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Abstract. Buffer sizing in Internet routers is a fundamental problem
that has major consequences in the design, implementation, and econ-
omy of the routers, as well as on the performance observed by the end
users. Recently, there have been some seemingly contradictory results on
buffer sizing. On the one hand, Appenzeller et al. show that as a direct
consequence of desynchronization of flows in the core of the Internet,
buffer sizes in core routers can be significantly reduced without any ma-
jor degradation in network performance. On the other hand, Raina and
Wischik show that such reduction in buffer sizing comes at the cost of
synchronization and thus instability in the network.
This work unifies these results by studying the effects of fairness in buffer
sizing. We show that the main difference arises from the implicit assump-
tion of fairness in packet dropping in the latter result. We demonstrate
that desynchronization among flows observed by Appenzeller et al. is
caused by unfair packet dropping when a combination of TCP-Reno and
the drop-tail queue management is used. We also show that bringing
fairness in packet dropping will introduce synchronization among flows,
and will make the system unstable as predicted by Raina and Wischik.
Our analysis suggests that there is an intrinsic trade-off between fairness
in packet drops and desynchronization among TCP-Reno flows when
routers use the drop-tail queue management. Achieving fairness, desyn-
chronization, small buffer size, and 100% link utilization at the same
time is desirable and feasible yet challenging. The studies in this paper
provide insights for further explorations in reaching this goal.

1 Motivation and Introduction

There have been increasing amount of interests on buffer sizing due to the impor-
tant role that buffer plays in routers and the performance of the Internet. The
goal of buffer sizing is to find out how small we can make Internet router buffers
without any degradation in network performance. A plethora of recent work
emerged to reduce buffer sizes [1–5] and to understand the relationships between
buffer sizing and other parameters of the network [8–14], such as, throughput,
delay, loss, stability [6, 7], and the impacts of various traffic conditions [8, 15].

Recently, there have been some seemingly contradictory results on buffer
sizing in Internet core routers. Appenzeller et al. show that buffer sizes in core
routers can be reduced significantly, without any major degradation in network
performance [1], whereas, Raina and Wischik show that such reduction in buffer



sizing can cause instabilities in the network [7]. Instability, here, is defined as
the periodic variations in the aggregate congestion window size of the flows.

Which result is correct? To answer this question, we studied the dynamics of
the system in terms of buffer sizing through mean-field theory [16, 22] analysis
and ns2 [17] simulations.

We demonstrated that there is an intrinsic trade-off between fairness among
TCP-Reno flows and desynchronization among them using the drop-tail queue
management scheme: fairness in packet drops can create synchronization among
flows; conversely, unfair packet drops can lead to reduced synchronization.

Fairness has always been considered to be a desirable property in the network.
The network is expected to treat individual flows in a fair manner when resources
are limited. Synchronization among TCP flows, on the other hand, has always
been considered to be an undesirable effect. Synchronized flows need much larger
buffer sizes in core routers and cause local/global instabilities in the system, as
well as degradation in the performance observed by individual flows.

To see the origins of the trade-off between fairness and desynchronization, let
us consider a congested link in a network carrying a large number of flows. An
Active Queue Management (AQM) scheme that fairly drops packets at times of
congestion will impact a large percentage of flows since it will distribute packets
dropped among the flows. On the other hand, an unfair AQM scheme can drop a
lot of packets from a few flows, thus reducing the number of flows which see one
or more packet drops. TCP-Reno flows react dramatically to packet drops by
halving their congestion window sizes for each dropped packet [18]. Therefore,
when a large number of flows see packet drops around the same time they will
synchronously react by reducing their congestion window sizes. This may lead to
a significant reduction in instantaneous throughput of the system. In an unfair
AQM scheme, however, only a few flows will take the hit, and thus only a small
fraction of flows will react to packet drops. Therefore, the aggregate congestion
window will change less significantly.

Our results unify the seemingly contradictory conclusions mentioned above.
Appenzeller et al. have shown that due to the desynchronization of flows in the
core of the Internet, one can reduce buffer sizes in core routers by a factor of√

N from the original value of bandwidth-delay product [1]. Here N is the total
number of flows going through the core router. Our analysis shows that this
desynchronization is a direct result of the unfair nature of packet drops in TCP-
Reno combined with the drop-tail queue management scheme (Section 2.1). Also,
in Section 2.2 we show that introducing fairness in packet dropping using the
drop-tail scheme creates global synchronization. This is consistent with Raina
and Wischik’s results. Our study shows that the results from both groups are
correct, and the main difference can be well explained by understanding the
effects of fairness in buffer sizing.

