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Abstract. This paper addresses the optimal rate allocation problem
in overlay content distribution for efficient utilization of limited band-
widths. We systematically present a series of optimal rate allocation
strategies by dividing our discussions into four typical scenarios. Based
on application-specific requirements, these scenarios reflect the contrast
between elastic and streaming content distribution, with either per-link
or per-node capacity constraints. In each scenario, we show that the op-
timal rate allocation problem can be formulated as a linear optimization
problem, which can be solved efficiently in a fully distributed fashion. In
simulations, we investigate the convergence of our distributed algorithms
in both static and dynamic networks, and demonstrate their efficiency.
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1 Introduction

In recent years, content distribution with overlay networks has been proposed
to offer more efficient bandwidth usage than that with multiple unicast sessions.
To achieve better bandwidth utilization and failure resilience, overlay content
distribution over mesh topologies has become typical in most recent proposals,
which features parallel downloading from multiple overlay nodes.

However, due to the limitation of bandwidth capacities in overlay networks, a
critical question remains to be answered in any such content distribution scheme:
What is the best way to select upstream peers and allocate flow rates in an
overlay topology, such that content can be most efficiently distributed?

To effectively address this question, it is necessary to consider that different
content distribution applications may have different optimality goals and con-
straints for their rate allocation strategies. The content to be distributed can be
classified into two broad categories: elastic content (e.g., bulk data files), and
streaming content with specific bit rate requirements (e.g., media streaming). In
the case of distributing elastic content, such as file downloading, it is important
to optimally select upstream nodes and allocate flow rates so that throughput of
content distribution can be maximized. In the case of distributing media streams,
the required streaming rate needs to be sustained for all receivers in active ses-
sions. Besides, in both cases, capacity constraints in overlay networks may lie in



the overlay links (link capacity constraints), due to limited available bandwidth
along the link, or the overlay nodes (node download/upload capacity constraints),
caused by limited node download/upload capacities.

In this paper, we consider both types of content and both assumptions of
capacity constraints, and systematically present a series of optimal rate allocation
strategies in four content distribution scenarios. We show that in each scenario,
the optimal rate allocation problem can be modeled into a linear optimization
problem, for which efficient and fully decentralized solutions exist.

The remainder of the paper is as follows. In Sec. 2 and Sec. 3, we motivate the
optimization formulations in elastic and streaming content distribution scenarios,
respectively, and present efficient distributed solution algorithms. We discuss
practical concerns of applying the algorithms in Sec. 4. Simulation results are
presented in Sec. 5. We discuss related work and conclude the paper in Sec. 6
and Sec. 7, respectively.

2 eBurst: Distribution of Elastic Content

In this paper, we consider content distribution sessions in mesh overlay topolo-
gies, consisting of one data source S and a set of receivers in T'. Each receiver is
served by one or more upstream nodes, and may serve one or more downstream
nodes. Such a topology can be modeled as a directed graph G = (N, A), where N
is the set of overlay nodes and A is the set of overlay links. We have N = SUT.

To distribute elastic content, it is always desirable to achieve maximum
throughput in order to minimize the total time to completion. The problem
is: How do we optimally allocate rates on each overlay link to maximize through-
put? We show that such a problem, referred to as eBurst, can be formulated as
linear programs.

In order to better characterize the multicast flow of a content distribution
session, we resort to the notion of conceptual unicast flows [1] in formulating
the linear programs. A multicast content distribution flow can be conceptually
viewed as consisting of multiple unicast flows from the source to each of the
receivers. These conceptual unicast flows co-exist in the overlay without con-
tending for capacities, and the actual delivery rate on an overlay link is the
maximum of the rates of all the conceptual flows going through the link. In
formulating the linear programs, the utilization of conceptual unicast flows is
useful to capture the inherent property of a multicast flow, as the conceptual
unicast flows follow the nice property of flow conservation at each intermediate
node, while the multicast flows do not.

