
number for each flow, whereas most other estimators require us to keep track
of some form of history for each flow. Since Hi(·) estimates the relative sending
rate of flow i, and the sum of the relative sending rates of all the flows should
be one. We can show that

∑

j

Hj(t) = 1. (2)

Our estimation procedure readily extends to the continuous case. Suppose
that each flow is a realization from a Poisson process with parameter λj . For n

flows arriving at the router, we can show that

E [Hj(t)] =
λj

∑n
i=1 λi






1 − e

−

(∑

n

i=1
λi

T
t

)






, (3)

and at steady state,

E [Hj(t)] =
λj

∑n
i=1 λi

, (4)

which is the relative sending rate of flow j.
In the following section, we describe an algorithms to guarantee fairness,

which follows directly from conceptual design.

Light-Weight Control of Non-Responsive Traffic 5

3 Efficient Sending Rate Estimate-Based Queue

Management Scheme : An Algorithm for Efficiency and

Fairness

Most queue management schemes do not allocate bandwidth fairly or achieve
fair bandwidth allocation only at high complexity. While most queueing schemes
drop packets based on the average queue size, SREQM estimates the relative
sending rate of flows using the estimator Hi(·) and uses this estimate along with
the instantaneous aggregate queue length to drop packets from each flow. The
pseudo-code for the whole procedure is given in Algorithm 1.

Algorithm 1 ESREQM :: onPacketArrival(packet P)

1: x ⇐ flow id of packet P

2: Update the sending rate of each flow based on the estimator, Hi(·)
3: if (Hx ≤ K) then

4: add packet P to the queue;
5: else

6: drop packet P

7: end if

8: if (count > 0) then

9: count−−

10: else

11: if (queue size < qmin) then

12: K++

13: count ⇐ F

14: end if

15: if (queue size > qmax) then

16: K−−

17: count ⇐ F

18: end if

19: end if

The algorithm works as follows: When a packet arrives, extract the flow-id
of the packet. Update the estimate Hj(·) for all the flows. If the value of Hj(·)
of the flow from which the packet arrives is greater than K, drop the packet,
else add the packet to the queue. The parameter K is called the fair-share
parameter and it represents the maximum share of the bandwidth a flow can
get. The flows need not be restricted when there is no congestion. We change
the value of K dynamically to reflect the changes in the characteristics of the
incoming traffic as well as the level of congestion. This change is governed by
the current queue size. If the queue size is larger than some maximum threshold
qmax, which is an indication of congestion, the value of K is decreased by one.
This results in restricting the sending rate of flows. Likewise, when the current
queue size is below some minimum threshold qmin, which is an indication of
low link utilization, the value of K is increased by one, allowing flows to come

6 V. Ramaswamy et al.

in at a faster rate. To ensure a smooth variation of K, the update procedure of
K is done once in F packet arrivals. The parameter F is called the congestion
parameter and is a representative of how fast the system responds to congestion.

4 Setting the Parameters of ESREQM

ESREQM has three main parameters: the history parameter - T , the fair share
parameter - K and the congestion parameter - F . Setting the parameters to the
right values is crucial for the proper functioning of the algorithm. In this section,
we give some engineering guidelines to set the parameters of the algorithm.

The effective estimation of the relative sending rate depends on appropri-
ately selecting the value of the history parameter, T . To get a feel for how the
selection of T matters, consider two extreme cases, T = 1 and T = ∞. For
T = 1, the estimation will not be correct as Hi(·) can only have two values -
one or zero. For T = ∞, Hi(t) = Hi(t − 1) and assuming Hi(0) = 0, Hi(·) will
always be zero making the estimate incorrect. The case for T = ∞ is counter
intuitive because higher the value of T , larger the history and we would expect
the estimate to be better. It can be shown that as T goes up the variance de-
creases, but the bias increases, thereby making the estimate unacceptable. A
value of 400 for the parameter T yields good performance [1].

The value of the parameter K varies dynamically based on the level of con-
gestion. The initial value of K does not have a major impact on the performance
of the algorithm. Our simulations suggested that the K will finally converge to
T
n
, where n is the number of flows. The initial value of K used in our simulations

was 50.
The congestion parameter, F , determines how fast we change K. This also

determines the level of penalty that we impose on flows that send at a rate higher
than their fair share. The higher the value of F , the larger the level of penalty
we impose. Various simulation results [1] show that a value of approximately
200 for parameter F will result in a fair bandwidth allocation.

5 Experimental Results

In order to demonstrate the effectiveness of our scheme in achieving fairness, we
perform several simulation studies using network simulator (ns-2). There are
many definition of fairness, but here we use one of the most common definitions,
which is the max-min fairness [1].

