
Client-side Adaptive Search Optimisation for

Online Game Server Discovery

Grenville Armitage

Centre for Advanced Internet Architectures
Swinburne University of Technology, Melbourne, Australia

garmitage@swin.edu.au

Abstract. This paper describes a client-side, adaptive search technique
to reduce both the time taken to discover playable online First Person
Shooter (FPS) game servers and the number of network �ows created
during game server discovery. Online FPS games usually use a client-
server model, with thousands of game servers active at any time. Tradi-
tional FPS server discovery probes all available servers over multiple min-
utes in no particular order, creating thousands of short-lived UDP �ows.
Probing triggers rapid consumption of longer-lived per-�ow state memory
in NAT devices between a client and the internet. Using server discovery
data from Valve's Counterstrike:Source and idSoftware's Wolfenstein En-
emy Territory this paper demonstrates that pre-probing a subset of game
servers can be used to re-order and optimise the overall probe sequence.
Game servers are now probed in approximately ascending latency, expe-
diting the location of playable servers. Discovery of playable servers may
now take less than 20% of the time and network tra�c of conventional
game server discovery. The worst case converges to (without exceeding)
the behaviour of conventional game server discovery.

Keywords: Server discovery, search optimisation, latency estimation

1 Introduction

Internet-based multiplayer First Person Shooter (FPS) games (such as Wolfen-
stein Enemy Territory [1], Half-Life 2 [2], Counterstrike:Source [3] and Enemy
Territory Quake Wars [4]) have become quite common in the past 6+ years.
FPS games typically operate in a client-server mode, with game servers being
hosted by Internet service providers (ISPs), dedicated game hosting companies
and individual enthusiasts. Although individual FPS game servers typically only
host from 4 to around 30+ players, there are usually many thousands of indi-
vidually operated game servers active on the Internet at any given time [5]. The
challenge for game clients is to locate up-to-date information about the game
servers available at any given time, such that the player can select a suitable
server on which to play.

Server discovery is usually triggered manually by the human player, to pop-
ulate or refresh the list of available servers presented by their client's on-screen



`server browser'. Once triggered, a game client �rst queries a master server pre-
con�gured into the game client software. The master server returns a list of
thousands of <IP address:port> pairs numbers representing currently `active'
game servers. The client then steps through this list, probing each listed game
server for information (such as the current map type, game type and number
of players). The probe, a brief two-way UDP packet exchange, allows the client
to estimate the current latency (round trip time, RTT) between itself and each
game server who replies. All this information is presented to the player (usually
as it is gathered), who then selects a game server to join.

A key server selection criteria is the client-to-server latency. Published liter-
ature suggests that competitive online FPS game play requires latencies below
roughly 150ms to 200ms [5]. However, from many locations on the Internet there
will be game servers over 200ms away. Players cannot know which servers fall
under their latency tolerance until the server discovery process has completed.
A given client will send out hundreds or thousands of probe packets before the
player selects and joins only one game server.

There are two noteworthy client-side consequences. First, server discovery
can take multiple minutes to probe all available game servers. Second, any net-
work address translation (NAT) devices between the client and the internet will
experience a burst of dynamically-created state entries in its NAT tables (po-
tentially creating temporary exhaustion of the NAT device's table space).

This paper describes a self-calibrating client-side method for optimising the
server discovery probe sequence. The method adapts to wherever the client is
located (topologically) on the Internet, and does not require the client to have a
priori knowledge of its public IP address. The time to discover playable servers
can be 20% or less of the regular server discovery time (and in the worst case,
converge on - without exceeding - the time required for regular server discovery).
The method is illustrated with examples based on Valve's Counterstrike:Source
(CS:S) and idSoftware's Wolfenstein Enemy Territory (ET).

The rest of this paper is organised as follows. Section 2 provides more de-
tails of existing server discovery techniques and their limitations. This paper's
proposed method is described in section 3, with section 4 illustrating the pro-
posed technique's potential impact. Limitations, alternatives and future work
are outlined in section 5. The paper concludes in Section 6.

2 Current State of FPS Server Discovery

In this section we review the current ET and CS:S server discovery processes,
consider how they impact on a player's experience, and re�ect on the network
layer constraints and consequences for consumer broadband services.

