
Generalized Self-Healing Key Distribution using
Vector Space Access Structure

Ratna Dutta1, Sourav Mukhopadhyay2, Amitabha Das2, and Sabu Emmanuel2

1 Cryptography & Security Department
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore - 119613
ratna.dutta@gmail.com

2 School of Computer Engineering
Nanyang Technological University

N4-B2c-06, Nanyang Avenue, Singapore - 639798
{msourav, ASADAS, ASEmmanuel}@ntu.edu.sg

Abstract. We propose and analyze a generalized self-healing key distri-
bution using vector space access structure in order to reach more flexible
performance of the scheme. Our self-healing technique enables better
performance gain over previous approaches in terms of storage, commu-
nication and computation complexity. We provide rigorous treatment of
security of our scheme in an appropriate security framework and show it
is computationally secure and achieves forward and backward secrecy.
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1 Introduction

Self-healing key distribution deals with the problem of distributing session keys
for secure communication to a dynamic group of users over an unreliable, lossy
network in a manner that is resistant to packet lost and collusion attacks. The
main concept of self-healing key distribution schemes is that users, in a large
and dynamic group communication over an unreliable network, can recover lost
session keys on their own, even if lost some previous key distribution messages,
without requesting additional transmissions from the group manager. This re-
duces network traffic and risk of user exposure through traffic analysis and also
decreases the work load on the group manager. The key idea of self-healing key
distribution schemes is to broadcast information that is useful only for trusted
members. Combined with its pre-distributed secrets, this broadcast information
enables a trusted member to reconstruct a shared key. On the contrary, a revoked
member is unable to infer useful information from the broadcast. The only re-
quirement that a user must satisfy to recover the lost keys through self-healing,
is its membership in the group both before and after the sessions in which the
broadcast packet containing the key is sent. A user who has been off-line for
some period is able to recover the lost session keys immediately after coming
back on-line. Thus self-healing approach of key distribution is stateless.



Our Contribution. We design a computationally secure and efficient general-
ized self-healing key distribution scheme for large and dynamic groups over in-
secure wireless networks. We consider general monotone decreasing access struc-
ture for the family of subsets of users that can be revoked instead of threshold
one. More precisely, we use vector space access structure, which allows us to
obtain a family of more flexible self-healing key distribution schemes with more
flexible performances. Our self-healing mechanism uses one-way key chain that
is more efficient compared to the self-healing techniques used in the previous
schemes [1, 3, 4, 5, 7, 6]. Our construction is general in the sense that it de-
pens on a particular public mapping φ and for different choices of φ we obtain
different self-healing key diatribution schemes. The broadcast message length
also depends on this particular function φ. Additionally, our construction does
not require to send the history of revoked subsets of users in order to perform
self-healing, yielding significant reduction in the communication cost. The main
attraction of this paper is that our general construction has significant perfor-
mance gain in terms of storage, communication and computation overhead. A
special case of our family of self-healing key distribution is one that considers
Shamir’s (t, n)-threshold secret sharing. We emphasize that each user in this
special self-healing key distribution scheme requires (m − j + 1) log q memory
and size of the broadcast message at the j-th session is (t+1) log q, with compu-
tation cost 2(t2 + t). Here m is the maximum number of sessions, j is the current
session number and q is a prime large enough to accommodate a cryptographic
key. Our key distribution schemes are scalable to very large groups in highly
mobile, volatile and hostile wireless network as the communication and compu-
tation overhead does not depend on the size of the group, instead they depend
on the number of compromised group members that may collude together. We
have shown in an appropriate security model that our proposed constructions are
computationally secure and achieve both forward secrecy and backward secrecy.

2 Preliminaries

2.1 Secret Sharing Schemes

In this section we define secret sharing schemes which play an important role in
distributed cryptography.