Fairness also explains the recent observation by Dhamdhere et al. that the
majority of flows have dropped packets in a congestion cycle [8]. The same results
are obtained in our work when there is fair packet dropping among flows. We



demonstrate this through both the mean-field analysis[22] and ns2 simulations
(Section 2).

Achieving fairness, desynchronization, small buffer size, and 100% link uti-
lization at the same time is desirable yet very challenging. The studies on the
dynamics in this paper show insights and feasibility for further explorations in
reaching this goal.

2 Fairness-Desynchronization Trade-off

In this section we study the relationship between synchronization and fairness
in a network using TCP-Reno as the congestion control mechanism. We show
that, when the congested routers use the drop-tail queue management scheme,
there is an inherent trade-off between fairness in packet dropping and desyn-
chronization amongst TCP-Reno flows. We investigate this trade-off through
two different scenarios. First, we consider a scenario using the standard drop-
tail queue management scheme in which TCP-Reno flows are desynchronized,
and show that desynchronization comes at the cost of losing fairness in dropping
packets. Second, we show that a slightly modified drop-tail queue management
scheme in intermediate routers which is fair in dropping packets can lead to
synchronization among TCP-Reno flows.
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Fig. 1. Schematic of the model system considered. There are N long TCP flows con-
nected to Router R1. The congested uplink from R1 to R2 is with capacity C. When
the queue size Q(t) becomes equal to buffer size B, newly arrived packets are being
dropped based on the drop-tail algorithm.

2.1 Desynchronization is a result of unfairness

Recent results on buffer sizing in Internet core routers suggest that in a network
carrying TCP-Reno flows and with the drop-tail queue management scheme in
intermediate routers, buffer sizes can be reduced as the number of flows is in-
creased [1]. More precisely, the amount of buffering needed in core buffer routers
is inversely proportional to

√
N , where N is the number of flows going through

the bottleneck link. The underlying assumption here is that as the number of
flows N increases, flows become more desynchronized. Variations in individual



congestion window sizes cancel each other out when the flows are desynchro-
nized, and as a result, variations in the aggregate congestion window size are
reduced, which means smaller buffers are able to accommodate the variations in
aggregate congestion window size.

To further analyze these results, we use the same model as in Appenzeller’s
ns2 simulations [1], shown in Figure 1. There are N long-lived TCP flows sharing
a congested link with capacity C. Each TCP flow has a different round-trip-time
(RTT) and the average (harmonic average) RTT of flows is RTT. As a result of
the TCP congestion avoidance algorithm, the queue size Q(t) and the sum of the
window sizes follow sawtooth patterns. Here, we use the same queue management
scheme as in [1] – the commonly deployed drop-tail algorithm at router R1: when
Q(t) becomes equal to buffer size B, newly arrived packets are dropped.

Our goal is to analyze the collective behavior of the different TCP flows,
especially how they scale for large N . In order to reproduce the results in [1], this
setup uses only long-lived TCP flows sharing a common congested link. Previous
research has shown that other types of flows or congested links elsewhere in
the network do not play a significant role in buffer sizing [1, 8]. We extended
the study by considering more general cases including large round trip time
variations, different percentages of short flows, different window size caps, and
longer simulation time, etc. In all cases considered, we found the same qualitative
behavior on fairness versus synchronization. Thus, for this paper, we will focus
on this simple yet critical setup to get a clear understanding of the underlying
mechanisms. Explorations of more complicated systems can be expanded from
this base study.

The results from [1] are confirmed by our ns2 simulations as shown in Fig-
ure 2 where the variations in the queue length (Figure 2(a)) and the window
size (Figure 2(b)) decrease with increasing number of flows N . Figure 2 shows
the results using three different values of N : 100, 300, and 1000. The capacity
of the bottleneck link scales with the number of flows [3], N*1Mb/s, and the
round trip time varies between 80ms to 100ms among the flows. The size of each
packet is 960 bytes and the duration of the whole experiment is 50 seconds. To
further study packet dropping, Figure 2(c) shows that when the buffer becomes
full and packets are dropped at the intermediate router, there are roughly N
packets being dropped during each congestion period. This result offers a key
clue to understanding the interplay between fairness in packet dropping and syn-
chronization among the flows, as will be discussed in Section 2.2. The origin of
the N dropped packets per congestion period is explained in the Appendix.

