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Abstract. TCP is shown to be inefficient and instable in high speed and
long latency networks. The eXplicit Control Protocol (XCP) is a new and
promising protocol that outperforms TCP in terms of efficiency, stability,
queue size, and convergence speed. However, Low et al. recently discov-
ered a weakness of XCP. In a multi-bottleneck environment, XCP may
achieve as low as 80% utilization at a bottleneck link and consequently
some flows may only receive a small fraction of their max-min fair rates.

This paper proposes iXCP, an improved version of XCP. Extensive sim-
ulations show that iXCP overcomes the weakness of XCP, and achieves
efficient and fair bandwidth utilization in both single- and multi- bottle-
neck environments. In addition, we prove that iXCP is max-min fair in
steady state. This result implies that iXCP is able to fully utilize bot-
tleneck bandwidth. Simulations also show that iXCP preserves the good
properties of XCP, including negligible queue lengths, near-zero packet
loss rates, scalability, and fast convergence.

1 Introduction

It is well known that TCP’s congestion control mechanism is inefficient and in-
stable in high bandwidth-delay-product environments [1–4]. TCP treats a packet
loss as an implicit congestion signal, and reacts to congestion by cutting its con-
gestion window size by half, and then gradually increases its window size by
one every round trip time (RTT). This saw-toothed behavior of TCP leads to
throughput oscillation and link under-utilization, especially in a high bandwidth-
delay-product environment.

The eXplicit Control Protocol (XCP) [5] overcomes the limitations of TCP
by sending explicit window adjustment information from routers to end hosts.
It is a promising candidate to replace TCP in a future Internet architecture [6].
Unlike TCP, an XCP flow does not implicitly probe available bandwidth. Instead,
a router computes the spare bandwidth of an output link, and fairly allocates
the bandwidth among all flows that share the same link. The router then writes
the amount of window adjustment in the congestion header of an XCP flow.
This explicit control mechanism allows a flow to quickly utilize the available
bandwidth of a link. Early results have shown that XCP is highly efficient,
stable, and scalable [5].



However, Low et al. [7] recently revealed a weakness of XCP. In a multi-
bottleneck environment, XCP’s congestion control mechanism may cause some
bottleneck link to be under-utilized, and a flow may only receive a small fraction
of its max-min fair allocation [8].1 Low et al. demonstrated this result with both
a theoretical model and simulations. With the chosen parameters, XCP may
utilize only 80% of bottleneck bandwidth in the worst case. In this paper, we
refer to this theoretical model as Low’s model.

Intuitively, this problem occurs because XCP-enabled routers independently
compute bandwidth allocation. For instance, if a flow is bottlenecked at a down-
stream link, an upstream router would still attempt to allocate bandwidth to
that flow to ensure local fairness. This leads to link under-utilization, which in
turn causes some flow to receive only a fraction of its max-min fair allocation.

In this paper, we propose a simple improvement to XCP that overcomes this
limitation. We add an additional bottleneck identifier field into XCP’s congestion
header. If a flow is bottlenecked at an outgoing link of a router, the router writes
the link identifier into this field. Other routers are then aware that the flow is
not bottlenecked at their links. We further modify XCP’s control algorithm not
to waste bandwidth on flows that are bottlenecked at other routers.

We use extensive simulations to show that our improved XCP (iXCP) is
able to achieve nearly 100% link utilization and max-min fairness in steady
state. We use a theoretical model to show that iXCP is max-min fair. This
result also implies that iXCP is able to fully utilize bottleneck bandwidth. In
addition, our simulation results show that iXCP preserves the desirable features
of XCP. It converges fast to max-min bandwidth allocation with a negligible
queue length; it is efficient and fair in high speed and long latency networks as
well as conventional networks; it also remains as a scalable stateless solution.

This paper has three key contributions. The first is our analysis on the root
cause of XCP’s under-utilization problem. Although this problem has been ob-
served in [7, 9], to the best of our knowledge, we are the first to pinpoint the
particular protocol mechanism that causes the problem. The second is our im-
provement to XCP. This improvement makes XCP achieve its full potential:
iXCP is highly efficient and fair in all types of topologies. The third is the theo-
retical analysis that shows iXCP is max-min fair. This analysis provides us the
confidence that iXCP will continue to operate efficiently and fairly in scenarios
that we did not simulate. We note that our theoretical analysis builds on Low’s
model [7].