We conduct studies on a dumbbell topology as shown in Figure 1. For the
dumbbell topology there are n sources and n destinations numbered S1 to Sn

and D1 to Dn respectively. Two routers R1 and R2 connect the sources to their
destinations. Each of the links is assigned a bandwidth of 10Mbps, which means
that the bottleneck link will have n times less bandwidth than the combined
bandwidth of the access links. We illustrate the the effectiveness of our scheme

Light-Weight Control of Non-Responsive Traffic 7

using an example experiment with 32 flows, out of which 31 are TCP flows and
one is a UDP flow with sending rate 1Mbps. The bottleneck link bandwidth
is 10Mbps, which means that the UDP is sending at a much higher rate than
its fair share. Figure 2 shows the average throughput of all 32 flows over a
period of 500 sec in the form of a box plot. We can see that all the flows get
approximately the same bandwidth, which is close to their theoretical fair share.
The UDP flow which was sending at a rate much higher than its fair share was
brought down close to its fair share. More experiments with other topologies
such as the parking lot topology are given in [1].

We now discuss the conclusions that can be drawn from the simulation stud-
ies. ESREQM approximates max-min fairness in all the scenarios considered.
The level of fairness is much better than that of many other schemes such as
RED, CHOKe, SFB or FRED. While some of the other schemes do not main-
tain per-flow state information, we only maintain minimum state information
which is required to guarantee max-min fairness. ESREQM does not require
precise parameter tuning and the max-min bandwidth allocation degrades only
very gradually when the parameters are far out of range [1].

PSfrag replacements

S1

Sn

R1 R2

D1

Dn

Fig. 1. Dumbbell Topology

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

Li
nk

 S
ha

re
 (M

bp
s)

Flow ID

Link usage

Fig. 2. Average Throughput of 32 flows

6 Buffer Requirements

Accurately sizing the buffer is one of the most challenging parts of a queueing
scheme design [6]. Low buffers can cause excessive packet losses and large buffers
can lead to unacceptable packet delays. The buffer requirements of the queueing
scheme is heavily influenced by the packet dropping mechanism used by the
scheme.

Buffer in today’s routers are provisioned based on a rule of thumb by Vil-
lamiziar et al. [7], which says that the amount of buffer required is the end to
end round trip time (RTT) times the link bandwidth (c). This rule, though
developed in the early 90s is still widely accepted. The rule was developed to
make a congested link busy 100% of the time assuming very few TCP flows
traversing the router with a droptail queue. Based on this rule, today’s routers,

8 V. Ramaswamy et al.

which operate at a speed of around 50Gbps would require 50Gbps x 250ms
(typical RTT) = 12.5Gbits of memory.

Router buffers are usually built using SRAMs or DRAMs. SRAMs are fast
and expensive whereas DRAMs are slow and cheap. In order to build 12.5Gb
of router buffer using SRAMs, based on current standards, it will require ap-
proximately 300 SRAM chips on a board, making the board too big and too
hot. On the other hand, if we use DRAM, due to slow access speed, parallel
implementation will be necessary making the design too complicated [6]. Future
routers will be required to operate at much higher speeds, making the buffer
design a much more complicated problem. There is definitely a need for queue
management schemes which has low buffer requirements.

Appenzeller et al. [6] showed that with a large number of flows and a droptail
buffer, the buffer requirement can actually come down. They show that the

buffer requirement can be as low as c(RTT)√
n

, where n of the number of flows,

RTT is the end to end round trip time and c is the link bandwidth. Gorinsky
et al. [8] showed by simulation that the above result does not hold when the
number of flows is in the order of 100 flows, which would be the case in slower
access links serving fewer connections.

In order to get some understanding of the buffer requirements under our
scheme, we perform simulation studies on a congested router which implements
ESREQM. Two sets of experiments, one with just TCP traffic and other with
both TCP and UDP traffic (UDP traffic less than 10% of the total traffic) is
performed.

In the first set of experiments, only TCP traffic is considered, and we vary
the number of TCP flows, while scaling the maximum queue capacity propor-
tionally. Let Q+(t) be the queue size at time t and n be the number of flows.
Figures 3, 4 and 5 plot the evolution of queue size divided by the number

of flows, Q+(t)
n

, when the number of flows is 16, 32 and 64 respectively. Sur-

prisingly, the variations in Q+(t)
n

decrease as we increase the number of flows.

When the number of flows approaches infinity, Q+(t)
n

approaches a constant.
Our estimation of the required buffer size is based on this observation.

Define Qi(t) to be the number of packets from flow i on the queue at time
t, i.e.,

∑

∀i Qi(t) = Q+(t). Assume the following conditions are valid.