To analyze the fairness among the flows, for each flow, we take the average
of congestion window sizes over time, and plot the histogram in Figure 3(a) for
the case with N=1000, which is representative of the other simulations. The
interesting observation here is the extremely long tail of the histogram, which
indicates that there are flows whose average congestion window size grows well
beyond that of the majority of the flows. In TCP-Reno, changes in congestion
window size happen as a direct consequence of packet drops. Therefore, these



observations suggest that packet drops might not be fairly distributed amongst
flows.
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Fig. 2. Scaling with the number of flows from ns2 simulations using the drop-tail
algorithm. a) Average queue length, b) average window size, and c) average number
of packets dropped over each congestion cycle. The averaging is done over the number
of flows N . Three different simulation results are shown with N=100, 300, and 1000.
Other parameters are kept the same for the three simulations: (C ∗ RTT)/N = 12
packets/flow, B/N = 3 packets/flow, RTT = [80, 100]ms.

To further study fairness in packet drops, we make the following definition.

Definition 1 In the setting defined above, let us denote the number of packet
drops as seen by flow i between times t1 and t2 as D(i, t1, t2). We denote the
vector of all drops between t1 and t2 as D(t1, t2). Unfairness in packet drops
between t1 and t2, denoted by U(t1, t2), is defined as the variance of D(t1, t2).
Fairness is defined as:

F (t1, t2) =
1

1 + U(t1, t2)
. (1)

Based on this definition, fairness is a number greater than zero and less than
or equal to one. Maximum fairness is when all flows see the same number of
drops. In this case, unfairness, or the variance in packet drops, is zero, which
makes fairness equal to one. By default we set t2 = t1 + RTT.
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Fig. 3. Histogram of time-averaged window size of individual flows from ns2 simulations
based on (a) the drop-tail algorithm and (b) the randomized drop-tail algorithm. These
results are obtained from the same configurations as in Figures 2 and 5 for N=1000.

Figure 4 shows the cumulative distribution function (CDF) of fairness. With
drop-tail queuing, for about 55% of the time, fairness is equal to 1. These are
times when no packets are dropped, and thus the system is completely fair.
However, when there are packet drops in the system (the remaining 45% of the
time) the system is very unfair in dropping packets; fairness is less than 0.5
for more than 30% of the time. This graph suggests that the combination of
TCP-Reno and the drop-tail queue management scheme is not fair in dropping
packets. The other line in this figure will be discussed later in Section 2.2.

Unfairness in packet drops is not surprising. TCP-Reno injects packets to
the system in a bursty manner [2]. Whenever such a burst of packets arrives to
a full or nearly full queue in an intermediate router which uses drop-tail, a large
number of those packets are expected to be dropped quite unfairly since other
flows in the system see almost no drops. A fair packet dropping scheme on the
other hand, would drop packets from all flows in the queue rather than the flow
whose burst has reached the tail of the queue. Now, if by any chance a flow’s
bursts arrive at times when the queue is not nearly full for a number of RTTs,
that specific flow will not see any packet drops, thus its congestion window size
will grow significantly compared to the rest of the flows.

2.2 Fairness leads to synchronization

If desynchronization among TCP-Reno flows comes from unfairness in packet
drops, should increasing fairness lead to synchronization? In this section, we will
try to find out whether this is the case or not.

One way to increase fairness in packet drops is to add randomness. We start
with a simple experiment by introducing some randomness while not deviating
too much from the drop-tail algorithm. We call this the randomized drop-tail
scheme: when the queue length is less than 90% of buffer size, none of the packets
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Fig. 4. Comparison of cumulative distribution functions of fairness over time between
the drop-tail and the randomized drop-tail schemes.

are dropped; otherwise, each packet is dropped according to a probability that
is calculated as follows:

pdrop = 10×
(

Queue Length
Buffer Size

− 0.9
)

. (2)

In other words, the drop probability increases linearly as a function of queue
length from 90% to 100% of the buffer size. Using this algorithm, packets are
dropped only when the buffer is nearly full, which therefore does not deviate
much from the drop-tail algorithm. Note that this randomized drop-tail scheme
is different from the well-known “Random Early Detection” (RED) queue man-
agement scheme [23]. The latter is a much more sophisticated scheme where the
packet dropping probability depends not only on the queue length but also on
the history of the queue. RED starts to drop packets even when the queue length
is short, much earlier than the drop-tail scheme.