The rest of the paper is organized as follows. In Section 2, we briefly summa-
rize how XCP works and its weakness. Section 3 describes iXCP. We use extensive

1A max-min fair allocation maximizes the bandwidth allocated to the flow with a
minimum allocation. Max-min fairness satisfies the following conditions: 1) the alloca-
tion is feasible, i.e., the sum of the allocated rates does not exceed a link’s capacity; 2)
a flow’s rate allocation cannot be increased without violating the feasibility constraint
or without decreasing the rate of some flow that has an equal or smaller bandwidth
share.



simulations to evaluate the performance of iXCP in Section 4. We compare our
work with related work in Section 5. Section 6 concludes the paper.

2 Understanding the Weakness of XCP

Understanding what causes a problem is the first step to solve the problem. In
this section, we describe how XCP works and analyze what makes XCP under-
utilize link bandwidth.

2.1 How XCP works

XCP uses explicit window adjustment for a flow to increase or decrease its con-
gestion window. Each packet carries a congestion header that contains three
fields: the sender’s current congestion window size: cwnd, the estimated round
trip time: rtt, and the router feedback field: feedback. Each sender fills its current
cwnd and rtt values in the congestion header on packet departures, and initializes
the feedback field to its desired window size.

The core control mechanism of XCP is implemented at routers. Each router
has two logical controllers: efficiency controller and fairness controller. In each
control interval, the efficiency controller computes spare bandwidth as follows:

φ = αd(c − y) − βb (1)

where d is the average round-trip time, c is the link capacity, y is the input traffic
rate, and b is the persistent queue length. α and β are two control parameters,
with default value 0.4 and 0.226 respectively.

The fairness controller is responsible for fairly allocating bandwidth to each
flow. When a link is in high-utilization region, XCP’s fairness controller per-
forms a “bandwidth shuffling” operation to ensure local fairness. This operation
simultaneously allocates and deallocates the shuffled bandwidth among flows.
The shuffled bandwidth computed by XCP is as follows:

hxcp = max{0, γy − |φ|} (2)

where γ is a control parameter with default value 10%.

In each control interval, the spare bandwidth computed from Equation (1)
if it is positive and the shuffled bandwidth computed from Equation (2) are
allocated to each flow additively, i.e., each flow gets an equal amount of incre-
ment. At the mean time, the spare bandwidth if it is negative and the shuffled
bandwidth is deallocated multiplicatively, i.e., each flow gets a rate decrement
proportional to its current rate. A router writes the net window adjustment (the
increment minus the decrement) information in the feedback field of a packet.
A more congested downstream router may overwrite this field with a smaller
increment or a larger decrement. The receiver echoes back the feedback to the
sender, and the sender adjusts its window size accordingly.
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Fig. 1. In this topology, XCP under-utilizes the 155Mb/s link. The n long
flows are bottlenecked at the 100Mb/s link. So the short flow should be
able to send at 55Mb/s, but with XCP, it may get a bandwidth allocation
anywhere between 24Mb/s to 55Mb/s, depending on the number of long
flows

2.2 The Weakness Revealed

Low et al. rigorously modeled XCP’s control algorithm in [7]. Both their anal-
ysis and simulations revealed that XCP may under-utilize a bottleneck link. In
the worst case, XCP may only achieve 80% link utilization (with XCP’s default
parameters). We describe this problem using the network topology shown in
Figure 1. This is an example used by Low et al. in [7]. In this example, there
are n (n ≥ 2) long flows that cross both links in the figure and a short flow
that only goes through the 155Mb/s link. Since each long flow is bottlenecked at
the 100Mb/s link, in a max-min fair allocation, each of them gets a bandwidth
allocation of 100/n Mb/s. The short flow should fully utilize the residual band-
width of the 155Mb/s link, obtaining a 55Mb/s bandwidth allocation. However,
both simulations and analysis show that XCP allocates a rate r(n) < 55 Mb/s
bandwidth to the short flow in steady state. The function r(n) decreases as n
increases. Figure 2(a) and 2(b) show the utilization of the 155Mb/s bottleneck
link and the ratio between the short flow’s allocated rate and its max-min fair
share respectively. As we can see, both the link utilization and the short flow’s
bandwidth allocation decrease as the number of long flows n increases.