Definition 21 (Access Structure) Let U = {U1, . . . , Un} be a set of partici-
pants. A collection Γ ⊆ 2U is monotone if B ∈ Γ and B ⊆ C ⊆ U imply C ∈ Γ .
An access structure is a monotone collection Γ of non-empty subsets of U . i.e.,
Γ ⊆ 2U\{∅}. The sets in Γ are called the authorized sets. A set B is called
minimal set of Γ if B ∈ Γ , and for every C ⊂ B, C 6= B, it holds that C /∈ Γ .
The set of minimal authorized subsets of Γ is denoted by Γ0 and is called the
basis of Γ . Since Γ consists of all subsets of U that are supersets of a subset in
the basis Γ0, Γ is determined uniquely as a function of Γ0. More formally, we
have Γ = {C ⊆ U : B ⊆ C,B ∈ Γ0}. We say that Γ is the closure of Γ0 and



write Γ = cl(Γ0). The family of non-authorized subsets Γ = 2U\Γ is monotone
decreasing, that is, if C ∈ Γ and B ⊆ C ⊆ U , then B ∈ Γ . The family of non-
authorized subsets Γ is determined by the collection of maximal non-authorized
subsets Γ 0.

In case of a (t, n)-threshold access structure, the basis consists of all subsets of
(exactly) t participants. i.e. Γ = {B ⊆ U : |B| ≥ t} and Γ0 = {B ⊆ U : |B| = t}.

Definition 22 (Secret Sharing) Let K be a finite set of secrets, where K ≥
2. An n-party secret sharing scheme Π with secret domain K is a randomized
mapping from K to a set of n-tuples S1×S2×. . .×Sn, where Si is called the share
domain of Ui ∈ U . A dealer D /∈ U distributes a secret K ∈ K according to Π
by first sampling a vector of shares (s1, . . . , sn) from Π(K), and then privately
communicating each share si to the party Ui. We say that Π realizes an access
structure Γ ⊆ 2U if the following two requirements hold:

Correctness: The secret K can be reconstructed by any authorized subset of par-
ties. That is, for any subset B ∈ Γ (where B = {Ui1 , . . . , Ui|B|}), there exists
a reconstruction function RecB : Si1 × . . . × Si|B| → K such that for every
K ∈ K, Prob[RecB(Π(K)B) = K] = 1, where Π(K)B denotes the restriction
of Π(K) to its B-entries.

Privacy: Every unauthorized subset cannot learn anything about the secret (in
the information theoretic sense) from their shares. Formally, for any subset
C /∈ Γ , for every two secrets K1,K2 ∈ K, and for every possible shares
〈si〉Ui∈C , Prob[Π(K1)C = 〈si〉Ui∈C ] = Prob[Π(K2)C = 〈si〉Ui∈C ].

The above correctness and privacy requirements capture the strict notion of
perfect secret sharing, which is the one most commonly referred in the secret
sharing literature.

Definition 23 (Vector Space Access Structure) Suppose Γ is an access
structure, and let (Zq)l denote the vector space of all l-tuples over Zq, where q
is prime and l ≥ 2. Suppose there exists a function Φ : U ∪ {D} → (Zq)l which
satisfies the property: B ∈ Γ if and only if the vector Φ(D) can be expressed
as a linear combination of the vectors in the set {Φ(Ui) : Ui ∈ B}. An access
structure Γ is said to be a vector space access structure if it can be defined in
the above way.

We now present vector space secret sharing scheme that was introduced by
Brickell [2].

– Initialization: For 1 ≤ i ≤ n, D gives the vector Φ(Ui) ∈ (Zq)l to Ui. These
vectors are public.

– Share Distribution:
1. Suppose D wants to share a key K ∈ Zq. D secretly chooses (indepen-

dently at random) l − 1 elements a2, . . . , al from Zq.
2. For 1 ≤ i ≤ n, D computes si = v.Φ(Ui), where v = (K, a2, . . . , al) ∈

(Zq)l.



3. For 1 ≤ i ≤ n, D gives the share si to Ui.
– Key Recovery: Let B be an authorized subset, B ∈ Γ . Then

Φ(D) =
∑

{i:Ui∈B}

ΛiΦ(Ui)

for some Λi ∈ Zq. In order to recover the secret K, the participants of B
pool their shares and computes

∑
{i:Ui∈B}

Λisi = v.

