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Abstract. This paper presents a general model to study the medium
access control (MAC) layer performance and equilibrium of WLANSs con-
sisting of nodes with different MAC parameters (e.g., backoff window
size). Our model can be used in general 802.11-based WLANS since it
captures the important factors such as non-uniform backoff behavior,
channel errors and unsaturated traffic. We first formalize the performance
of 802.11 based MAC protocols with simultaneous fixed point equations.
We then derive the average per-flow service time of each flow, and apply
it to calculate throughput. More importantly, based on our model, we use
interval analysis to formally study the existence and uniqueness of the
network’s equilibrium, and find the sufficient condition for the unique-
ness of equilibrium. We validate our model through simulations and the
simulation results show that the model is quite accurate.

1 Introduction

With the low cost and high data rates, IEEE 802.11 based wireless local area
networks (WLANs) have been widely deployed in residences, hotels, hospitals
and other public areas as a communication infrastructure for high speed wireless
Internet access. The core technology of 802.11 WLANS follows the medium access
control (MAC) and physical layer (PHY) specifications [1] finalized by IEEE
802.11 working groups. In these specifications, the building block of medium
access control mechanism is called distributed coordination function (DCF). DCF
is a random access scheme and relies on the carrier sense multiple access with
collision avoidance (CSMA/CA). Binary exponential backoff mechanism is used
for data retransmission upon a collision or transmission failure. IEEE 802.11
working group has proposed a family of 802.11 MAC protocols such as 802.11
b/g/e [1,2] to improve the system performance in different aspects (e.g. channel
capacity, service differentiation). Therefore, it is expected that future WLANs
may need to accommodate nodes running heterogeneous 802.11 based MAC
protocols. In order to have deep insights into the performance of heterogeneous
802.11 based WLANS, it is critical to develop a general model for 802.11 based



WLANSs considering the coexistence of heterogeneous MAC parameters since
they play important roles in determining the bandwidth share of each node and
the bandwidth utilization of the network.

There have been a number of studies focusing on the performance model of
DCF. Bianchi [3] modeled the binary exponential backoff under saturated traf-
fic conditions as a two-dimensional discrete Markov Chain model. The similar
Markovian technique has been subsequently adopted by many other works [4,
5] in modeling WLANs under unsaturated traffic. Carvalho and Garcia-Luna-
Aceves [6] modeled the packet service time in single-hop WLANSs given that the
state probabilities of a node’s backoff operation are known. With the results
from [3], the first two moments of the service time were studied. Kumar et. al [7]
proposed a simpler model by viewing the backoff procedure as a renewal process.
Ramaiyan et. al [8] refined such approach to study the stability of the network in
802.11e WLANS [2] under saturated traffic conditions and give sufficient condi-
tions for the existence and uniqueness of equilibrium. Kim and Hou [9] modeled
the service time in large-scale single-hop WLANS for fast simulations. Medepalli
and Tobagi [10] applied the average cycle time analysis to model the average
service time in wireless ad hoc networks. Their model captures the impacts of
unsaturated traffic and channel errors among contending nodes. However, the
above-mentioned works are not sufficient to model the performance of heteroge-
neous 802.11 based WLANs under both saturated and unsaturated traffic.

In this paper, we present a general model of heterogeneous 802.11 based
WLANSs. The model is fairly simple and quite accurate. Our work differs from
previous works in at least one of the following three aspects (especially the
third aspect): first, our model captures the performance of general 802.11 based
WLANS since we take into account of channel errors and realistic network op-
erating scenarios (e.g., unsaturated traffic). Second, our model can be used to
study the performance of heterogeneous 802.11 WLANSs in which each node may
have different system parameters (e.g. back-off window size). Third, we theoreti-
cally study the sufficient condition for the uniqueness of equilibrium in a general
heterogeneous 802.11 WLANs. Our sufficient condition is a superset of that in
8]

We first model the performance of the MAC protocol using the fixed point
analysis [7] using renewal process theory [11]. The time average performance
of the network can be obtained by solving simultaneous non-linear equations.
Then, we apply interval analysis [12] to study the sufficient condition for the
uniqueness of root, which indicates the network will be in a unique equilibrium.
In the previous study [7] for homogeneous 802.11 WLANS, it has been shown
that the network has a unique equilibrium if the mean backoff window sizes at
different backoff stages are a non-decreasing sequence. Through our analysis, we
prove that this sufficient condition still holds for a general heterogeneous 802.11
WLAN. We verify our model through simulations and the results show that our
model is able to accurately capture the average behavior of the network.