Intuitively, this problem occurs because XCP-enabled routers independently
allocate bandwidth to each flow based on their local information. Although a
long flow is bottlenecked at the downstream 100Mb/s link, the upstream router
at the 155Mb/s link still attempts to increase its bandwidth share to ensure local
fairness. As a result, the short flow that is only bottlenecked at the upstream
link cannot fully utilize the link and obtain its max-min fair share.

We explain it in more depth to shed light on the solution. The problem is
primarily caused by XCP’s fairness controller. The “bandwidth shuffling” op-
eration essentially uses the Additive-Increase Multiplicative-Decrease (AIMD)
algorithm to adjust rates among flows. Thus, a flow with a larger bandwidth
share will be tariffed more and get back less, and vice versa. In a single bottle-
neck environment, the AIMD policy will equalize all flow’s bandwidth shares,
thereby achieving fairness.

The problem arises in a multi-bottleneck environment. In such an environ-
ment, the de-allocated bandwidth from a shuffling operation may not be fully
utilized, when some flows are bottlenecked at other links (no matter downstream
or upstream links) and cannot further increase their sending rates. This deallo-
cated but not re-used bandwidth leads to link under-utilization. The flows that



could have used this bandwidth have a net loss in a shuffling operation. Recall
that the fairness controller is also in charge of allocating the spare bandwidth
computed by the efficiency controller. When the net loss of a flow from the shuf-
fling operation balances out its net gain in the spare bandwidth allocation, the
system has reached an equilibrium, in which a flow’s sending rate cannot further
increase although there remains un-used bandwidth.

One might think that if the problem is caused by the bandwidth shuffling
operation, we can simply disable bandwidth shuffling to fix the problem. How-
ever, bandwidth shuffling is essential to prevent starvation for new flows and to
achieve some degree of fairness. Without bandwidth shuffling, XCP can achieve
full link utilization, but the rate allocations to different flows can be arbitrarily
unfair (See [10] for a concrete example).

3 Improved XCP (iXCP)

In this section, we describe our improvement to XCP. As we discussed in the
previous section, the under-utilization problem is caused by a router’s attempt
to shuffle bandwidth from flows that can further increase their rates to flows
that cannot, i.e., flows that are bottlenecked at other routers. Therefore, we
modify XCP’s control algorithm to shuffle bandwidth only among flows that are
bottlenecked at current routers. This modification ensures that the deallocated
bandwidth by the shuffling operation will be re-used. Therefore, a link will be
fully utilized.

To implement this improvement, a router must be aware whether a flow is
bottlenecked at the router or not. For a router to obtain this information, we
include two additional fields in the XCP’s congestion header: the bottleneckId
and the nextBottleneckId field. The control algorithm uses the bottleneckId field
to compute per-packet feedback. A router sets the nextBottleneckId field on the
fly based on the feedback value. If the feedback from this router is smaller than
the one in the packet header, then the outgoing link of this router becomes the
new bottleneck for the flow, and the router writes its outgoing link identifier
to this field. To ensure uniqueness, a router may use a random 32-bit value as
a link identifier. Initially, both the bottleneckId and the nextBottleneckId fields
are set to a sender’s access link identifier. An iXCP receiver acknowledges back
the feedback and the nextBottleneckId field to the sender. The sender copies the
nextBottleneckId field from the acknowledgement to the bottleneckId field of its
outgoing packets.

The control algorithm of XCP is modified as follows. On a packet arrival, a
router estimates the spare bandwidth of an outgoing link as in the original XCP
shown in Equation (1), and the router estimates the shuffled bandwidth only
from those packets whose bottleneckIds match the link identifier of the router.
In iXCP, the shuffled bandwidth can be represented as follows:

hixcp = max{0, γ(y − y0) − |φ|} (3)
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(a) Utilization for the 155Mb/s link in
Figure 1
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Fig. 2. iXCP achieves nearly optimal link utilization and max-min fair rate
for the short flow. The figures compare iXCP with XCP using both simu-
lation and theoretical results

As y0 denotes the input traffic rate for flows whose bottleneckIds do not match router’s
link identifier, y − y0 denotes the input rate for flows bottlenecked at current router
whose bottleneckIds match router’s link identifier.