 ∑
{i:Ui∈B}

ΛiΦ(Ui)

 = v.Φ(D) = K mod q.

Thus when an authorized subset of participants B ∈ Γ pool their shares,
they can determine the value K. On the other hand, one can show that if an
unauthorized subset B /∈ Γ pool their shares, they can determine nothing
about the value of K (see [2] for proof).

2.2 Our Security Model

We now state the following definitions that are aimed to computational security
for session key distribution adopting the security model of [5, 7].

Let U = {U1, . . . , Un} be the universe of the network. We assume the avail-
ability of a broadcast unreliable channel and there is a group manager GM who
sets up and performs join and revoke operations to maintain a communication
group, which is a dynamic subset of users of U . Let m be the maximum number
of sessions, and R ⊂ 2U be a monotone decreasing access structure of subsets
of users that can be revoked by the group manager GM. Let i ∈ {1, . . . , n},
j ∈ {1, . . . ,m} and Gj ∈ U be the group established by the group manager GM
in session j.

Definition 24 (Session Key Distribution with privacy [7])

1. D is a session key distribution with privacy if
(a) for any user Ui ∈ Gj, the session key SKj is efficiently determined from
Bj and Si.

(b) for any set Rj ⊆ U , where Rj ∈ R and Ui /∈ Rj, it is computationally
infeasible for users in Rj to determine the personal key Si.

(c) what users U1, . . . , Un learn from Bj cannot be determined from broad-
casts or personal keys alone. i.e. if we consider separately either the set
of m broadcasts {B1, . . . ,Bm} or the set of n personal keys {S1, . . . , Sn},
then it is computationally infeasible to compute session key SKj (or other
useful information) from either set.

2. D has R-revocation capability if given any Rj ⊆ U , where Rj ∈ R, the group
manager GM can generate a broadcast Bj, such that for all Ui /∈ Rj, Ui can
efficiently recover the session key SKj, but the revoked users cannot. i.e. it
is computationally infeasible to compute SKj from Bj and {Sl}Ul∈Rj

.



3. D is self-healing if the following is true for any j, 1 ≤ j1 < j < j2 ≤ m: For
any user Ui who is a member in sessions j1 and j2, the key SKj is efficiently
determined by the set {Zi,j1 , Zi,j2}. In other words, every user Ui ∈ Gj1 , who
has not been revoked after session j1 and before session j2, can recover all
session keys SKj for j = j1, . . . , j2, from the broadcasts Bj1 and Bj2 where
1 ≤ j1 < j2 ≤ m.

Definition 25 (R-wise forward and backward secrecy [5])

1. A key distribution scheme D guarantees R-wise forward secrecy if for any
set Rj ⊆ U , where Rj ∈ R, and all Us ∈ Rj are revoked before session j, it
is computationally infeasible for the members in Rj together to get any in-
formation about SKj, even with the knowledge of group keys SK1, . . . ,SKj−1

before session j.
2. A session key distribution D guarantees R-wise backward secrecy if for any

set Jj ⊆ R, where Jj ∈ U , and all Us ∈ Jj join after session j, it is compu-
tationally infeasible for the members in Jj together to get any information
about Kj, even with the knowledge of group keys SKj+1, . . . ,SKm after ses-
sion j.

3 Our General Construction

We consider a setting in which there is a group manager (GM) and n users
U = {U1, . . . , Un}. All of our operations take place in a finite field, GF(q), where
q is a large prime number (q > n). In our setting, we never allow a revoked
user to rejoin the group in a later session. Let H : GF(q) → GF(q) be a crypto-
graphically secure one-way function. The life of the system is divided in sessions
j = 1, 2, . . . ,m. The communication group in session j is denoted by Gj ⊂ U . We
consider a linear secret sharing scheme realizing some access structure Γ over
the set U . For simplicity, suppose there exists a public function Φ : U ∪{GM} →
GF(q)l satisfying the property Φ(GM) ∈ 〈Φ(Ui) : Ui ∈ B〉 ⇔ B ∈ Γ, where l is a
positive integer. In other words, the vector Φ(GM) can be expressed as a linear
combination of the vectors in the set {Φ(Ui) : Ui ∈ B} if and only if B is an
authorized subset. Then Φ defines Γ as a vector space access structure.