Figure 5 shows the results from this randomized drop-tail algorithm with oth-
erwise the same configuration as in Figure 2. With randomness introduced, the
queue size variation and the total window size variation become larger than in
Figure 2. Furthermore, these variations do not decrease any more with increasing
N . Both the queue length (Figure 5(a)) and the window size (Figure 5(b)) enter
into periodic sawtooth behavior, indicative of global synchronization. Interest-
ingly, the number of packets dropped over each congestion cycle (Figure 5(c))
still comes up to be close to N , similar to the previous case for the unfair packet
dropping (Figure 2(c)).

The fairness in this scenario is shown in Figure 4. The CDF of fairness in-
dicates that adding randomness in packet dropping increases fairness: for about
60% of the time fairness is equal to one (when there are no dropped packets),
and for the rest of the time (when there are packet drops) it is above 0.5, higher



than in the drop-tail scenario. The fact that the randomized drop-tail recovers
fairness in the flows is further illustrated in Figure 3(b), where the time-averaged
window sizes of the different flows fall into a rather narrow distribution about
the mean.

The results obtained from the randomized drop-tail simulations can be un-
derstood quantitatively by a mean-field method [22]. In the specific case when
the N long flows have identical RTTs, there should be N packets dropped dur-
ing each congestion cycle. When these N dropped packets are spread randomly
among the N flows, about 63% of the flows see packet dropping from probability
calculations [22]. Therefore, the mean-field calculation predicts global synchro-
nization for large N when packets are dropped fairly within the drop-tail scheme.
Fair packet dropping means that the packet dropping probability for each flow
is proportional to the flow size, i.e., its current congestion window size.
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Fig. 5. Scaling with the number of flows from ns2 simulations using the randomized
drop-tail algorithm. a) Average queue length, b) average window size, and c) average
number of packets dropped over each congestion cycle. The configurations are identical
to those in Figure 2 except for B/N = 6 packets/flow to ensure the full utilization of
the link.



To study whether the conclusions drawn above are robust against different
parameter variations, we carried out ns2 simulations with many different con-
ditions where we varied RTTs and their variations, uplink capacity, buffer size,
number of flows, with and without congestion window size limits, and the mix-
ing of short flows. In all cases considered, we observed the same behavior: the
drop-tail algorithm gives unfair bandwidth partitioning, whereas the random-
ized drop-tail is much more fair. The results from a particular set of simulations
with the randomized drop-tail are shown in Table 1, where the RTTs and the
number of flows are varied. The overall behavior remains the same: both the
total window size variation and the percentage of flows with dropped packets do
not decrease as N increases. For the cases where the round trip times vary little
(from 89ms to 91ms), the results match very well with the mean-field analysis
results - there are about 63% of flows with dropped packets [22]. This is consis-
tent with and explains the simulation result reported earlier that there are over
60% flows with packet drops during each congestion cycle [8].

Figure 6 is a summary of the difference between the drop-tail and the random-
ized drop-tail algorithms. When the number of flows N increases, the percentage
of flows that have dropped packets per congestion cycle decreases in the drop-tail
scheme, in contrast to the randomized drop-tail scheme where the percentage of
dropped flows does not change appreciably with N . The results from the above
ns2 simulations show that once fairness is recovered in the drop-tail queue man-
agement scheme, as in the randomized drop-tail scheme, the simulation results
match very well to the theoretical calculations based on the mean-field analysis
[22]. However, this fairness in packet dropping causes synchronization among
flows, thus requires larger buffer sizes.