– (Q1(t), · · · , Qk(t)) are exchangeable 3 [1]
– Cov(Q1(t), Q2(t)) = cn−γ

where c is a constant and γ ≥ 1. With the above assumptions, the central limit
theorem [1] can be applied and we can write

P

{

Q+(t) −E[Q+(t)]
√

nσ
≤ x

}

≈ Φ(x), (5)

3 Any size k subset of the n random variables has the same joint distribution as
(Q1(t), · · · , Qn(t))

Light-Weight Control of Non-Responsive Traffic 9

where Φ(·) denotes a normal distribution and σ is the standard deviation of
Qi(t). To empirically verify if the central limit theorem holds, we want to as-
certain if the distribution of Qi(t) is Gaussian. A common technique to test if
a data set comes from a Gaussian distribution is to plot the observed quantiles
versus the theoretical quantiles in a quantile-quantile (Q-Q) plot. The Q-Q plot
of Qi(t) for n = 128 is given in Figure 8. The plot is approximately linear in-
dicating that Qi(t) is approximately Gaussian. Define Bα to be the buffer size
such that the probability that the queue size, Q+(t), will be less than or equal
to Bα is α. For the specific case of α = 0.999999, we can compute B0.999999 as

B0.999999 = nµ̂ +
√

nσ̂
√

12 log 10, (6)

where µ̂ is the sample mean and σ̂ is the sample standard deviation of Qi(t).
Table 1 summarizes the various statistics of Qi(t) for different number of flows.
Using Table 1, we can compute B0.999999 for ESREQM with 32 flows as 135KB.
This means that for ESREQM the probability of exceeding a buffer size of
135KB with 32 flows is less than 10−6. Note that with the same settings, droptail
queue will require 500KB.

To investigate the effect of link bandwidth, we kept both the number of
flows and the parameters of the algorithm constant, while varying the link
capacity. We observed an increase in the average sending rate of flows, with
Qi(t) remaining the same. In other words, the change in the link bandwidth
did not affect the average queue size and our estimation of Q+(t) remains valid.
Note that in all our experiments, the link utilization was 100%.

We still see the convergence when there are UDP and TCP flows. The aver-
age queue size for the case when there are 64 TCP flows and one UDP flow and
well as the case when there are 128 TCP flow and one UDP flow are shown in
Figure 6. We can observe that the variations in the average queue size is lower
in the case with 128 TCP flows.

The convergence of the average queue length was observed in RED routers
under very special conditions of dropping function when there are only TCP
flows [9]. In our scheme the convergence happens without any special conditions
and also with TCP and UDP traffic.

The two main conclusions that we can draw from the simulation results
presented in this section are as follows. ESREQM requires much lower memory
than most of the other queueing schemes for same performance under similar
network conditions. For a given number of flows, with ESREQM, we can ac-
curately estimate the amount of buffer needed. This is very important for the
optimal performance of any queue management scheme.

6.1 An Explanation for the Low Buffer Requirement

An intuitive explanation for the low buffer requirements of our queueing scheme
is presented in this section. The congestion window process of a TCP flow
typically has a form of a saw-tooth waveform [10]. Define W̃i(t) to be process

10 V. Ramaswamy et al.

describing the congestion window for flow i and Q+(t) be the aggregate queue
length at time t. The queueing process [10] at the router can be described as

Q+(t + 1) = Q+(t) +

n
∑

i=1

W̃i(t) − cτ, (7)

where c is the rate at which the router serves the packet τ is the average end to
end round trip time of each flow. τ = τp+τq, where τp is the average propagation
delay and τq is the average queueing delay. The above equation can be re-written
as

Q+(t + 1) = Q+(t) +

n
∑

i=1

W̃i(t) − c

(

τp +
Q+(t)

c

)

=

n
∑

i=1

W̃i(t) − cτp. (8)

It is obvious from the above equation that the maximum queue size is
reached when all the flows are synchronized and the maximum queue size will
depend on the maximum congestion window for each flow. When there are
many synchronized TCP flows with each of these flows having a “saw-tooth”
congestion window, the effective congestion window will also have a form of
a saw-tooth. This is a consequence of the fact that adding many synchronous
saw-tooth waveforms will lead to a single large saw-tooth. For synchronous TCP
flows, this phenomenon is illustrated in [10]. Previous studies have shown that
even though two TCP flows start at different times, they get quickly synchro-
nized in real networks when the routers are employed with droptail or RED [6].
Therefore, from (8), we expect no improvement in the buffer size requirement
when there are many synchronized TCP flows.

With our queueing scheme, the TCP flows get de-synchronized quickly as the
dropping criteria for packets from a flow is not completely dependent on other
flows (the dropping is a function of both Hi(t) and Q+(t) and not just Q+(t)).
If we add together many de-synchronized saw-tooth waveforms, their sum is less
likely to be like a saw-tooth waveform as they smooth each other out, and we get
a wave form which is less varying. When we add many de-synchronized conges-
tion window processes, the same thing happens. The resulting window process
will have very less variation and the peak of the effective window process comes
down, which results in much smaller buffer requirement. This is illustrated in
Figure 7. We plot the sum of congestion window (

∑n

i=1 W̃i(t)) of all the flows
when the flows are synchronized (as in the case of droptail) and when the flows
traverse through a congested router implementing ESREQM. Since the flows
get desynchronized with ESREQM, the maximum of

∑n
i=1 W̃i(t) is much lower

resulting in a low buffer requirement.

