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Abstract. This paper addresses a practical problem in our everyday
use of streaming media on the Internet: as a user observes the buffering
of a media stream with an uncertain transfer rate, when should that user
initiate playback of the stream? The tension is that initiating playback
prematurely will increase the likelihood of buffer starvation, while a de-
lay in initiating playback is undesirable because it necessitates waiting.
Three policies are studied: the optimal policy (exploiting full knowledge
of the transfer process), the optimal static policy (the expected value of
the optimal policy), and an online policy assuming only knowledge of the
transfer rate observed thus far. Lower and upper bounds are derived on
the optimal policy as well as the associated minimum cost; these bounds
are expressed in terms of a (random) hitting time of the transfer process.
Simulation results for a Markov modulated transfer rate process identify
static and online policies as near-optimal depending on the time scale of
the transfer rate process and the duration of the stream.

1 Introduction

This paper addresses a practical problem in our everyday use of streaming media
on the Internet: as a user observes the buffering of a media stream with an
uncertain transfer rate, when should that user initiate playback of the stream?
The tension is that initiating playback prematurely will increase the likelihood
of buffer starvation, upon which the client media player paused playback and
informs the user that the client is buffering the stream. On the other hand, a
delay in initiating playback is undesirable because it necessitates waiting; a key
motivation behind streaming is to avoid the delay in downloading media. We
will not distinguish between the cases where the playback initiation decision is
made by the human user or the client media player. In either case the objective
is to simultaneously minimize the prefetch time and the stall time. The prefetch
time is the time between initiating the transfer and initiating playback, and the
stall time is the time spent re-buffering after a buffer starvation. The difficulty in
making this decision lies in the fact that i) the instantaneous rate of the media
content is time-varying and likely unknown a priori by the client, and ii) the
instantaneous transfer rate available on the network is time-varying, and also a

? This work is supported by the NSF under grant 0435247.



priori unknown. To simplify the problem we restrict our attention to the simpler
constant bit rate media content case, leaving the uncertain transfer rate as the
unknown.

Suppose the instantaneous transfer rate is given by the random process
{x(t)}, and that the CBR playback rate is one. During playback, the client
buffer is filling at rate x(t)−1 when x(t) > 1, and draining at rate 1−x(t) when
x(t) < 1. Suppose the user incurs a cost per unit time cp (p for prefetch) for each
second between initiating transfer (at time t = 0) and initiating playback, and
incurs a cost per unit time cs (s for stall) for each second that playback is stalled
for re-buffering. Let τp and τs be the total time spent in the prefetch and stall
states respectively, so that the total cost incurred by the user is c = cpτp + csτs.
The client has control over τp by choosing when to initiate playback, but τs is a
random variable that depends upon both τp and the transfer rate process. This
paper investigates several policies that may be used to minimize the cost. Three
policies are studied in particular:

– Optimal policy: using full a priori knowledge of the transfer process {x(t)},
the optimal policy identifies the playback initiation time that minimizes the
cost c;

– Optimal static policy: the optimal static policy is the expected optimal play-
back initiation time, with the expectation taken with respect to the distri-
bution of the transfer process;

– Online policy: the online policy makes a decision to initiate playback at
time t based on the instantaneous transfer rate observed over [0, t), with no
knowledge of the future evolution of the transfer process or its distribution.

Lower and upper bounds on both the optimal playback initiation time and the
corresponding minimized cost are given in terms of a (random) hitting time of
the transfer process. Simulation results are provided for the three policies for the
case when the transfer process is a two state Markov modulated process. The
primary takeaway is that static policies are near-optimal when the timescale at
which the transfer rate process changes is much smaller than the duration of the
stream, while online policies are near-optimal when the timescale at which the
transfer rate process changes is similar to the duration of the stream.

The rest of this paper is organized as follows. Section 2 summarizes some
of the related work on streaming media. Section 3 presents the mathematical
model, and Section 4 offers the analytical bounds on the optimal policy and
optimal cost. Simulation results are presented in Section 5 and a brief conclusion
is offered in Section 6. All proofs are placed in the appendix.