2.1 ET and CS:S Server Discovery

Figure 1 illustrates the server discovery process used by ET. Released in 2003
as an online-only team-play FPS game, ET is based on the earlier Quake III



Fig. 1. An Enemy Territory (ET) client's discovery and probing of registered ET game
servers

Arena (Q3A) game engine, and inherits Q3A's underlying server discovery mech-
anism. Public ET game servers automatically register themselves at etmas-
ter.idsoftware.com, the ET master server.

When a player requests server discovery an ET client �rst queries the ET
master server (getservers), retrieving a list of <IP address:port> pairs. This list
(returned in one or more getserversResponse packets) represents all currently reg-
istered game servers. The client then probes each server (using 43-byte getinfo

UDP/IP packets) in the order provided by the master server, eliciting infoRe-

sponse replies from each game server. The client's on-screen `server browser' is
populated with game server information (and estimated RTT) as each infoRe-

sponse reply returns.
CS:S has been regularly updated since �rst released in late 2004 by Valve

Corporation. Server discovery uses Valve's Steam [6] online authentication and
game delivery system. Although the packet syntax [7] di�ers markedly to the pro-
tocol used by ET the basic steps are similar to those shown in Figure 1. Players
initiate server discovery through their Steam client's game server browser. The
client retrieves a list of <IP address:port> pairs from a Steam master server
at hl2master.steampowered.com, and begins probing game servers with 53-byte
UDP/IP packets containing the ASCII string TSource Engine Query (TSEQ).
The Steam client's server browser is updated as replies comes back.

2.2 Real world examples

For this paper representative data was gathered from a number of locations
around the planet (listed in Table 1). The Australian host ran actual ET and
CS:S clients, whilst the others were nodes on Planetlab [8] using the open-source
game server discovery tool qstat [9].

Figures 2 and 3 illustrate the distribution of game server RTTs versus probe
time experienced by the standard ET and CS:S clients in Australia in late
September 2007. For ET the distribution of RTTs is consistent (and widely



Host name and location Country and client type(s)

gjagw.space4me.com, Australia (actual clients) AU-CSS, AU-ET

planetlab1.otemachi.wide.ad.jp, Japan (Planetlab) JP-ET, JP-CSS

planetlab2.csg.uzh.ch, Switzerland (Planetlab) CH-ET

edi.tkn.tu-berlin.de, Germany (Planetlab) DE-CSS
Table 1. Location of clients used to gather representative RTT samples

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Measured game server RTT vs time of probe: AU−ET
(2811 probes at ~42 probes/second)

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Fig. 2.Measured RTT vs time: ET server
discovery sequence as seen from Australia
in September 2007

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Measured game server RTT vs time of probe: AU−CSS
(25601 probes at ~129 probes/second)

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Fig. 3. Measured RTT vs time: CS:S
server discovery sequence as seen from
Australia in September 2007

spread) across the 70 second discovery period. For CS:S the distribution is not
as uniformly spread across the (roughly) 3 minute discovery period. In both
cases all servers must be probed before players can presume they've covered all
possible game servers with `playable' RTT.

The large number of probes over 200ms in Figures 2 and 3 re�ects the fact
that many ET and CS:S game servers tend to be hosted in Europe and the
USA. Similar RTT levels are seen from Japan, whilst the clients in Germany
and Switzerland saw almost the inverse - most probes returned low RTTs, under
200ms. ET and CS:S clients in the Asia-paci�c region end up probing many
servers that are subsequently determined to be unsuitable for competitive play.

2.3 Impact on consumer network connections

Most game clients sit behind consumer broadband connections. The server dis-
covery probe rate is consequently capped to the client's estimate of available
upstream bandwidth. FPS clients usually require players to indicate their In-
ternet connection type (`dial-up', `ADSL', `Cable modem', etc). In addition to
tweaking the packet rates used during actual game play, this information can al-
low the client to estimate an appropriate server discovery probe rate. Too many
probes per second may congest the player's upstream bandwidth, potentially



in�ating the estimated RTT or causing probe packets to be dropped. Too few
probes per second increases the time taken to complete server discovery.

Server discovery also increases memory consumption in NAT-enabled routers
between the client and the Internet. Although UDP is notionally state-less, NAT
devices typically retain mapping state for a number of minutes after seeing UDP
tra�c head to the Internet from a local network. For example, the trial for Fig-
ure 3 caused ~25K unique NAT mapping table entries to be dynamically created
over a 3 minute period. Despite each server discovery transaction completing in
under two seconds these NAT table entries remained (wasting memory) for mul-
tiple minutes before being released.