7 Conclusion

In this paper, the problem of allocating max-min fair bandwidth to flows in
a congested router is addressed. We presented architecture and algorithms,

Light-Weight Control of Non-Responsive Traffic 11

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900 1000

Time (sec)

Number of sources = 16

PSfrag replacements

Q
+

(t
)

n

Fig. 3. Average queue
length over time with 16
TCP flows.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900 1000

Time (sec)

Number of sources = 32

PSfrag replacements

Q
+

(t
)

n

Fig. 4. Average queue
length over time with 32
TCP flows

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900 1000

Time (sec)

Number of sources = 64

PSfrag replacements

Q
+

(t
)

n

Fig. 5. Average queue
length over time with 64
TCP flows

 0

 2

 4

 6

 8

 10

 50 100 150 200 250 300 350 400

Time (sec)

128 TCP flows, 1 UDP flow (rate 300 Kbps)
64 TCP flows, 1 UDP flow (rate 300 Kbps)

PSfrag replacements

Q
+

(t
)

n

Fig. 6. Average queue length over
time with 1 UDP flow and differ-
ent number of TCP flows

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300

Time (sec)

Synchronous TCP flows
TCP flows after passing through our queueing scheme

PSfrag replacements

∑

n i=
1
W̃

i
(t

)

Fig. 7. Aggregate Congestion
Window

−4 −2 0 2 4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

4.
8

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

P
S
fra

g
rep

la
cem

en
ts

Normal Q-Q plot of Qi(t)

Fig. 8. QQ plot of Qi(t) when n=128

12 V. Ramaswamy et al.

Table 1. statistics of Qi(t) for different number of flows (n)

n Average (pkts) Std. deviation

8 4.250 1.1077

16 4.217 0.7605

32 4.209 0.5388

64 4.222 0.4545

128 4.2452 0.3423

along with simulation results of a simple scalable scheme which can provide
approximate max-min fair bandwidth allocation. The buffer requirements of the
scheme is shown to be much lower than the conventional routers, which is a great
advantage from the implementation perspective. We showed by a combination
of analysis and simulation that our scheme performs well simultaneously in
terms of three key measures (i) fairness in resource allocation (ii) efficiency in
resource utilization and (ii) computational efficiency.

References

1. V. Ramaswamy, “Efficient Control of Non-Cooperative Traffic Using Sending Rate
Estimate-Based Queue Management Schemes,” Ph.D. dissertation, The Univer-
sity of Mississippi, 2006.

2. R. Pan, B. Prabhakar, and K. Psounis, “CHOKe, A Stateless Active Queue Man-
agement Scheme for Approximating Fair Bandwidth Allocation,” in Proc. of IEEE

INFOCOM’00, July 2000, pp. 942–951.
3. G. Varghese, Network Algorithmics: An Interdisciplinary Approach to Designing

Fast Networked Devices, 1st ed. Morgan Kaufmann, December 2004.
4. A. Das, D. Dutta, A. Goel, A. Helmy, and J. Heidemann, “Low State Fairness:

Lower Bounds and Practical Enforcement,” in Proc. of IEEE INFOCOM’05,
Month 2005, pp. 2436–2446.

5. V. Ramaswamy, L. Cuellar, S. Eidenbenz, and N. Hengartner, “Preventing Band-
width Abuse at the Router through Sending Rate Estimate-Based Queue Man-
agemnet Schemes,” in Proc. of IEEE ICC’07, May 2007.

6. G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,” in Proc.

of ACM SIGCOMM’04, August 2004, pp. 281–292.
7. C. Villamizar and C. Song, “High Performance TCP in ansnet,” ACM Computer

Comm. Review, vol. 24, no. 5, pp. 45–60, 1994.
8. S. Gorinsky, A. Kantawala, and J. Turner, “Link Buffer Sizing: A New Look at

the Old Problem,” in Proc. of ISCC’05, June 2005, pp. 507–514.
9. P. Tinnakornsrisuphap and A. M. Makowski, “Limit Behavior of ECN/RED Gate-

ways Under a Large Number of TCP Flows,” in Proc. of IEEE INFOCOM’03,
April 2003, pp. 873–883.

10. J. Sun, M. Zukerman, K. Ko, G. Chen, and S. Chan, “Effect of Large Buffers on
TCP Queueing Behavior,” in Proc. of IEEE INFOCOM’04.