2 Related work

There are a large number of papers on the analysis, design, and performance
optimization of streaming media; far too many to summarize here. Our own
prior work on streaming media has focused on the network-wide optimal con-
trol of rate adaptive streaming media, with the objective of maximizing client-
average quality of service (QoS) metrics [1, 2]. Arguably the first algorithm for



media rate adaptation is the receiver-driven layered multicast (RLM) algorithm
of McCanne, Jacobson, and Vetterli [3]. Selected related work on rate adapta-
tion includes Rejaie, Handley, and Estrin [4]; Vickers, Albuquerque, and Suda
[5]; Saparilla and Ross [6]; Gorinsky, Ramakrishnan, and Vin [7]; Kar, Sarkar,
and Tassiulas [8]; Bain and Key [9]; Argiriou and Georgiadis [10]; and Chou
and Shin [11]. Although rate adaptation introduces a valuable additional con-
trol for improving the performance of streaming media, we will not address this
extension here.

There is an extensive literature starting from the late 1990s on the problem of
optimal smoothing of VBR video over variable channels. In a sense this problem
is orthogonal to the one we are considering, primarily because we focus on client
side control whereas optimal smoothing is focused on server side control. The
objective in the smoothing literature is to transmit the VBR video such that
the peak to mean ratio of the transferred stream is minimized. Significant pub-
lications include Lam, Chow, and Yau [12]; Zhang, Kurose, Salehi, and Towsley
[13]; Duffield, Ramakrishnan, and Reibman [14]; Rexford and Towsley [15]; and
Sen, Rexford, Dey, Kurose, and Towsley [16].

There is relatively little work on client control of prefetching and playback
initiation. Reisslein and Ross [17] cover prefetching policies appropriate for a
server multiplexing several simultaneous streams over a shared link; Fitzek and
Reisslein [18] consider a similar setup but over wireless links.

3 Mathematical model

3.1 Problem statement

A user initiates a streaming media connection at time t = 0. After making a con-
nection with the media content server, the client media player begins buffering
media content from the server. The control decision faced by the client is when
to initiate playing the media stream, i.e., when to start draining the client buffer.
It is assumed that there is a cost incurred at rate cp > 0 (p for prefetch) for
each second between initiating the connection and initiating playback of the con-
tent. This cost measures the user’s frustration at having to wait for the content
to begin playback. The transfer rate available to the client server connection is
time-varying, and it is therefore possible that the client buffer will starve, forcing
the client player to pause the media content. It is assumed that there is a cost
incurred at rate cs > 0 (s for stall) for each second the media player is forced to
stall the media content after first initiating playback. Let τp be the time spent
prefetching the stream prior to initiating playback, and let τs be the total time
spent stalled after initiating playback. The objective of the control decision is
to minimize the incurred cost c = cpτp + csτs. We restrict our attention to the
case where cp < cs, i.e., the unit cost of prefetching is smaller than the unit cost
of stalling. This is because the optimal policy when cp ≥ cs is simply to not
prefetch (τp = 0).



3.2 Two fundamental processes

The media content is modeled as a constant bit rate (CBR) source requiring
playback at unit rate, and having duration d. The instantaneous transfer rate
of the client server connection is a random process {x(t)}.1 There are two fun-
damental processes that determine performance: the duration of media content
that can be played by the client and the duration of media content that has been
played by the client.

Definition 1. The duration of media content that can be played by the client at
time t is the cumulative amount of data transferred over [0, t], up to the stream
duration d:

y(t) = d ∧
∫ t

0

x(s)ds. (1)

Definition 2. The duration of media content that has been played by the client
is the solution of the following nonlinear differential equation

ż(t) =
d
dt

z(t) =

0, t < τp or t ≥ tz
1, y(t) > z(t)
x(t) ∧ 1, else

, (2)

where τp = inf{t : z(t) > 0} is the prefetch duration and tz = inf{t : z(t) = d}
is the time playback is completed.