– Setup: Let G1 ∈ U . The group manager GM chooses independently and
uniformly at random m vectors v1, v2, . . . , vm ∈ GF(q)l. The group manager
randomly picks two initial key seeds, the forward key seed SF ∈ GF(q)
and the backward key seed SB ∈ GF(q). It repeatedly applies (in the pre-
processing time) the one-way function H on SB and computes the one-way
backward key chain of length m: KB

i = H(KB
i−1) = Hi−1(SB) for 1 ≤ i ≤ m.

The j-th session key is computed as SKj = KF
j + KB

m−j+1, where KF
j =

Hj−1(SF ). Each user Ui ∈ G1 receives its personal secret keys corresponding
to the m sessions Si = (v1.Φ(Ui), . . . , vm.Φ(Ui)) ∈ GF(q)m and the forward
key seed SF from the group manager via the secure communication channel
between them. Here the operation “.” is the inner product modulo q.



– Broadcast: Let Rj be the set of all revoked users for sessions in and before
j such that Rj /∈ Γ and Gj be the set of all non-revoked users in session
j. In the j-th session the GM first chooses a subset of users Wj ⊂ U\Gj

with minimal cardinality such that Wj ∪ Rj ∈ Γ 0. The GM then computes
Zj = KB

m−j+1+vj .Φ(GM) and broadcasts the message Bj = {(Uk, vj .Φ(Uk)) :
Uk ∈ Wj ∪Rj} ∪ {Zj}.

– Session Key Recovery: When a non-revoked user Ui receives the j-th session
key distribution message Bj , it recovers vj .Φ(GM) as follows: Since Wj∪Rj ∈
Γ 0 is the maximal non-authorized subset with minimum cardinality having
the property Wj ∈ U\Gj , the set B = Wj ∪ Rj ∪ {Ui} ∈ Γ . Thus B is an
authorized subset, and one can write Φ(GM) =

∑
{k:Uk∈B} ΛkΦ(Uk) for some

Λk ∈ GF(q). Hence Ui knows Λk and vj .Φ(Uk) for all k ∈ B and can compute∑
{k:Uk∈B} Λk(vj .Φ(Uk)) = vj .

(∑
{k:Uk∈B} ΛkΦ(Uk)

)
= vj .Φ(GM)

Then Ui recovers the key KB
m−j+1 as KB

m−j+1 = Zj − vj .Φ(GM). Finally, Ui

computes the j-th forward key KF
j = Hj−1(SF ) and evaluates the current

session key SKj = KF
j + KB

m−j+1. A user Uk who either does not know
its private information vj .Φ(Uk) or who is a revoked user in Rj , i.e. Uk ∈
Wj ∪Rj , cannot compute vj .Φ(GM) because Uk only knows values broadcast
in the message Bj corresponding to an unauthorized subset of the secret
sharing scheme. Consequently, Uk cannot recover the backward key KB

m−j+1

and hence the j-th session key SKj .
– Add Group Members: When the group manager adds a new group member

starting from session j, it picks an unused identity v ∈ GF(q), computes
the personal secret keys corresponding to the current and future sessions
Sv = (vj .Φ(Uv), . . . , vm.Φ(Uv)) ∈ GF(q)m−j+1 and gives {v, Sv,KF

j } to this
new group member via the secure communication channel between them.

– Re-initialization: The system fails when all m sessions are exhausted, or the
set of revoked users for sessions in and before the current session becomes
an element of Γ . At this phase, re-initialization is required and a new setup
is executed.