2.1 eBurst with Link Capacity Constraints

We first consider the assumption that capacity constraints lie in the overlay
links, which is the case when the bottleneck is in the core of the overlay, such as
transcontinental links. Let u;; be the capacity of overlay link (4, j). R denotes the
throughput of the content distribution session, i.e., the aggregate receiving rate
at each participating peer. z;; is the delivery rate on link (4,j). Let f* denote
the conceptual unicast flow from source S to a receiver ¢, |ft| be its flow rate,
and ff; be the rate of f* flowing through link (7, 7). The eBurst problem with



Link Capacity Constraints (LCC) can be formulated as the linear program in
Table 1, referred to as the eBurst LCC LP.

Table 1. eBurst LCC LP

max R
subject to
Soofi— D> fi=b, VieNVteT, (1)
j:(i,7)EA j:(j,i)EA
fitj < Lij, V(Zm]) € A7Vt €T, (3)
0 S Tij S Ui, V(Zv.]) € A7 (4)
R >0,
where R ifi=25,
bi =4 —Rifi=t,
0 otherwise.

In this LP, (1) and (2) model each conceptual flow f* as a valid network flow,
following flow conservations. (3) represents the relation between conceptual flow
rates and the actual delivery rate on each link, which is further constrained by
link capacities in (4).

There exists an efficient combinatorial algorithm to solve the eBurst LCC
LP. By reformulating constraints (2), (3) and (4) as

0< itj < Uij,ffj < aij < ugg, V(i j) € AVt e T,

we notice that this LP can be decomposed into |T'| maximum flow problems,
each corresponding to one conceptual unicast flow f*, V¢t € T. Therefore, this
LP can be solved by computing maximum flows from the source to each of the
receivers, and then delivery rate x;; is decided as the maximum of the rates of all
the maximum conceptual flows on (4, j). Since the maximum flow problem can
be solved by distributed algorithms, such as push-relabel algorithm [2], we are
able to derive an efficient decentralized algorithm for the LP, as given in Table
2.

Table 2. Distributed algorithm for eBurst LCC LP

1. Compute maximum flow f* from S to t, Vt € T, with distributed push-relabel
algorithm.

2. Compute the maximum throughput R = minzer |f*].

3. Compute optimal rates x;; = maxter fF;, V(i,7) € A.

2.2 eBurst with Node Capacity Constraints

When bandwidth bottlenecks occur at the “last-mile” links to the overlay nodes,
it is more appropriate to model capacity constraints at each node rather than
each link, with maximum upload and download capacities. For node i, let O; be



its upload capacity and I; be its download capacity. The linear program with
Node Capacity Constraints (NCC) is formulated in Table 3, referred to as the
eBurst NCC LP.

Table 3. eBurst NCC LP

max R
subject to
ST > fi=tl, YieNvteT, (5)
Ji(i,j)eA §:(4,1)€A
£ >0,9(i,5) € AVt ET, (6)
fij S @i, ¥(i,5) € AVEET, (7)
Z Ty < Oy, Vi € N, (8)
j:(i,5)€EA
Z zji < I, Vi € N, 9)
3:(ji)EA
RZO,Q?”‘ZO, V(Zy.])EAv
where R ifi=15,
bi={ —Rifi=t,
0 otherwise.

This LP regulates delivery rates on the overlay links using node capacities in
(8)(9), rather than link capacities in (4). It is not readily decomposable to known
combinatorial optimization problems. To obtain a distributed algorithm, we ap-
ply Lagrangian relaxation and design the corresponding subgradient algorithm,
which is an efficient LP solution technique and can be naturally implemented in
a distributed manner.

We have derived a fully decentralized algorithm by applying Lagrangian re-
laxation to the dual of the eBurst NCC LP. Due to space limit, we only provide
the main idea to develop the algorithm. For complete details, interested readers
are referred to our technical report [3].