The change in playback position, ż(t), is zero for t < τp since the stream
has not yet started playing, and is zero for t ≥ tz since the stream has already
finished. When there is unplayed media content stored at the receiver, y(t) >
z(t), the client is playing at the full unit rate, and ż(t) = 1. Otherwise y(t) = z(t),
which means the client buffer is starved, i.e., the client has played all currently
available content. In this case the client plays the media content at rate x(t)∧ 1
during starvation, hence when x(t) < 1 the client spends a fraction x(t) of the
time in play mode, and 1− x(t) of the time in pause (stall) mode.

Let ty = inf{t : y(t) = d} be the time that the client obtains all the media
content, and let tz = inf{t : z(t) = d} be the time that the client actually
completes play. It is straightforward to obtain the processes {y(t), z(t)} from
the realization of {x(t)}, as illustrated in the left side of Figure 1. The play
process, {z(t)}, is obtained by drawing a unit slope line starting at the playback
time t = τp until it intersects {y(t)} ∧ d. If it hits {y(t)} then it tracks {y(t)} at
rate x(t) < 1, until x(t) > 1 at which time it continues at unit slope, and so on.
The right side of Figure 1 gives the state transition diagram of the streaming
process. Here prefetch is the time after data transfer begins but before play is
initiated, and postfetch is the time after data transfer finishes but before play
1 It is easily seen that the model may be generalized to arbitrary CBR play rate r by

scaling {x(t)} by 1/r.



is finished. It follows that the stall time, τs, is a functional of the play process,
{z(t)}, namely:

τs =
∫ tz

τp

(1− ż(t))dt. (3)

Table 1 summarizes the mathematical notation used in the model.

Table 1. Notation

d stream playback duration
{x(t)} instantaneous transfer rate
{y(t)} duration of media content that can be played
{z(t)} duration of media content that has been played

τp prefetch delay
τs total time spent stalled
ty time the client obtains all the media content
tz time the client completes playback
cp rate cost is incurred when prefetching
cs rate cost is incurred when stalled

t

y(t), z(t)

y(t)
z(t)

1

x(t)

d

τp ty tz

start

prefetch

play / pause

postfetch

finish

y(t) = d, z(t) < d

0 < z(t) ≤ y(t) < d

y(t) = z(t) = d

y(t) = z(t) = 0 t = 0

τp < t ≤ ty

ty < t < tz

0 < t ≤ τp

t = tz

y(t) > 0, z(t) = 0

Fig. 1. Left: Evolution of the processes {y(t), z(t)} using a prefetch duration of τp.
Transfer of data begins at time 0 and completes at time ty; play begins at time τp and
completes at time tz. Right: State transitions in the streaming process, along with the
times at which they occur and the values of (y(t), z(t)) that characterize each state.

3.3 Three prefetching policies

Optimal policy: under the assumption that cp < cs, it follows that the optimal
policy to minimize c = cpτp + csτs is to set τop

p = inf{t : τs = 0} (op for optimal
policy). The optimal policy clearly requires a priori knowledge of the transfer
rate process {x(t)}.



Optimal static policy: the optimal static policies is the expected value of the
optimal policy, τ sp

p = E[τop
p ] (sp for static policy).

Online policy: let {Ft} be the filtration of knowledge available to the client by
time t. The online policy is to select a prefetch time τol

p = t based on {Ft} (ol
for online).

4 Analytical results

4.1 Optimal policy

Consider the case where the transfer rate process {x(t)} is known a priori by the
client, as assumed by the optimal policy. We begin with an easy result for the
case when x(t) = x for all t. All proofs are in the appendix.