3.1 Complexity

Storage overhead: For simplicity, we use vector space secret sharing. Then stor-
age complexity of personal key for each user is m log q bits. The group mem-
bers that join later need to store less data. For example, the personal key for
a user joining at the j-th session occupies (m−j+1) log q bits memory space.
If we use a more general linear secret sharing scheme in which a participant
Ui is associated with mi ≥ 1 vectors, then its personal secret key consists of
mi vectors and hence is of size mmi log q bits.

Communication overhead: The communication bandwidth for key management
at the j-th session is (tj + 1) log q bits, where tj = |Wj ∪Rj |, Rj /∈ Γ is the
set of all revoked users for sessions in and before j and Wj ⊂ U\Gj with
minimum cardinality such that Wj ∪Rj ∈ Γ 0. Here we ignore the communi-
cation overhead for the broadcast of user identities Ui for Ui ∈ Wj ∪ Rj , as



these identities can be picked from a small finite field. In particular, if our
scheme is obtained from Shamir’s (t, n)-threshold secret sharing scheme that
realizes access structure defined by Γ = {A ⊆ U : |A| ≥ t} by means of poly-
nomial interpolation, then communication bandwidth for key management
is (t + 1) log q bits.

Computation overhead: The computation complexity is 2(t2j + tj), where tj =
|Wj ∪Rj |, Rj /∈ Γ is the set of all revoked users for sessions in and before j
and Wj ⊂ U\Gj with minimum cardinality such that Wj ∪Rj ∈ Γ 0. This is
the number of multiplication operations needed to recover Φ(GM) by using
equation (1). Considering Shamir’s (t, n)-threshold secret sharing scheme,
the computation cost for key management is 2(t2+t), which is essentially the
number of multiplication operations needed to recover a t-degree polynomial
by using Lagrange’s interpolation formula.

3.2 Self-Healing

We now explain our self-healing mechanism in the above constructions: Let Ui

be a group member that receives session key distribution messages Bj1 and Bj2

in sessions j1 and j2 respectively, where 1 ≤ j1 ≤ j2, but not the session key
distribution message Bj for session j, where j1 < j < j2. User Ui can still recover
all the lost session keys Kj for j1 < j < j2 as follows:

(a) Ui recovers from the broadcast message Bj2 in session j2, the backward key
KB

m−j2+1 and repeatedly apply the one-way functionH on this and computes
the backward keys KB

m−j+1 for all j, j1 ≤ j < j2.
(b) Ui computes the forward keys KF

j for all j, j1 ≤ j ≤ j2 by repeatedly
applying H on the forward seed SF or on the forward key KF

j1
of the j1-th

session.
(c) Ui then recovers all the session keys SKj = KF

j + KB
m−j+1, for j1 ≤ j ≤ j2.

Note that a user revoked in session j cannot compute the backward keys
KB

m−j1+1 for j1 > j, although it can compute the forward keys KF
j1

. As a result,
revoked users cannot compute the subsequent session keys SKj1 for j1 > j, as
desired.

Similarly, a user Ui joined in session j cannot compute the forward keys KF
j2

for j2 < j as Ui knows only the j-th forward key KF
j , not the initial forward

seed value SF , although it can compute the backward keys KB
m−j2+1 for j2 < j.

This forbids Ui to compute the previous session keys as desired.

4 Security Analysis

Theorem 41 Our construction is secure, self-healing session key distribution
scheme with privacy, R-revocation capability with respect to Definition 24 and
achieve R-wise forward and backward secrecy with respect to Definition 25.



Proof: Our goal is security against coalition of users from R. We will show
that our construction is computationally secure with respect to revoked users
under the difficulty of inverting one-way function, i.e. for any session j it is
computationally infeasible for any set of revoked users from R before and on
session j to compute with non-negligible probability the session key SKj , given
the View consisting of personal keys of revoked users, broadcast messages before,
on and after session j and session keys of revoked users before session j.