We first note that, if we can decide the set of optimal delivery rates, x;;,
V(i,j) € A, that satisfy (8)(9), the eBurst NCC LP boils down to an eBurst
LCC problem. In order to obtain the optimal values for primal variables z;;, we
investigate the variable-constraint correspondence between an LP and its dual,
i.e., each primal variable corresponds to one dual constraint. When Lagrangian
relaxation is applied to the dual LP, a primal variable is actually the same as
the Lagrangian multiplier associated with its corresponding dual constraint. We
further understand that with the Lagrangian relaxation technique, the optimal
values for the Lagrangian multipliers can be obtained by the subgradient algo-
rithm. Therefore, to acquire x;;, we solve the dual LP of the eBurst NCC LP in
Table 3 with Lagrangian relaxation and subgradient algorithm, by relaxing the
set of dual constraints corresponding to the primal variables z;;, V(7,j) € A.

We also observe that the LP in Table 3 has the underlying structure of max-
imum flow problems. Therefore, due to the primal-dual relationship between



max-flow and min-cut linear programs, its dual LP has the underlying struc-
ture of min-cut problems, which we can utilize when solving the dual LP with
subgradient algorithm. The complete distributed algorithm is shown in Table 4.

This distributed algorithm has nice combinatorial interpretations. Starting
from some initial feasible delivery rates, the optimal rates are derived iteratively.
In each iteration, we increase rates on links in the current minimum cut of the
network, i.e., links that are saturated with currently allocated rates, and always
guarantee node capacity constraints are satisfied by projecting increased rates
onto the feasible simplex P’. After this projection, the bandwidth share for non-
saturated links, 7.e., links that are not in the minimum cut, is reduced while that
for saturated links is increased. This refinement repeats itself until the optimal
rate allocation on all the links is achieved.

Table 4. Distributed algorithm for eBurst NCC LP

1. Initialize rates x;;[0], V(4,j) € A, to non-negative values.
2. Repeat the following iteration until the sequence {z[k]} converges to =*:

(1) With z;;[k] as the upper bound of the delivery rate on link (3, j), V(z,) € A,
compute the maximum flow from S to ¢, V¢ € T', with the distributed push-relabel
algorithm;

(2) Update z by

— Compute 2’ = z[k] + (k] >, 2*[k], where 0[k] = a/(b+ ck),a > 0,b >
0,¢ > 0, and for all (i,5) € A,
1 if edge (%, ) is in the min cut of the
minimum of all maximum flows from
Stot,VteT
0 otherwise.

zij[k] =

— Project ' onto the feasible simplex
P'={al Y ;<0 Y aj<ILVieNazi;>0Y(i,j) €A}
j:(i,5)EA j/:(j,i)EA ,
by @[k + 1] = min(z);, i O; i I;),Y(i, j) € A.

v k3 T
2omi(im)€A Tim ) Zmi(m,g)EA T

— Optimal delivery rates obtained.

3. With z}; as the link capacity on link (¢, ), ¥(4,j) € A, compute the maximum
flow f* from S to t, Vt € T, with the distributed push-relabel algorithm.

4. Compute the maximum throughput R = miner |f*|.

— Maximum content distribution throughput obtained.

3 sBurst: Distribution of Streaming Content

Real-time content streaming, such as live multimedia or stocks quotes, usu-
ally demands a fixed streaming rate, r, to sustain the streaming session. For
these applications, instead of maximizing throughput, it is desirable to optimize
rate allocations to minimize the total cost of streaming, while guaranteeing the
streaming rate r. More rigorously, if we use c¢;; to denote the streaming cost



on an overlay link (i, ), our objective is to minimize }_; ;4 ¢i;®i;. When ¢;;
represents per-link delay, the optimal rate allocation minimizes total delay of
the session. When all ¢;;’s are 1, the total bandwidth usage is minimized and
thus the best bandwidth efficiency is achieved by the optimization. Henceforth,
this optimization problem is referred to as sBurst.

3.1 sBurst with Link Capacity Constraints

The sBurst problem with link capacity constraints, referred to as sBurst LCC
LP, is formulated in Table 5.