Lemma 1. Suppose x(t) = x for all t. The optimal policy and the corresponding
optimal cost are

τop
p = d

(1− x)+

x
1cp<cs

, cop = (cp ∧ cs)d
(1− x)+

x
. (4)

Next consider the case when either x(t) < 1 for all t or x(t) > 1 for all t.

Lemma 2. Suppose x(t) < 1 for all t or x(t) ≥ 1 for all t. The optimal policy
and the corresponding optimal cost are

τop
p = (ty − d)+1cp<cs , cop = (cp ∧ cs)(ty − d)+, (5)

where ty = inf{t : y(t) = d} is the transfer completion time.

Note that x(t) ≥ 1 for all t implies ty ≤ d, while x(t) < 1 for all t implies
ty > d. In the above regimes the optimal policy and corresponding cost are
expressible in terms of the single random variable ty. The point to emphasize is
that the ty is a hitting time of the transfer process {y(t)}, and is independent
of the play process {z(t)}.

Unfortunately the simple characterization of Lemma 2 does not hold for gen-
eral {x(t)}, but we can obtain bounds on the cost in terms of ty. In the following
theorem we restrict our attention to instantaneous transfer rate processes with
minimum and maximum rates, xmin and xmax, respectively. Without loss of gen-
erality we assume xmin < 1 < xmax, since otherwise the process falls under the
class of processes addressed in Lemma 2.

Theorem 1. Suppose {x(t)} is bounded from below and above such that xmin <
x(t) < xmax, where xmin < 1 < xmax. Define the maximum prefetch time under
the lower and upper bounds as

τ lmax
p = (ty − d)+, τumax

p =
1− xmin

xmax − xmin
(xmaxty − d). (6)

The optimal policy and the corresponding optimal cost are

τop
p ∈ [τ lmax

p 1cp<cs
, τumax

p 1cp<cs
], (7)

cop ∈ [cp ∧ csτ
lmax
p , cp ∧ csτ

umax
p ]. (8)

Note that the bounds become tight as xmax ↓ 1.



4.2 Optimal static policy

This policy is appropriate for the regime when the transfer rate process {x(t)}
is unknown a priori by the client, but the statistics of {x(t)} are known (or
may be estimated through observation of multiple streaming sessions), permit-
ting the computation of the optimal static prefetch policy: τ sp

p = E[τop
p ]. The

optimal static policy may be approximated by observing n iid realizations of the
optimal prefetch policy, τop,1

p , . . . , τop,n
p for n realizations of the transfer process,

x1, . . . ,xn, (where xi = {xi(t)}), and computing τ̂ sp
p = 1

n

∑n
i=1 τop,i

p .

4.3 Online policy

We now assume the transfer rate process {x(t)} is unknown by the client a
priori. Lacking any information as to the distribution of the process {x(t)}, we
seek to estimate the data transfer completion time, ty, at each time t, using
only knowledge of {x(u)}t

0. An estimate of a quantity w is denoted as ŵ, and
the notation ŵ(t) indicates that this is the estimate made using knowledge of
{x(u)}t

0. The empirical estimate of the average transfer rate is:

x̂(t) =
1
t

∫ t

0

x(u)du =
y(t)
t

. (9)

The estimate of the transfer completion time as of time t is t̂y(t) = t d
y(t) . Define

τ̂op
p (t) as the best estimate as of time t of the time to start playback so as to

avoid stalling. It is clear that

τ̂op
p (t) = t̂y(t)− d = d

( 1
x̂(t)

− 1
)
. (10)

The online policy is then:

τol
p = inf{t : τ̂op

p (t) < t}, (11)

i.e., to begin playback at the first time that the current time exceeds the esti-
mated optimal prefetch time.