The rest of the paper is organized as follows. Section 2 states the system
model. Section 3 describes the details of the proposed analytical model. We
evaluate our model in Section 4. Section 5 concludes this paper.

2 System Model

We study a single-cell WLAN with fixed number n of contending nodes that
access the same wireless channel following 802.11 DCF [1]. For simplicity, these
nodes are within the transmission range of each other, and there is not hidden
terminal problem. We consider general traffic situation for each node. In par-
ticular, node 7 can send a packet to any other nodes in the network, and its
aggregate traffic rate is A; (in packet per slot). In order to capture the impact of
unsaturated traffic sources, we assume that each node has the probability that
its queue is non-empty, denoted by p;. Suppose the average service time for a
packet once it becomes the head of the queue is E(S;) (in slots), according to
the Little’s Theorem [11], we have

pi = ME(S)) (1)

Queueing theory [11] has shown that the average packet delay of node i expo-
nentially increases with p;. According to delay requirements, we assume node
i operates with a targeted p; by controlling A; based on Eq.(1). The control is
deterministic if E(.S;) can be uniquely determined by (p1, ..., pn). We will prove
that this assumption actually holds. According to the traffic and channel con-
dition statistics, we assume the mean bit error rate of node i is ber; and data
packets sent by node i have a mean length of DAT A;. We assume the RTS/CTS
handshaking mechanism is always switched on. As shown in [3,9], there is not
significant differences in modeling these two mechanisms.

We also consider heterogeneous MAC parameters of each node. Even though
the results in [8] can be used to model the impact of arbitrary inter frame
space (AIFS) [2], it has been indicated in [8] that differentiating AIFS or the
exponential component p would starve low priority traffic as the load of system
increases. On the contrary, using initial back-off window can produce a bounded
throughput ratio between different classes of traffic. Thus, we simply focus on
the case that the nodes may have heterogeneous backoff parameters. Specifically,
backoff parameters (for node i) are:

— K;: At the (K;+1)th attempt either the impending packet of node ¢ succeeds
or is discarded

— b ks The mean backoff (in slots) at the kth attempt for an impending packet
of node i, where 0 < k < K;.

Other parameters not mentioned are the same for all nodes. Following the design
principle of standard IEEE 802.11 DCF [1], we assume that b; x, k > 0 is a non-
decreasing sequence.



3 The Proposed Model

In this section, we first introduce the proposed model and then study the net-
work’s equilibrium. To make the presentation clear, we omit the inter frame
spaces since their are much shorter than the transmission time of control and
data packets.

3.1 Modeling The Attempt Rate

Suppose node i sends a data packet DAT A; with ber;, the probability of trans-
mission failures, denoted by p. ;, can be calculated as:

Pei = 1 — (1 — peri(RTS))(1 — peri(CTS))(1 — peri(DAT A;))(1 — peri(ACK))(2)
where the packet error probability per;(p) is defined by:
peri(p) = 1 — (1 — ber;)P1em9th .

When a transmission failure happens at node i, the amount of bandwidth
waste, denoted by «; can be calculated as:

a; = tx(RTS) + tz(CTS) + (1 — ¢;)(tx(DAT A;) + tx(ACK)) (4)
where tx(p) is the total transmission time of packet p and
o = (per; (RT'S) + per;(CTS)) (5)
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Fig. 1. The aggregate attempt process of node ¢

Whenever the channel is occupied due to either data transmissions or colli-
sions, each node freezes its backoff timer until the channel is available. Therefore,
similar to [7], we can remove all busy periods of the channel and study the at-
tempt rate of each node according to the aggregate attempt process in the idle
periods of the channel. As shown in Figure 1, the aggregate attempt process
of a node can be seen as a renewal process in which the reward is the num-
ber attempts in each renewal cycle. Since the each node enters the next backoff
stage when it has a collision or transmission failure, suppose the conditional col-
lision probability seen by node ¢ when it attempts to access channel is p.; , the
conditional probability that an attempt of the node fails, denoted by ~; follows:

i = (1 — pe,i)Pe,i + Dei (6)



With the decoupling assumption introduced by Bianchi [3] and the renewal
reward theorem, the attempt rate of node ¢, denoted by (;, is given by:

K; j
> im0
Zﬁo bi k]

where b; j, is the mean k" backoff period of node i.