Table 5. sBurst LCC LP

min E CijTij

(i,5)eA
subject to
Soofi— D> fli=b, VieNVteT, (10)
j:(4,7)€EA j:(4,i)€EA

5 >0,(i,5) € AVt € T, (11)

fiy < @iy, V(i 5) € AVt € T, (12)

0<azy <wuy, Y(0,j) €A, (13)
here rifi=5,
N bi=1Q —rifi=t,

0 otherwise.

This LP can be solved with Lagrangian relaxation and subgradient algorithm,
by relaxing constraint group (12). Associating Lagrangian multipliers p;; with
(12), we obtain the Lagrangian dual of the sBurst LCC LP:

L 14
ey L) -
where

L(p) :mgn Z xz‘j(cij_zluf'j)"‘z Z pij I (15)

(i,j)€A teT teT (i,j)€EA

and polytope P is defined by constraints (10)(11)(13).
The Lagrangian subproblem in (15) can be decomposed into |T'| shortest path
problems:

min Y b f; (16)
(i,5)€A
subject to

Yipealtii = Xjganeafii =05, Vi€ N,
520, W(i,j) € 4,

i =



for each ¢t € T, and a minimization problem

min Z xi;(cij — Zufj) (17)
(i,5)EA teT
subject to

0 < i; < wij, (i, j) € A

The shortest path problems in (16) can be efficiently solved in a distributed
manner by the distributed Bellman-Ford algorithm [4]. The optimal solution to
the minimization problem in (17) can be computed as follows:

0 if wko < eij,

Tij = { i erthy = 6 (18)
wij if D ep Wij > Cij-

In each iteration of the subgradient algorithm, we solve the subproblems

in (16) and (17) with the current Lagrangian multiplier values p[k]. Then we
update the Lagrangian multipliers by

prijlk + 1] = max(0, ug; [k] + O[k](f; [k] — xi5[k])), ¥(,5) € AVt € T,
where 6 is a prescribed sequence of step sizes satisfying:

0[k] > 0,1img _,oo0[k] =0, and Y _ O[k] = oo.
k=1

Since the primal values in the optimal solution of the Lagrangian dual are not
necessarily optimal to the primal LP, we further apply the algorithm introduced

by Sherali et al. [5] to recover the optimal primal values. At the ith iteration,
we compose a primal iterate ff;[k] via
Tt

k
ij [k] = Z )‘Ifi z'tj [h], (19)

where zlzzlx\ﬁzland)\ﬁzo, forh=1,... k.

Table 6. Distributed algorithm on node j for sBurst LCC LP

1. Initialize Lagrangian multipliers uf;[0], Vi : (i,7) € A,Vt € T, to non-negative
values.

2. Repeat the following iteration until sequence {u[k]} converges to p*, {f[k]}
converges to f*: Vi: (i,j) € AVt €T

(1) Compute ff;[k] by distributed Bellman-Ford algorithm;

(2) Compute z;;[k] by Eqn. (18);

(3) Compute E[k] = 22:1 1) = LZIEUC — 1]+ £ f5k];

(4) Update Lagrangian multiplier ui;[k + 1] = max(0, ui;[k] + 6[k](f{;[k] —
ij [k]));

3. Compute optimal rate x}; = maxier }}; , Vi (i,7) € A.




In our algorithm, we choose the step length sequence 0[k] = a/(b+ck),Vk,a >
0,6 > 0,c > 0, and convex combination weights )\ﬁ = 1/k,Vh = 1,...,k,Vk.
These guarantee the convergence of our subgradient algorithm; they also guar-
antee that any accumulation point f* of the sequence {f[k]} generated via (19)
is an optimal solution to the primal problem in Table 5 [5].

Now we can design our distributed algorithm to solve sBurst LCC LP. We
delegate the computation tasks on link (7, ) to be carried out by incident node
j. The algorithm to be executed by each node is given in Table 6.

3.2 sBurst with Node Capacity Constraints

The sBurst problem with node capacity constraints, referred to as sBurst NCC
LP, is formulated in Table 7.