2.4 Filtering at the client and master server

Client-side �ltering (such as not showing servers that are full or empty, or ranking
the servers in order of ascending RTT) has limited impact on the network tra�c
created during server discovery because it happens during or after the active
probing of the available game servers. (Players may certainly choose to exit
server discovery early when they see enough servers with tolerable. Nevertheless,
as Figures 2 and 3 show, the player cannot safely assume they're seeing all servers
under a particular RTT until all available servers have been probed.)

Valve's Steam master server supports rudimentary server-side �ltering. Man-
ually selected by the player, a Steam client's initial query can request game
servers of a certain type (such as �only CS:S game servers�) or game servers be-
lieved (by the master server) to be in one of eight broad geographical regions of
the planet (such as �US-West�, �Europe�, �Asia�, etc). Filters reduce the number
of game servers returned by the master server, and hence reduce the number of
probes subsequently emitted by a Steam client.

However, a master server cannot know a priori the RTT between any given
client and game server. Thus a client must still actively probe the entire (albeit
possibly reduced) set of IP address:port pairs handed back by the master server.

3 Proposed client-side optimisation

This paper's client-side optimisation meets four key goals:

� Presentation of results from closer servers before those of more distant servers
� Optional automatic early termination of search sequence
� Function from behind consumer NAT devices without additional manual
intervention or con�guration by the player

� No additional processing load on master servers

The �rst two goals improve a player's experience and reduce network tra�c
generated by server discovery. The third goal addresses usability. Players should
not be expected to manually con�gure additional knowledge into the client (such
as the public IP address of the player's home broadband connection). Adapting



to being behind a NAT device is crucial because so many game clients will
sit on a consumer home broadband connection. The fourth goal minimises the
incremental operational cost to a game publisher (as master servers already serve
thousands of queries per hour without generating any new revenue).

3.1 Background

The challenge of �nding FPS servers with low enough RTT is well recognised [10].
To date research has focused on re-locating clients to optimally placed servers
(e.g. [11]), rather than optimising the server discovery process itself.

The problem appears contradictory: we wish to probe game servers in order
of ascending RTT before we've probed them to establish their RTT. In 2006
the author hypothesised that a client might locally re-order the probe sequence
so that game servers in countries `closer' to the client would be probed before
those `further away' [12]. First the client would map server IP addresses to
their country of origin (for example, using MaxMind's free GeoLite Country
database [13]). Then selected servers in each country would be probed, providing
an estimate of the RTT to each country relative to the client's current location.
Finally, the countries would be ranked in ascending order of estimated RTT, and
all remaining game servers probed in order of their country's rank. Subsequent
implementation revealed that re-ordering solely on the basis of country code was
inadequate. This paper presents a functional improvement of the idea in [12].

3.2 Re-ordering based on country and topology

Algorithm 1 shows the proposed steps - clustering, calibration and re-ordered
probing. Clustering involves identifying those game servers who share a common

topological relationship within a country. Calibration involves initially probing
a small subset of servers in each cluster, thereby creating an estimate of the
RTT to every server in the cluster. (The cluster is sub-divided if the sampled
RTTs are spread across `too wide' a range.) Re-ordered probing involves ranking
clusters by ascending RTT then probing remaining game servers according to
their cluster's rank.

The de�nition of a cluster relies on two facts. First, third-party databases
allow geographical location to be inferred from IP addresses, even though an
IP address by itself has no geographic semantics. Second, within the context of
given country the higher order IP address bits provide a coarse, but su�cient,
key to di�erentiate servers sharing paths with potentially di�erent latencies.

Calibration takes care of two key requirements. Active sampling ensures clus-
ter RTTs for ranking are relative to the client's current Internet location (whether
or not the client sits behind a NAT device). In addition, a cluster covering too
wide a spread of RTT values is subdivided along /16 boundaries, creating multi-
ple smaller clusters for the ranking step. The game servers probed in step 4 are
considered `done' and not probed again in step 6.