On a packet departure, if the packet’s bottleneckId matches the current outgoing
link identifier of the router, the router follows the original XCP algorithm and computes
the feedback from both the spare bandwidth computed from Equation (1) and the
shuffled bandwidth computed from Equation (3). Otherwise, the feedback is computed
only from the spare bandwidth. Pseudo code of the algorithm is presented in [10].

The drawback of our modification is that iXCP increases the congestion header of
XCP by eight bytes and the acknowledgement header by four bytes. If we assume the
average packet size is 400 bytes [11], and each packet has both a congestion header and
an acknowledgement header, we increase the packet header overhead by 3%. However,
as we will show in the following sections, iXCP can increase link utilization by almost
20% in some multi-bottleneck environments. Besides, packet sizes may increase in the
future due to advanced technologies, e.g., gigabit Ethernet with a jumbo frame size
of 9000 bytes. Therefore, we think it is a worthy tradeoff to design iXCP to achieve
efficient and fair bandwidth allocation in both single- and multi-bottleneck topologies
at the cost of slightly increased header overhead.

We build on Low’s theoretical model [7] to prove the following theorem and we
refer interested readers to [10] for detailed proof.

Theorem 1. iXCP achieves max-min fair bandwidth allocation in steady state. That

is, with iXCP, all bottleneck links will be fully utilized; and a flow cannot increase its

rate without decreasing the rate of a flow that has a smaller or equal share.

4 Simulation Results

In this section, we use extensive ns2 [12] simulations to evaluate the performance of
iXCP and compare it with XCP. Due to space limitation, we only present a subset of
our results. More results can be found in [10].

The simulation scenarios include multiple bottleneck topologies, heterogeneous
RTTs, and web-like traffic. There are two key questions we aim to answer: 1) does
iXCP fix the problem of XCP and achieve max-min fair allocation? 2) does iXCP
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Fig. 3. Small average queue size and zero packet drops are achieved for the
155Mb/s link in Figure 1

make other properties of XCP worse? To answer the first question, we compute two
metrics: 1) link utilization; 2) a flow’s rate normalized by its theoretical max-min rate.
If the link utilization is 100%, and a flow’s normalized rate is 1, it shows that iXCP
achieves max-min fair bandwidth allocation. To answer the second question, we exam-
ine three metrics: 1) the persistent queue sizes; 2) the packet drops; 3) the convergence
speed when flows join and leave the network.

In our simulations, we use the same parameter settings as those chosen by XCP [5]
for the purpose of comparison. The coefficients for the efficiency controller α and β are
set to be 0.4 and 0.226 respectively, and the coefficient for the fairness controller γ is
set to be 0.1. The packet size is 1000 bytes. The propagation delay of each link in all
topologies is 20ms unless otherwise noted, and the bandwidth of each link is specified
in the figures.

4.1 A simple two-bottleneck environment

We simulated the scenario as shown in Figure 1. The short flow is bottlenecked at the
first 155Mb/s link, and all the other long flows are bottlenecked at the second 100Mb/s
link. We vary the number of long flows from 4 to 1024. We only show the results for
the short flow on the first link, because XCP cannot fully utilize the bandwidth of the
first link and does not allocate the max-min rate to the short flow, as explained in
Section 2.2. The second link is fully utilized in both XCP and iXCP, and each long
flow obtains its max-min rate of 100/n Mb/s.

Figure 2(a) and 2(b) show the link utilization for the first bottleneck link and the
ratio between the short flow’s rate and its theoretical max-min share. We show both
the simulation and the theoretical results for XCP and iXCP. Theoretical results for
XCP are obtained using Low’s model [7]; theoretical results for iXCP are obtained
using our analysis in [10]. As can be seen, as the number of long flows increases, the
link utilization of XCP decreases and approaches its theoretical lower bound 80%. The
short flow only obtains 40% of its max-min rate. In contrast, iXCP achieves more than
97% link utilization; the short flow’s rate is more than 90% of its max-min rate.