Table 7. sBurst NCC LP

min E CijTij

(i,5)€A
subject to
Soofi— D> fli=b, VieNVteT,
ji(i,5)€A J:(4,i)€eA
f'}j < Tij, V(Z,J) € A7Vt € T7 (20)
Z Tij < Oi7 Vi € N,
J:(i,5)€EA
> wu <, Vi e N,
§:(G,i) €A
zi; >0,  V(i,j) € A,
where r ifi=2S5,
b= —rifi=t,
0 otherwise.

This LP can be solved with similar Lagrangian relaxation techniques as solv-
ing the sBurst LCC LP, by relaxing (20). The only difference is that the resulting
minimization subproblem is defined differently:

min Z Iij(cij_Zﬂgj) (21)

(i,7)eA teT

subject to ‘
: Zj:(i,j)eA x5 <05, Vi €N,

Zj:(j,i)eA x5 < I;, Vi € N,
zi; > 0, V(i j) € A,
which is an inequality constrained transportation problem, and can be solved

by distributed auction algorithm [6]. Thus, we can also design a distributed
algorithm for sBurst NCC LP, as summarized in Table 8.



Table 8. Distributed algorithm on node j for sBurst NCC LP

1. Initialize Lagrangian multipliers ,uﬁj [0], Vi: (i,j) € A,Vt € T, to non-negative
values.

2. Repeat the following iteration until sequence {u[k]} converges to u*, {f[k]}
converges to f*: Vi: (i,j) € AVt €T

(1) Compute ffJ [k] by distributed Bellman-Ford algorithm;

(2) Compute z;;[k] by distributed auction algorithm;

(3) Compute ff;[k] = *32 f;[k — 1] + ¢ fi;[K];

(4) Update Lagrangian multiplier u};[k + 1] = max(0, ui;[k] + 0[] (ff;[k] —
zij[k]));

3. Compute optimal rate z7; = maxser f}; , Vi: (i,5) € A.

4 Algorithm Execution in Dynamic Overlays

In an overlay session characterized by dynamics, the proposed distributed algo-
rithms are also invoked in a dynamic manner. When a node joins a session, it is
bootstrapped with a set of upstream nodes. It then starts downloading with the
available upload capacities acquired from them. Meanwhile, it requests the source
to recompute the optimal rate allocation. When a node departs from a session or
fails, an affected downstream node attempts to acquire additional bandwidths
from its remaining upstream nodes. Meanwhile, it requests the source to recom-
pute the optimal rate allocation.

At the source, when it receives more than a certain number of requests for re-
computation, it broadcasts such a request to all the nodes, which activate a new
round of execution of the distributed algorithm, while continuing to download
at the original rates. Note that in such a dynamic environment, the execution of
a distributed algorithm always starts from the previous optimal values (rather
than from the very beginning when all values are initialized to any non-negative
values, such as zeros), thus expediting its convergence. After the distributed
algorithm converges, all the nodes adjust their download rates to the new optimal
values.

5 Performance Evaluation

We next conduct an empirical study of the distributed optimization algorithms.
All simulations are conducted over random network topologies generated with
BRITE [7] topology generator based on power-law degree distributions. The av-
erage number of neighbors per node in the topologies is six. For link-constrained
problems, link capacities are generated with heavy-tailed distributions between
100 Kbps and 4 Mbps; for node-constrained problems, each node has 1.5 — 4.5
Mbps of download capacity and 0.6 — 0.9 Mbps of upload capacity. For sBurst
problems, streaming of a 300 Kbps bitstream is simulated and cost coefficients
are random numbers chosen from (0, 3).

5.1 Convergence in Static Networks

To investigate the scalability of our optimal rate allocation algorithms, we first
evaluate their convergence speed in static networks of different sizes. For eBurst



LCC LP, we have shown in Table 2 a purely combinatorial algorithm, which can
derive the solution efficiently. Here, we are more concerned with the efficiency
of the iterative subgradient algorithms to solve the other three problems, given
in Table 4, 6, 8, respectively.
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Fig. 1. Convergence speed in static networks for distributed algorithms in Table
4, 6, 8.