Modern FPS games typically require processor speeds well over 1GHz, so
Algorithm 1 adds negligible overhead relative to the time required to actually



Algorithm 1 Clustering, calibration and re-ordered probing

1. Query master server for list of game servers
2. Create initial clusters:

(a) Assign every game server a country code
(b) Identify every /8 subnet within each country code that contains:

i. more than 10 game servers, and
ii. more than 10% of all game servers from that country

(c) Every server in a /8 subnet identi�ed above is assigned a unique cluster_id

from the server's country code and the /8 subnet number
(d) Every server not in a /8 subnet identi�ed above is assigned the server's country

code as a unique cluster_id

3. Servers with the same cluster_id are now members of the same cluster
4. For each cluster_id, perform the following steps:

(a) Set Nsample =
√

Ncluster, where Ncluster is the number of servers in the cluster
(b) Randomly select Nsample servers from the cluster, one from each /16 subnet

present within the cluster
(c) Issue a standard server discovery probe to each of the server's selected in the

previous step
(d) The estimated RTT (RTTcluster) for this cluster is the median measured RTT
(e) If the 20th and 80th percentile measurements making up RTTcluster di�er by

more than 40ms:

i. Split the members of this cluster_id into mutiple new clusters
ii. Each new cluster (and associated cluster_id) is made from members of

the old cluster who share the most signi�cant 16 bits of their IP addresses
iii. Issue a standard server discovery probe to one previously un-probed server

randomly selected from each new cluster. The probed RTT becomes
RTTcluster for the new cluster

5. Rank every cluster in order of ascending RTTcluster

6. Probe all remaining game servers in order of their cluster's rank. Within a cluster,
probe servers in the order they were returned by the master server.

transmit and receive all probes. Thus in the worst case this algorithm's perfor-
mance (timeliness in presenting acceptable servers to the player) converges on,
without being worse than, the performance of conventional server discovery.

3.3 Automatic termination of discovery phase

Individual servers probed in Algorithm 1's step 6 may not have ascending RTTs,
but the RTT averaged over a number of recently probed servers will trend up-
wards. Consequently it becomes feasible to implement automatic early termina-
tion (auto-stop) of probing during Step 6 when the RTT trends above a player-
speci�ed threshold. This will reduce both the number of probes transmitted and
the time a player must wait to be reasonably sure the client has probed the
servers who are acceptably close (particularly for clients a long way from many
servers). The variability of individual RTTs for game servers within a given clus-



Algorithm 2 Auto-stop calculation

� Set RTTstop as the maximum RTT considered playable for a game server (for
example, RTTstop = 200ms)

� Decide on a window size Wautostop (for example, Wautostop = 100)
� Wait until at least Wautostop servers are probed in Algorithm 1's step 6.
� Now, after each successive probe in Algorithm 1's step 6 re-calculate RTTbottom

as the 2nd-percentile RTT over the last Wautostop probes (the RTT below which
2% of RTT samples have fallen)

� Terminate Algorithm 1's step 6 when RTTbottom > RTTstop

ter mean an auto-stop decision should err on the side of continuing rather than
terminating the search. Algorithm 2 has been found to be suitably cautious.

4 Illustrating the optimisation with CS:S and ET

Space constraints preclude an exhaustive analysis of section 3's client-side opti-
misation. Instead, we present a selection of illustrative examples using real-world
RTT datasets gathered from the hosts in Table 1. Each dataset was then used to
simulate the consequences of a client applying the steps in sections 3.2 and 3.3.
Quantitative results are summarised in Table 2. (Di�erences exist between the
number of servers probed in each case as the datasets were not gathered at
precisely the same time.)

For each simulated client Algorithm 1 generates tra�c in two phases - `initial
probes' (step 4) and `re-ordered probes' (step 6). Only re-ordered probes are
shown on each graph, along with the variation of Algorithm 2's RTTbottom over
time. The auto-stop RTT threshold is 200ms, and the estimated auto-stop time
is indicated by a blue vertical line.

Figures 4, 5 and 6 illustrate the impact on typical ET clients located in
Australia, Japan and Switzerland respectively. Compared to the ~70 second
probe sequence in Figure 2 the Australian client sees a distinct improvement.
It takes ~10 seconds to cluster the active game servers and begin issuing re-
ordered probes, with auto-stop being triggered in ~14 seconds. A similar bene�t

Client Countries /8 clusters
Initial
Probes

Auto-stop time
(seconds)

Auto-stop (% of
full probe)

AU-ET 51 77 396 14 20

JP-ET 52 77 446 24 36

CH-ET 50 79 492 68 100

AU-CSS 71 140 2136 24 12

JP-CSS 69 143 1694 60 28

DE-CSS 69 143 2159 208 98
Table 2. Impact of utilising optimised server discovery from di�erent locations



is evident for the client based in Japan. Figure 6 illustrates the neutral impact on
clients close to large concentrations of game servers under 200ms. Servers over
200ms are seen towards the end of the probe sequence, but the auto-stop process
errs on the side of continuing (rather than stopping) and the client ultimately
probes all active servers.