Figure 3(a) and 3(b) show the average queue size and the packet drops at the
155Mb/s link. Both XCP and iXCP have very small queue size, and negligible packet
drops. (In the simulations, the packet drops are zero.)

The simulation results for iXCP match well with the theoretical analysis until the
number of long flows becomes large. We examined packet traces and concluded that the
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Fig. 4. A multi-bottleneck topology

discrepancy is caused by rounding errors. XCP’s control algorithm computes a window
adjustment value in bytes, but a sender advances its sending window in packets. When
the window increment is less than one packet, the window size in the congestion header
of a packet is actually larger than a sender’s true sending window. This rounding error
affects the calculation of per-packet feedback, stopping a flow from further increasing
its window. When the number of flows is large, the aggregated rounding errors are not
negligible and therefore leads to slight under-utilization.

4.2 A multi-bottleneck environment

We studied how iXCP performs in a multi-bottleneck environment as shown in Figure 4.
In this topology, there are a total of five hops and all flows are bottlenecked at the last
hop they cross. A link is labeled with an identifier ranging from 1 to 5. For example, the
thirty longest flows are bottlenecked at the fifth link; the twenty second longest flows
are bottlenecked at the fourth link; and so on. The max-min rates for flows bottlenecked
at link 1 to 5 are 10Mbps, 8Mbps, 4Mbps, 3Mbps, 2Mbps, respectively.

Figure 5(a) and 5(b) show the utilization and the normalized flow rate at each
link achieved by both iXCP and XCP. We only show the bottlenecked flows for each
link, and the normalized rates are averaged over all bottlenecked flows. The standard
deviations among flows are too small to be visible. Thus, they are not shown in the
figures. As can be seen, iXCP achieves full link utilization and max-min rate allocations
for all flows at all bottleneck links, while XCP cannot fully utilize the bandwidth of
the first four links.

Small average queue lengths and zero packet drops are achieved for both iXCP and
XCP. The results are presented in [10].

4.3 Dynamic flows

We simulated the case in which the bottlenecks of flows change over time as flows
dynamically join and leave the network. This simulation is to show how well iXCP
converges when there are sudden traffic demand changes.

The simulation topology is shown in Figure 6. Each link has a propagation delay
20ms. We start the long flow, and four short flows from s1 to s4 at time t = 0. Each
short flow only crosses one link. We then start three short flows s5, s6, and s7 at t = 20.
At time t = 40, the short flows from s4 to s7 stop.

Figure 7(a), 7(b), and 7(c) show how each flow’s rate changes over time as its
bottleneck shifts with traffic demand. All flows converge to their max-min rates shortly
after a change in the network. In the first 20 seconds, the long flow is bottlenecked at the
120Mb/s link. The max-min rates for the long flow is 40Mb/s and the rates for the short
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Fig. 5. iXCP achieves nearly 100% link utilization and max-min fair flow
rates for each link in the multi-bottleneck topology shown in Figure 4
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Fig. 6. The long flow and four short flows s1 to s4 start at time t = 0. Three
short flows s5, s6, and s7 start at t = 20. At time t = 40, the short flows from
s4 to s7 stop

flows are: s1 = 110Mb/s, s2 = 60Mb/s, and s3 = s4 = 40Mb/s. After the simulation
starts, all flows converge to their max-min rates within ten seconds. When flows s5 to
s7 start at t = 20, the bottleneck link for the long flow shifts to the 150Mb/s link. The
flow’s rate quickly converges to its new max-min rate 30Mb/s. Correspondingly, other
shorts flows quickly converge to their max-min rates (the short flows s1, s5, s6 and s7

converge to 30Mb/s, and s2 increases to 70Mb/s, and s3 and s4 increase to 45Mb/s.).
At t = 40, the short flows from s4 to s7 stop. The new bottleneck for the long flow
is the 100Mb/s link. It quickly converges to its max-min rate 50Mb/s. Similarly, s1

converges to its new max-min rate 100Mb/s, s2 converges to 50Mb/s, and s3 converges
to 70Mb/s. Figure 7(d) shows the utilization of each link. As can be seen, iXCP is
robust to the sudden changes in traffic demand. After four flows exist the system,
there is only a temporary dip, and the link is quickly fully utilized again.