Bi = (7)

3.2 Modeling The Service Time

Before studying the existence and uniqueness of equilibrium, we first model
the service time of node i, denoted by E(S;). Equation (7) only describes the
saturation attempt probability. Given the non-empty queue probability of node
1, the actual attempt probability of node ¢ is equal to p; ;. Thus the conditional
collision probability of node i can be calculated by:

n

pei=1- [ (1=piB) 8)
J=Lj#i
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Fig. 2. The Illustration of Channel Activities

Since, as shown in Figure 2, the aggregate channel activity can be viewed as
a renewal process, each of which contains an idle period followed by a collision
or a transmission. For node i, its average service time E(S;) is the average delay
for a packet from the time it reaches the head of the queue at node ¢ to the time
the packet is transmitted or dropped. For the aggregate channel activity, the
mean renewal time is the mean channel idle time plus the mean busy time for a
transmission or a collision. We then study E(S;) conditioned on node ¢ having a
packet in its queue. In this situation, the probability that a slot is idle , denoted
by Pigie, is

Paei=01-8) [ (1-pi8) 9)
J=1.5#

Thus, the aggregate attempt rate is geometrically distributed with parameter
1— P,gie,i, thus the mean channel idle time seen by node i follows (Note that we
use a slot as time unit):

1

E(tidle,i) - ﬁ
— Ldle,i

(10)



When the idle period ends, an attempt happens and the channel becomes
busy due to a transmission or a collision. The probability of node k performing
an attempt seen by node i follows:

1Uﬁ)Hﬁ Gy P

. Q=B ] ., (1rib;

P,(k,i) = ék—l];”é else (11)
IECEEDY | NI,

With Eq. (8), given the conditional collision probability p. , the probability
that node k’s attempt is collision free seen by node i, denoted by Py,.(k,1), is
equal to:

o Pa(i, i) (1 = pei), k=i
Pl 1) = {Pam,z‘)(l — per) 7 else

1—pifB;°
When the channel is busy, the collision probability of the system seen by node
i, denoted by P.oy; (i), is equal to:

(12)

Peon(i) = 1= Pur(k,i) (13)
k=1

For the attempt process of node i, node i’s attempts can be separated by
renewal cycles. Each cycle consists an idle period followed by a busy period. The
mean channel busy time seen by node i before it obtains its transmission chance
follows:

E(tbusy,i) = Z Ptr(k, Z)(Sk + Pcoll(i)Tc (14)
k=1
where
Ok = (1 = pe,p)tx(DAT Ak) + pe ik (15)

ay, is defined by Eq. (4), and T, is the mean time the channel is sensed busy
during a collision, and is equal to tz(RT'S) + FIF'S.

The mean number of renewal cycles between node i’s consecutive attempts
follows geometric distribution with parameter P,(i,). Thus, the mean time pe-

riod between node i’s consecutive attempts is equal to E(tidle’;;)zigtb“y'i) . Consid-
ering collisions and channel errors, the mean number of attempts node i needed
for a successful transmission follows geometric distribution with parameter 1—-;.

Since each packet at node ¢ will be dropped after K; + 1 transmissions, the ad-
1—’yf("’+1

=i

justed mean number of attempts for a packet follows: ZkK:io(l —yi )k =

K+
With Lhopital’s rule for %, lim,, 117_7%

vice time of node i can be obtained by:
1 Kitl E(tidle,i) + E(tbusy,i)

-
E(S:) = = ( Palid) ) (16)

= K; + 1. Therefore, the mean ser-

We can use the service time to derive throughput. With queueing theory [13],
the throughput of node i, denoted by Tj;, follows:
piDATAi(l — pdﬂ;)

E(S:)0

T, = (7)



Where 0 is the length of a time slot. pg; reflects the impact of packet dropping,
and follows:

K;

pai=1-Y (1= =~ (18)
k=0

3.3 The Existence of Equilibrium

Let I'(pe,i) = 1=T1j—1 j2i(1=p;jGj(pe,5)), for 1 <i <, where Gi(pc,i) = B;- We
can write these n equations compactly in the following form of the simultaneous
fixed point equations.

(pc,17pc,27 “-7pc,n) = (F(pc,1)7p(pc,2), -~~>F(pc,n)) (19)

Definition 1 Given p = (p1, ..., pi), the network is in equilibrium if the condi-
tional collision probability vector p. = (Pe,1, .- Den) Satisfies the simultaneous
equations (19).