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re−ordered probes vs time: AU−ET
(396 initial probes, 2415 re−ordered probes, 40 probes/sec)

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Re−ordered probes

Auto−stop estimator

Player RTT tolerance

Auto−stop time

Fig. 4. Re-ordered ET probe sequence for
a client in Australia

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re−ordered probes vs time: JP−ET
(446 initial probes, 2228 re−ordered probes, 40 probes/sec)

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Re−ordered probes

Auto−stop estimator

Player RTT tolerance

Auto−stop time

Fig. 5. Re-ordered ET probe sequence for
a client in Japan

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re−ordered probes vs time: CH−ET
(492 initial probes, 2229 re−ordered probes, 40 probes/sec)

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Re−ordered probes

Auto−stop estimator

Player RTT tolerance

Auto−stop time

Fig. 6. Re-ordered ET probe sequence for
a client in Switzerland

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re−ordered probes vs time: AU−CSS
(2136 initial probes, 23465 re−ordered probes, 130 probes/sec)

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Re−ordered probes

Auto−stop estimator

Player RTT tolerance

Auto−stop time

Fig. 7. Re-ordered CS:S probe sequence
for a client in Australia

Figures 7, 8 and 9 illustrate the impact on typical CS:S clients located in
Australia, Japan, and Germany respectively. Compared to the ~200 second probe
sequence in Figure 3 the Australian client sees a distinct improvement. It takes
just under 20 seconds to cluster the active game serves and begin issuing re-



ordered probes, with auto-stop being triggered in ~24 seconds (12% of the non-
optimised search time). A similar, albeit less dramatic, bene�t is evident for the
client based in Japan. A client based in Germany would see only limited bene�t
from the re-ordered probe sequence - the auto-stop triggers after almost 98% of
active servers have been probed.

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re−ordered probes vs time: JP−CSS
(1694 initial probes, 25934 re−ordered probes, 130 probes/sec)

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Re−ordered probes

Auto−stop estimator

Player RTT tolerance

Auto−stop time

Fig. 8. Re-ordered CS:S probe sequence
for a client in Japan

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re−ordered probes vs time: DE−CSS
(2159 initial probes, 25519 re−ordered probes, 130 probes/sec)

Seconds since first probe

R
T

T
 (

se
co

nd
s)

Re−ordered probes

Auto−stop estimator

Player RTT tolerance

Auto−stop time

Fig. 9. Re-ordered CS:S probe sequence
for a client in Germany

The key message is that clients far away from most game servers can see
signi�cant reduction in the number of probes emitted by their clients before
concluding that all playable servers have been seen. This reduces the player's
wait time, reduces the number of UDP �ows passing through any NAT devices
near the client, and reduces the number of bytes sent and received to probe
servers unlikely to be suited to competitive play..

5 Limitations, alternatives and future work

5.1 Limitations and alternatives

It is inherently challenging to consistently optimise the full search sequence based
on sampling of the master server's list of active game servers.

For example, Algorithm 1's Nsample should be kept low so the initial probe
sequence in step 3 involves a small fraction of the game servers returned in step 1.
This paper's calculation of Nsample works reasonably well for the datasets used.
However, increasing Nsample will improve the estimation of RTTcluster and the
reliable sub-division of clusters where necessary, improving the consistency of
cluster ranking in step 6.

The current scheme relies on a third-party database for mapping IP addresses
to geographically signi�cant country codes. Such databases are themselves not
perfect (MaxMind's GeoIP claims to map 97% of all IP address allocations to



country codes), and they must be updated regularly as real-world IP address
allocations change. Fortunately, the databases are small (relative to today's game
clients) and don't change much from month to month (GeoLite Country went
from 677Kbyte to ~1Mbyte between April and October 2007). Most FPS games
include mechanisms for auto-update of game content, which can also handle
incremental updates to the country code mapping database.

Another issue is that auto-stop relies on an inherently noisy `signal', and
may be fooled into premature termination if the cluster ranking is su�ciently
mis-ordered or RTTstop is set too low.