Fig. 1 shows that for all three problems, with the increase of network sizes,
the numbers of iterations their algorithms take to achieve optimality only in-
crease slowly, thus not affecting algorithm scalability. In all cases, the algorithms
converge to feasibility within only a few rounds. Even the convergence to 90%
optimality is much faster, within 20% fewer rounds than those required for con-
vergence to optimality. Therefore, in realistic networks, we can obtain a feasible
solution to a certain degree of optimality in a much shorter time, when it is not
necessary to achieve absolute optimality.

5.2 Convergence in Dynamic Networks

We next investigate the algorithm convergence in practical dynamic environ-
ments. Due to space limit, we only show the results obtained by the eBurst
NCC algorithm in Table 4, while other algorithms produce similar results.

In this experiment, 200 nodes sequentially join an elastic content distribution
session, and then start to depart when their downloads are completed. The
distributed algorithm is invoked every 10 node joins or departures. As discussed
in Sec. 4, the algorithm always runs from the previously converged optimal rates
when it is invoked.

We show the number of additional iterations required to converge to new
optimal values from the previous ones in node joining and departure phases in
Fig. 2 (A) and (B), respectively. We find that, compared to running from the very
beginning in the cases of static networks of the same sizes, our dynamic execution
of the algorithm converges much faster. Independent of the current network sizes,
it always takes less than 15 iterations to converge, in both joining and departure
cases. While dynamic networks are more akin to realistic scenarios, this suggests
our optimal rate allocation algorithms can deliver good performance and provide
excellent scalability in practice.

In addition, we illustrate maximum throughput of the dynamic session, R, in
Fig. 3. In Fig. 3 (A), at the beginning of the node joining phase, the throughput
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Fig. 2. Convergence speed in a dynamic network for eBurst NCC' algorithm in
Table 4.

drops because of the competition of more nodes for the available upload capaci-
ties in the network. Later, when more nodes have joined, more upload capacities
are provided to the session, and thus the throughput gradually increases. During
the node departure phase in Fig. 3 (B), due to similar reasons, the throughput
first shows a decreasing trend, and then rises when only a few nodes are left.
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Fig. 3. Throughput achieved in a dynamic network with eBurst NCC algorithm
in Table 4.

6 Related Work

On the topic of overlay content distribution, mesh-based approaches have be-
come typical in most recent proposals [8-10]. Disseminating large-scale content
on mesh topologies, their parallel transfers make them possible to deliver at
fundamentally higher bandwidth and reliability, without the cost of constructing
multicast trees.

With respect to rate allocation in mesh overlay topologies, most existing
work either relies on TCP, or employs various heuristics without formulating
the problem theoretically. Compared to our optimal rate allocation, their rate
allocation falls short of achieving global optimality. There is no way to guarantee
that maximum throughput is achieved at all nodes, or a required streaming rate
is provided to all at the lowest cost.

There are a few exceptions that formulate the problem into optimization
models and propose distributed solutions [1,11,12]. Our work is original in that
we systematically model all the typical content distribution scenarios, and design



efficient algorithms to solve the formulated optimization problem combinatori-
ally or numerically, in a fully distributed manner. In addition, we discuss exe-
cution of the algorithms in practical dynamic environments. This has not been
addressed in previous optimization-based approaches, most of which are largely
theoretical in nature.

7 Conclusion

The problem of interest in this paper is to design efficient distributed algorithms
for optimal rate allocation under all typical scenarios of overlay content dis-
tribution. For this purpose, we formulate rate allocation problems into linear
programs, which optimize bandwidth utilization towards a variety of objectives,
and develop fully decentralized algorithms to efficiently compute the optimal
link rates. We believe such an optimal rate allocation algorithm is critical to any
schemes of overlay content distribution. As ongoing work, we are investigating
the combination of optimal rate allocation with efficient distribution schemes,
and its application in realistic networks.
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