Consider a coalition of revoked users from R, say Rj ∈ R, who are revoked
on or before the j-th session. The revoked users are not entitled to know the j-th
session key SKj . We can model this coalition of users from R as a polynomial-
time algorithm A′ that takes View as input and outputs its guess for SKj .We
say that A′ is successful in breaking the construction if it has a non-negligible
advantage in determining the session key SKj . Then using A′, we can construct
a polynomial-time algorithm A for inverting one-way function H and have the
following claim:

Claim: A inverts one-way function H with non-negligible probability if A′ is
successful.

Proof: Given any instance y = H(x) of one-way function H, A first generates
an instance View for A′ as follows: A randomly selects a forward key seed SF ∈
GF(q) and constructs the following backward key chain by repeatedly applying
H on y:

KB
1 = y, KB

2 = H(y), . . . ,KB
j = Hj−1(y), . . . ,KB

m = Hm−1(y).

A computes the j-th forward key KF
j = Hj−1(SF ) and sets the j-th session

key SKj = KF
j + KB

m−j+1. A chooses at random m vectors v1, . . . , vm ∈ GF(q)l.
Each user Ui ∈ U receives its personal secret keys corresponding to the m sessions
Si = (v1.Φ(Ui), . . . , vm.Φ(Ui)) ∈ GF(q)m and the forward key seed SF from A via
the secure communication channel between them. In this setting, Γ = 2U\R is a
monotone increasing access structure of authorized users over U . Γ is determined
by the family of minimal qualified subsets, Γ0, which is called the basis of Γ . Now
Rj ∈ R implies Rj /∈ Γ .

Let Gj be the set of all non-revoked users in session j. At the j-th session,
A chooses a subset of users Wj ⊂ U\Gj with minimal cardinality such that
Wj ∪Rj ∈ Γ 0. A then computes broadcast message Bj for j = 1, . . . ,m as:

Bj = {(Uk, vj .Φ(Uk)) : Uk ∈ Wj ∪Rj} ∪ {Zj},

where Zj = KB
m−j+1 + vj .Φ(GM). Then A sets View as

View =


vs.Φ(Uk) for all Uk ∈ Rj and s = 1, . . . ,m;
Bj for j = 1, . . . ,m;
SF ;
SK1, . . . ,SKj−1





A gives View to A′, which in turn selects X ∈ GF(q) randomly, sets the j-
th session key to be SK′

j = KF
j + X and returns SK′

j to A. A checks whether
SK′

j = SKj . If not, A chooses a random x′ ∈ GF(q) and outputs x′.
A′ can compute the j-th forward key KF

j = H(SF ) as it knows SF from View
for j = 1, . . . ,m. Note that from View, A′ knows {vj .Φ(Uk) : Uk ∈ Wj ∪Rj , 1 ≤
j ≤ m} ∪ {vs.Φ(Uk) : Uk ∈ Rj , 1 ≤ s ≤ m} and at most j − 1 session keys
SK1, . . . ,SKj−1. Consequently A′ has knowledge of at most j− 1 backward keys
KB

m, . . . ,KB
m−j+2. Observe that SK′

j = SKj provided A′ knows the backward key
KB

m−j+1. This occurs if either of the following two holds:

(a) A′ is able to compute the vj .Φ(GM) from View and consequently can recover
the backward key KB

m−j+1 as follows:KB
m−j+1 = Zj − vj .Φ(GM).

From View, A′ knows {vj .Φ(Uk) : Uk ∈ Wj ∪ Rj , 1 ≤ j ≤ m} ∪ {vs.Φ(Uk) :
Uk ∈ Rj , 1 ≤ s ≤ m}, where Wj ⊂ U\Gj has minimal cardinality with
Wj ∪ Rj ∈ Γ 0 and will not be able to compute vj .Φ(GM) by the property
of Φ. Observe that vj .Φ(GM) is linear combination of {vj .Φ(Uk) : Uk ∈ B}
if and only if B ∈ Γ . Consequently, A′ will not be able to recover KB

m−j+1

from Bj as described in (a) above.
(b) A′ is able to choose X ∈ GF(q) so that the following relations hold: KB

m =
Hj−1(X),KB

m−1 = Hj−2(X), . . . ,KB
m−j+2 = H(X). This occurs with a non-

negligible probability only if A is able to invert the one-way function H. In
that case, A returns x = H−1(y).