Further options open up if we allow modi�cation of the master server. Map-
ping of IP addresses to country codes could be moved to the master server,
with tuples of <ipaddr:port:countrycode> returned to querying clients. Clients
would skip step 2(a) of cluster formation, and discard the local address mapping
database. However, reply packets from the master server would increase by two
bytes per game server (assuming two-character country codes).

In principle a master server could also pre-order the list of game servers re-
turned to each client by estimating the client's distance to servers in other coun-
tries (using the client's public IP address and a country code mapping database
held at the master server). However, a master server cannot know the network
conditions prevailing between each client and game servers in di�erent countries,
so there is no bene�t to be gained.

5.2 Future work

Future work will characterise the probability with which clusters are formed and
ranked suboptimally as a function of Nsample , the use of /8 and /16 boundaries,
and the spread of RTTs used to trigger new cluster formation in step 4(e). We will
also evaluate alternative auto-stop algorithms, such as waiting for a smooth run
of consistently high probe RTTs before stopping (rather than simply triggering
on the lowest 2nd percentile RTT).

We will also explore alternative indicators that game servers share a com-
mon 'distance' from a client, such as Autonomous System (AS) numbers. AS
numbers are used in inter-domain routing to identify topologically distinct re-
gions of the internet. Clustering based on AS numbers (rather than country
code) may lead to more accurate RTTcluster estimates and greater consistency
in ranking of clusters. Master servers are a good place to track the live BGP
routing information updates required to maintain IP address to AS number
mappings. We will explore the implications of modifying master servers to re-
turn <ipaddr:port:ASnumber> tuples to querying clients.

6 Conclusion

Using examples based on Valve's Counterstrike:Source (CS:S) and idSoftware's
Wolfenstein Enemy Territory (ET) this paper illustrates a self-calibrating client-
side method for optimising the FPS game server discovery probe sequence. Game



servers are clustered by their countries of origin, and the clusters are then ranked
in ascending order of RTT based on initial probing of a small sample of game
servers in each cluster. All remaining game servers are then probed in order
of their cluster's rank. Probing may be automatically terminated when RTT
exceeds a player-speci�ed threshold. The method works wherever the client is
located on the Internet, and can reduce server discovery time and tra�c down
to less than 20% of the regular case. In the worst case, the method converge on -
without exceeding - the time and resources required for regular server discovery.

7 Acknowledgement

I am grateful to Mark Claypool for providing me with access to PlanetLab.

References

1. id Software: Wolfenstein Enemy Territory, under �Downloads� at
http://www.enemyterritory.com/main.html. (as of September 29th 2007)

2. Valve Corporation: Half-Life 2, http://half-life2.com/. (as of April 29th 2007)
3. Valve Corporation: CounterStrike: Source, http://counter-strike.net/. (accessed

February 8th 2008)
4. id Software: Enemy Territory Quake Wars, http://www.enemyterritory.com/. (as

of September 29th 2007)
5. Armitage, G., Claypool, M., Branch, P.: Networking and Online Games - Under-

standing and Engineering Multiplayer Internet Games. John Wiley & Sons, Ltd.,
United Kingdom (June 2006)

6. Valve Corporation: Welcome to Steam, http://www.steampowered.com/. (as of
September 27th 2007)

7. Valve Corporation: Server Queries, http://developer.valvesoftware.com/wiki/Server_Queries.
(as of February 7th 2008)

8. PlanetLab: PlanetLab - An open platform for developing, deploying, and access-
ing planetary-scale services, https://www.planet-lab.org/. (accessed February 8th
2008)

9. : QStat. http://www.qstat.org/. (accessed February 8th 2008)
10. Claypool, M.: Network characteristics for server selection in online games. In:

ACM/SPIE Multimedia Computing and Networking (MMCN). (January 2008)
11. Chambers, C., Feng, W.C., W.-C., F., Saha, D.: A geographic, redirection service

for on-line games. In: ACM Multimedia 2003 (short paper). (November 2003)
12. Armitage, G., Javier, C., Zander, S.: Topological optimisation for online �rst person

shooter game server discovery. In: Proceedings of Australian Telecommunications
and Network Application Conference (ATNAC). (December 2006)

13. MaxMind: GeoLite Country, http://www.maxmind.com/app/geoip_country. (ac-
cessed February 8th 2008)