5 Simulation results

To investigate the performance of the three policies we consider the case when
the transfer process {x(t)} is modulated by a homogeneous continuous time two
state Markov process. In particular, let the states be 1 and 2, where x(t) = r
when the process is in state 1 and x(t) = 2− r when the process is in state 2 for
some r ∈ [0, 1]. Let the rate matrix for the Markov chain be

Q =
[
−q q

q −q

]
, (12)



so that the stationary distribution is π1 = π2 = 1
2 , and q governs the timescale

of the evolution of the chain. Note that the average transfer rate is E[x(t)] =
π1r + π2(2 − r) = 1. We explore the performance of the three policies in the
regime when q � d (the transfer process evolves on a slower timescale than
the stream duration), as well as q � d (the transfer process evolves on a faster
timescale than the stream duration). Further we explore the performance of the
three policies in the regime when r ≈ 0 (the transfer process is bursty with rates
≈ 0 and ≈ 2) and r ≈ 1 (the transfer process is smooth with rates ≈ 1). Because
of this we refer to q as the temporal burstiness parameter and r as the spatial
burstiness parameter.

Figure 2 presents the simulation results. All four plots show the average cost
c̄ = cpτ̄p + csτ̄s under the three policies (optimal, static, online), for

d = 10 cp = 1 cs = 2. (13)

For r small the transfer rate process is spatially bursty while for r near one the
transfer rate process is almost (spatially) constant. For q small the transfer rate
process is temporally almost static, while for q large the transfer rate process is
temporally bursty. The top two plots have the transfer rate r as the abscissa, for
transition rate q = .1 (top) and q = 10 (second). The top two plots demonstrate
that online policy is superior for temporally static transfer rates while the static
policy is superior for temporally bursty processes. Intuitively, knowledge of the
statistics of the process are only of value when there are sufficient number of rate
changes so that the fluctuations will average out. The bottom two plots have the
transition rate q as the abscissa, for transfer rate r = 0 (third) and r = 0.9
(bottom). The bottom two plots demonstrate that fact that there is a critical
transition rate qc such that for q < qc the online policy is superior, while for
q > qc the static policy is superior. Furthermore, qc is larger for spatially bursty
processes (r small) and smaller for spatially smooth processes (r large). All
four plots demonstrate that the average cost is monotone decreasing as process
becomes spatially and temporally smoother, i.e., as q and r increase.

Finally, Figure 3 presents the optimal (no stall) prefetch time along with the
lower and upper bounds from Theorem 1 versus the transfer rate parameter r.
The bounds are seen to be reasonably tight for all r, and are seen to become
tight as r ↑ 1.

6 Conclusion

In this paper we have studied policies governing when a streaming media client
should commence playback. The tradeoff that is optimized is between minimiz-
ing the stall time (due to buffer starvation) and minimizing the prefetch time.
Three policies were considered: the optimal policy (assuming full knowledge), the
optimal static policy, and an online policy. It was observed that the online policy
is superior when the duration of the stream is on the order of the fluctuations
of the transfer process, while the static policy is superior when the duration of
the stream is much longer than the fluctuation timescale.
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Proof of Lemma 1. It is obvious that not prefetching is optimal when x ≥ 1.
Suppose instead that x < 1. It is clearly sub-optimal to have any postfetch
time, thus the maximum prefetch time is τmax

p = d 1−x
x . Under prefetch time

τp ∈ [0, τmax
p ] the stream plays at rate 1 for τp

x
1−x seconds, and plays at rate x

for d
x −

τp

1−x seconds. The time spent playing at rate x can be decomposed into
d− τp

x
1−x seconds spent playing at rate 1 and d 1−x

x − τp seconds spent stalled.
The cost incurred is then

c = cpτp + cs

(
d
1− x

x
− τp

)
= (cp − cs)τp + csd

1− x

x
.

The cost is linear in τp with slope cp − cs and intercept csd
1−x

x . When cp < cs

the cost is minimized by setting τ∗p = τmax
p , incurring a cost of cmin = cpd

1−x
x .