The convergence property of iXCP to equilibrium is similar to that of XCP as
shown in the longer version of this paper [10]. Both converge to equilibrium within
seconds, whereas TCP persistently oscillates and never converges [10]. However, in our
simulations, it takes iXCP slightly longer (about 1.6 seconds) to ramp up a flow’s rate
from zero to the equilibrium rate. This is because iXCP is fairer than XCP: it requires
additional round trip times to shuffle bandwidth to fully achieve max-min fairness.

Due to the lack of space, simulation results for heterogeneous RTTs and web-like
traffic are not included here. A complete set of simulation results are presented in [10].
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Fig. 7. These figures show how iXCP adapts to the flow dynamics and the
link utilization of all three links during adaptation. The simulation topology
is shown in Figure 6. Each flow can quickly converge to its max-min fair
rate when there are flows joining or leaving the network. Each link can
achieve nearly 100% link utilization

5 Related work

Low et al. simulated and analyzed XCP’s under-utilization problem [7]. This work
is inspired by their discovery. Our analysis is built on Low’s model. Zhou et al. also
foresaw this problem and proposed P-XCP [9]. However, P-XCP does not address the
root cause of the under-utilization problem, and only alleviates the problem in some
topologies. With P-XCP, a router estimates the number of flows bottlenecked at itself.
The router allocates more bandwidth to those bottlenecked flows by scaling the spare
bandwidth with a factor N/Nb, in which N is the total number of flows, and Nb is the
flows that are bottlenecked at the router. This scheme only increases link utilization
when a bottleneck link is upstream to an under-utilized link. For instance, it does
not increase link utilization in the example shown in Figure 1. Moreover, as P-XCP
over-allocates spare bandwidth, it causes rate fluctuations and increases the persistent
queue size. Comparisons between P-XCP and iXCP are shown in [10].

To the best of our knowledge, our work is the first that systematically addresses
the under-utilization problem of XCP and to prove that the improved XCP is max-min
fair in all types of topologies in steady state.

JetMax [13] is a rate-based congestion control algorithm that aims to provide max-
min fairness. Similar to our scheme, a Jetmax packet header includes a bottleneck
identifier field, but its control algorithm is rate-based, completely different from XCP,



which is a window-based protocol. Charny et al. [14] also proposes a rate-based al-
gorithm to realize max-min flow rate allocation, using a different control algorithm
and feedback scheme. However, their approach requires per-flow state at routers. In
contrast, both XCP and iXCP are stateless.

Other work has focused on the implementation of XCP [15] and improvements
of XCP in other areas. Zhang et al. [16] extensively studied the implementation and
deployment challenges of XCP. Hsiao et al. [17] extended XCP to support streaming
layered video. Kapoor et al. [18] proposes to combine XCP with a Performance En-
hancement Proxy (PEP) to provide fast satellite access. Yang et al. [19] proposed an
improvement to shorten XCP’s response time for new flows to acquire their bandwidth.
Zhang et al. [20] presented a control theoretical model that considers capacity estima-
tion errors. XCP-r [21] proposes to calculate the congestion window size at the receiver
side to cope with ACK losses.

6 Conclusions and Future Work

XCP [5] is a new and promising protocol that outperforms TCP in terms efficiency,
stability, queue size, and convergence speed. However, Low et al. [7] discovered a weak-
ness of XCP. In some multi-bottleneck environments, XCP may only utilize as low as
80% of bottleneck bandwidth.

This paper proposes an improved XCP (iXCP) that solves the link under-utilization
problem of XCP. We use extensive simulations as well as a theoretical analysis to show
that iXCP is able to efficiently utilize bottleneck bandwidth and is max-min fair in
steady state. iXCP also preserves other features of XCP, including small queue size,
near-zero packet drops, and fast convergence.

The performance of both iXCP and XCP degrades in highly dynamic situations.
We have analyzed the cause of this performance degradation in [10], but it is our future
work to further investigate the interactions between flow dynamics and iXCP’s control
algorithm and to propose improvement that makes the control algorithm more robust
to flow dynamics.
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