Because Egs. (19) are non-linear equations, the network will be in multiple
equilibria if the equations have multiple roots. In contrast, the network stays
in a steady-state equilibrium if the equations have a unique root. The steady-
state equilibrium can be directly used to describe the network’s time average
performance®, which is of fundamental interest.

Since p and p. are continuous real vectors in [0, 1]", Eqs.(19) are continuous
function mapping from [0, 1] to [0, 1]™. Hence by Brouwer’s fixed point theorem
there exists fixed points in [0,1]™ for Egs. (19). Many existing algorithms can
be used to calculate the roots of Eq. 19. For example, Quasi-Newton algorithms
(e.g. the Broyden algorithm [14]) can be used to solve the equations efficiently.
During our study, the equations can be solved quite fast and the root can be
found with less than 7 iterations.

3.4 Uniqueness of Equilibrium

The network has a unique equilibrium if and only if Eqgs.(19) has a unique root.
At the first glance, the uniqueness of solution may be affected by system pa-
rameters, BERs and the traffic arrival rate As. Through detailed analysis, we
can show that the uniqueness of equilibrium is only related to the settings of
backoff parameters (i.e. b; ). In the following sub-sections, we give the details
of analysis.

! The time average is the long term time average, and does not necessarily prevent
the short-term unfairness problem found in [8].



Interval Extensions of Rational Functions We start our analysis by intro-
ducing basics of interval analysis. A real interval A is the bounded, closed set of
the real numbers defined by

A=la,a)={zr € Rla<z<a} (20)

where a,a € R and a < a@. When a = @, A is called a singleton. An interval
vector Vin I(R™) has n components, each of which is an interval, V; € I(R),
i=1,...,n. For A B € I(R), the operators +, —, %, / are defined as follows:

A4+ B=[a+ba+b]

A—B=[a—ba+]

A x B = [min(ab, ab, ab, ab), max(ab, ab, @b, ab)]
A/B = Ax[1/b,1/b]

For an interval matrix A with interval coefficients [a,;, @;;], its norm follows:

n

14]] = maz; > " max(|a,, |, @)

Jj=1

As state in [15] that, given a rational function f(x),x € R™, its interval
extension F(X),X C I(R"™) can be obtained by simply replacing the real oper-
ations by interval operations and the variables by intervals. One simple example
is,

f(@) = a(l —2); F(X) = X x (1 - X)

Testing the Uniqueness of Solution We apply the interval fixed point the-
orem to get the sufficient condition for the unique solution of Eqs.(19). In par-
ticular, given a initial xy € X, where X is an interval vector. The Krawczyk
operator [16] is defined as:

K(X,z0) =20 —Y f(zo) + (I = YJ(X))(X — x0)) (21)

where Y is an arbitrary nonsingular matriz and J(X) is the interval extension of
the Jacobian of F'(x), which is denoted by J(z). Specifically, J;;(X) is obtained
by applying interval extension to J;;(z). Krawczyk [16] has shown that if X
has a solution to F(x) = 0, where F(.) is a function, then so does K(X,xg).
According to the Moore’s theorem [15], the sufficient condition for the uniqueness
of solution for F'(z) = 0 is as follows:

I -YJ(X)|| <1 (22)
where I is the identity matrix with the same dimension of Y'.J(X). The norm of
interval matrix A with interval coefficients A;; = [a,;, @;;] is defined in Egs. (21).
The reason behind is that, when Eq.(22) holds, the Krawczyk operator performs
contractive mapping in X and guarantees a unique root.



In order to guarantee the uniqueness of solution, we need to find a nonsingular
matrix Y which satisfies condition (22). Supposed we have a nonsingular matrix
Y’, we relax condition (22) to reduce the computational complexity. Specifically,

=Y IX)| = [[Y' (Y™ = J (X))
Since all matrix norms satisfy the submultiplicative property
|IABI| < [[A[[||B]]
Letting Y = Y'~!, we have
1YY = JCO) < Y HIY = T
Since ||I]| = 1, to satisfy [|[Y71|||]Y — J(X)|| < 1, we obtain
Y HIIY = JX)I < Y I = 1Y = J(X)I < )Y]] (23)

Therefore, we need to study if we can find a nonsingular matrix Y to satisfy
Ineq. (23).
The Jacobian J(x) is calculated by:

1, =g
Jij(x) = { OL(z) oo (24)
81(;5;’") is calculated as follows:
Al (z; - )
Q:):kLLUUI%GMm»MGJ%) (25)
1 ki

Since J;;(z) is a rational function, we can easily apply interval extension to
Ji;j(x) over the interval [0, 1]. We have

[ (1-pGO), J[ -mG) (26)

k=1,k#1,j k=1,k#i,j

Since G;(.) resides in [0,1] and is a monotonically decreasing function [7] pro-
vided that b; i, is a non-decreasing sequence, G5(.) < 0. Thus, we have

(L= pei)pi [ Toy s ; (1 = PeGi(1)) .
K;
(Dko bikpe ;)?
K;

K; K;
_ Ki(K;+1
> bt Yok - B S g (21)
k=1 k=0

k=0

Gi([0,1]) =



Therefore, J([0, 1]) follows:

Ji;([0,1]) = { Ela—j]] i;j (28)
where
[a;;, @] = Gi([0,1]) % | H (1= prG(0)), (1—prG(1))] (29)
k=1,k#i,j k=1,k#1i,j

k=argmazi<i<n Z?:1 la;;|; /*Note that a; < 0%/
Arbitrarily select a real positive number 7, and
matrix Y is defined by:

-1, i=j
Vij={ ap,~mi=kAi#] (30)
0, else

Table 1. The algorithm for constructing the matrix Y

Theorem 1 For each node i, if b; j, is non-decreasing, then the network has a
unique equilibrium and the corresponding X is also unique.

Proof. The existence of equilibrium has been proven in Section 3.3. Because all
parameters are finite and G(.) is a non-increasing function, [a;;,d@;;],1 <i,j5 <n
are compact and g;; < @;; = 0. Given J([0,1]), we can always construct a
nonsingular matrix Y following the algorithm in Table 1.

Applying the algorithm in Table 1, it is obvious that Y exists since [gij, ai;l,1 <
i,j < n are compact. In addition, Y is nonsingular since det(Y) = (—1)". Ap-
plying Y to the left-hand of Ineq (23), we have:

Y = 70,1 = (n— 1) lag, — 7]

= Y]l =1 < [[Y]]

Therefore, Ineq. (23) is satisfied and, given p, Egs. (19) has a unique root p.. As
a result, the network equilibrium is unique. In addition, according to the analysis
in Section 3.2, the service time of node i, E(S;), is uniquely decided by p and
Pe. Recalling Eq.(1), the mapping from p to A is one-to-one, which guarantees
the flow control vector A is also unique.



4 Model Validations

We validate our model via comparing analytical results to simulation results.
The simulations are performed using ns-2 [17]. Without loss of generalization,
packet size is assumed to be 1000 bytes and the transmission rate of each node
is assumed to be 2 Mbps with a certain BER. Due to the limitation of space,
we study a homogeneous network where each node follows the standard 802.11b
specifications. In order to study both saturated and unsaturated traffic scenarios,
pi is defined by min(0.05 * n, 1.0), where n is the number of nodes.
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Fig. 3. The average throughput

We evaluate the average per-flow throughput in two scenarios, which are
error-free and error-prone respectively. When channel is error-prone, the BER of
each flow is assumed to be equal to 10~°. We evaluate the average throughput as
the function of the number of nodes. The results are shown in Figure 3 (a) and
(b). As shown in the Figure, our model is able to accurately capture of average
throughput in the system. Note that when the number of nodes is greater or
equal to 20, every flow becomes saturated.

5 Conclusion

In this paper, we present a simple and accurate analysis model for the MAC
performance of heterogeneous IEEE 802.11 based WLANs. We take into ac-
count of many practical factors (such as channel errors and unsaturated traf-
fic) which may have significant impact on the network performance. With fixed
point analysis, we first model the performance of the network with a simulta-
neous non-linear equations. Then, the service time of each flow is modeled and
is further used to obtain the average throughput. We then theoretically exam-
ine the equilibrium of a general heterogeneous WLAN by studying the property
of the corresponding simultaneous non-linear equations. We find the sufficient
condition for the uniqueness of the equilibrium. Our model is validated through
simulations and the results prove that our model is quite accurate to model



the time average performance of the network. As future work, we will extend
our model for 802.11-based multi-hop wireless ad hoc networks and study the
existence and uniqueness of equilibrium as well.
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