�

Proof of Lemma 2. It is obvious that not prefetching is optimal when x(t) ≥ 1
for all t. Suppose instead that x(t) < 1 for all t. Since x(t) < 1 for all t it follows
that there exists some t∗ ∈ [τp, ty] marking the first time the buffer starves. In
particular, y(t) > z(t) for all t ∈ [0, t∗] and y(t) = z(t) for all t ∈ [t∗, ty]. The
buffer stays starved due to the assumption that x(t) < 1 for all t. The client plays
at full unit rate throughout [τp, t

∗], and plays at rate x(t) throughout [t∗, ty]. As
the total time spent playing must sum to d it follows that d−(t∗−τp) seconds are
spent playing in [t∗, ty], while the remaining (ty−t∗)−(d−(t∗−τp)) = ty−d−τp

seconds are spent stalled. It is clear that for a given ty and d there will be an
unnecessary postfetch period if τp > ty−d, thus we can without loss of generality
restrict our attention to prefetch durations in the interval τp ∈ [0, ty − d]. For
any such prefetch duration the incurred cost is

c = cpτp + cs(ty − d− τp) = (cp − cs)τp + cs(ty − d).

From here the optimal policy is easily identified using an argument identical to
that in the proof of Lemma 1. �

Proof of Theorem 1. The lower bound on the stall time occurs when the data
arrives as early as possible. Similarly, the realization of {y(t)} that maximizes
the stall time is for the data to arrive as late as possible. A little thought shows
that the maximum useful prefetch time for the lower bound arrival pattern is
τ lmax
p = ty − d. Assume τp ∈ [0, τ lmax

p ]. The best realization of {y(t)} for a given
file transfer completion time, ty, is for the data to arrive at the maximum rate,
xmax, for as long as possible, then at the minimum rate, xmin, for the remaining
time. The playback process {z(t)} under prefetch time τp can then be computed
for this best case. It is clear that there will not be a postfetch period under this
realization, and that {z(t)} plays at full unit rate for the entire duration except
for the last τ seconds, where the value of τ can be computed as the solution of
ty − τp− τ = d− xminτ , yielding τ = ty−τp−d

1−r . Thus the minimum time spent in
the stall state is τmin

s = τ(1− r) = ty − τp − d.



Next consider the worst case realization of {y(t)} shown in the left figure in
Figure 4. The first step is to identify the maximum useful prefetch time. See the
right figure in Figure 4. The maximum useful prefetch time is the shortest time
such that it is not possible to stall playback, given the data transfer completion
time ty. The worst case realization of {y(t)} subject to the assumed bounds is
shown in the figure. The maximum useful prefetch time is then the smallest τp

such that beginning {z(t)} at τp never touches {y(t)}. From the figure it can
be seen that this maximum time is τumax

p = 1−xmin
xmax−xmin

(xmaxty − d). The worst
realization is for the data to arrive at the minimum rate, xmin, for as long as
possible, then at the maximum rate, xmax, for the remaining duration. Tedious
algebra yields the time where {z(t)} plays at rate xmin is xmaxty−d

xmax−xmin
− τp

1−xmin
,

and thus the maximum time spent in the stall state is τmax
s = τumax

p − τp.
Combining the bounds on the stall time leads to bounds on the cost:

clmin = cpτp + csτ
min
s

= (cp − cs)τp + csτ
lmax
p , τp ∈ [0, τ lmax

p ]

cumin = cpτp + csτ
max
s

= (cp − cs)τp + csτ
umax
p , τp ∈ [0, τumax

p ]

Under both bounds the optimal policy is again obvious, namely to not prefetch
if cp > cs, and to prefetch for τp = τmax

p if cp < cs. �

t
τp

y(τp)

d

xmax

1

xmin

y(t)
z(t)

ty tz

1

y(τp)
1− xmin

xmaxty − d

xmax − xmin
− τp

1− xmin

tτp

d

xmax

xmin

z(t)

ty tz

1

y(t)

1− xmin

xmax − xmin
(xmaxty − d) d

xmax

Fig. 4. Sketch of proof of Theorem 1. Left: upper bound on the stall time. Right:
maximum useful prefetch time for upper bound.