Flows w/

RTT N 〈Wmax〉 〈Wmin〉 1-
〈Wmin〉
〈Wmax〉

Ndrop
flow

dropped

packets
(ms) (pkts) (pkts) (%) (pkts) (%)
[89 100 17.6 11.5 34.5 0.88 64
- 300 17.7 11.8 33.6 0.86 62

91] 1000 17.7 11.8 33.4 0.86 62
[80 100 17.4 12.5 28.5 0.87 52
- 300 17.5 12.5 28.7 0.85 53

100] 1000 17.9 12.8 28.4 0.83 53
[60 100 17.3 13.4 22.2 0.79 42
- 300 18.4 13.4 27.4 0.77 45

120] 1000 17.4 13.2 24.4 0.76 47

Table 1. ns2 simulations with the randomized drop-tail algorithm by varying the range of round
trip time and the number of long flows. The other parameters are the same as in Figure 5.

The fact that fairness causes synchronization can explain the difference be-
tween the results observed by Appenzeller et al. [1] and those of Raina and
Wischik [7]. Appenzeller et al. do not see any synchronization in the system,
since they use TCP-Reno with drop-tail, which is unfair in packet drops. On
the other hand, Raina and Wischik base their analysis on a fluid model, which
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ets. At t3, all flows with dropped pack-
ets have reduced their windows and the
sum of windows reaches minimum. Be-
tween t3 and t1+T , all the flows resume
sending packets and the buffer slowly
fills up.

assumes fairness in packet dropping. As a result they predict synchronization
among flows, and an unstable system.

3 Conclusion

In this paper, we investigated the relationship between fairness and desynchro-
nization among TCP flows. We found that : 1) the desynchronization in the
presence of a large number of long flows from the drop-tail scheme is a result of
unfairness in packet dropping; and 2) if fairness is imposed, the drop-tail scheme
leads to global synchronization of the TCP flows. This results in a periodic saw-
tooth behavior in the queue length and the total window size, during which the
majority of the flows have dropped packets within each congestion cycle.

The studies in this paper provides insights on the effects of fairness in buffer
sizing. One of the key factors that leads to the global synchronization is the fact
that the packet drops occur during a short time period. One can avoid this by
spreading out the packet drops over a longer period of time. Thus, it is feasible
to achieve both fairness and desynchronization with full link utilization. Further
research in finding the right scheme would be interesting and very much needed.
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APPENDIX: Mean-field Analysis

In this appendix, we explain the origin of the claim that there are N packets
dropped in each congestion period, where N is the total number of long-lived
TCP flows sharing the congested link.

The network configuration considered here is shown in Figure 1. As observed
in typical ns2 simulations, both the queue size and the total window size follow
a sawtooth pattern over time. We study the sawtooth pattern that has stabilized
to a periodic function with period T , which serves as a good representative.

We dissect the sawtooth pattern into different segments, as illustrated in
Figure 7. There is a period of time when the buffer is full and packets are
being dropped. During this period, (between t1 and t2 in Figure 7) the window
size keeps increasing until some flows detect the dropped packets. These flows in
turn reduce window sizes and temporarily stop sending packets. During this time,
between t2 and t3, the total window size declines and the buffer starts to deplete.
When the flows that have dropped packets receive enough acknowledgements,
they resume sending packets. During this segment, between t3 and t1 + T , the
total window size increases and the queue length slowly builds up.

When the buffer first becomes full, denoted by time t1, router R1 starts to
drop packets. At t1, the sum of the windows of all the flows, W (t1), consists of
packets in transit C × RTT plus those that are queued in the buffer B. Router
R1 continues to drop packets while the buffer remains full until some of the
flows detect the dropped packets and reduce their window sizes. The feedback
for flows to reduce window sizes comes after the un-dropped packets complete
a round-trip, starting at t2 = t1 + RTT + B/C. The extra packets sent during
the time period between t1 and t2, i.e., after the buffer is full and before the
senders receive the feedback to reduce the window sizes, are dropped. Each flow
increases its window by 1 for each round-trip before it receives the dropped
packets feedback. The time duration from t1 to t2 is roughly one round-trip
time. There are total N flows. Thus, the total number of packets injected into
the network at t2 is W (t2) = C×RTT+B+N . Therefore, the number of packets
dropped during t1 to t2 is

W (t2)−W (t1) = C × RTT + B + N − (C × RTT + B) = N, (3)

After t2, some senders start reducing their window sizes, the queue is not full
any more, and no packets are dropped either until the next cycle at T +t1. Thus,
the total number of packets dropped within one congestion cycle is N .