The above arguments show that if A′ is successful in breaking the security
of our construction, then A is able to invert the one-way function. ut

(of claim)

Hence our construction is computationally secure under the hardness of in-
verting one-way function. We will now show that our construction satisfies all
the conditions required by Definition 24.

1) (a) Session key efficiently recovered by a non-revoked user Ui is described in
the third step of our construction.
(b) For any set Rj ⊆ U , Rj ∈ R, and any non-revoked user Ui /∈ Rj ,
we show that the coalition Rj knows nothing about the personal secret
Si = (v1.Φ(Ui), . . . , vj .Φ(Ui), . . . , vm.Φ(Ui)) of Ui. For any session j, Ui

uses vj .Φ(Ui) as its personal secret. Since the coalition Rj /∈ Γ , the val-
ues {vs.Φ(Uk) : Uk ∈ Rj , 1 ≤ s ≤ m} is not enough to compute vj .Φ(Ui)
by the property of Φ. So it is computationally infeasible for coalition Rj to
learn vj .Φ(Ui) for Ui /∈ Rj .
(c) The j-th session key SKj = KF

j + KB
m−j+1, where KF

j = H(KF
j−1) =

Hj−1(SF ), KB
j = H(KB

j−1) = Hj−1(SB), SF is the forward seed value given
to all initial group members and SB is the secret backward seed value. Thus
SKj is independent of the personal secrets S1, . . . , Sm where
Si = (v1.Φ(Ui), . . . , vj .Φ(Ui), . . . , vm.Φ(Ui)) for i = 1, . . . , n. So the per-
sonal secret keys alone do not give any information about any session key.



Since the initial backward seed SB is chosen randomly, the backward key
KB

m−j+1 and consequently the session key SKj is random as long as SB ,
KB

1 ,KB
2 , . . . ,KB

m−j+2 are not get revealed. This in turn implies that the
broadcast messages alone cannot leak any information about the session
keys. So it is computationally infeasible to determine Zi,j from only per-
sonal key Si or broadcast message Bj .

2) (R-revocation property) Let Rj ⊆ U , where Rj ∈ R, collude in session j.
It is impossible for coalition Rj to learn the j-th session key SKj because
the knowledge of SKj implies the knowledge of either the backward key
KB

m−j+1 or the knowledge of the personal secret vj .Φ(Ui) of user Ui /∈ Rj .
The coalition Rj knows the set {vs.Φ(Uk) : Uk ∈ Rj , 1 ≤ s ≤ m}, which is
not enough to compute vj .Φ(Ui) by the property of Φ. Hence the coalition
Rj cannot recover vj .Φ(Ui), which in turn makes KB

m−j+1 appears random
to all users in Rj . Therefore, SKj is completely safe to Rj from computation
point of view.

3) (Self-healing property) From the third step of our construction, any user
Ui that is a member in sessions j1 and j2 (1 ≤ j1 < j2), can recover the
backward key KB

m−j2+1 and hence can obtain the sequence of backward keys
KB

m−j1
, . . . ,KB

m−j2+2 by repeatedly applying H on KB
m−j2+1. User Ui also

holds the forward key KF
j1

= Hj1−1(SF ) of the j1-th session and hence can
obtain the sequence of forward keys KF

j1+1, . . . ,K
F
j2−1 by repeatedly applying

H on KF
j1

. Hence, as shown in Section 3.2, user Ui can efficiently recover all
missed session keys.

We will show that our construction satisfies all the conditions required by
Definition 25.

1) (R-wise forward secrecy) Let Rj ⊆ U , where R ∈ R and all user Us ∈ Rj are
revoked before the current session j. The coalition Rj can not get any infor-
mation about the current session key SKj even with the knowledge of group
keys before session j. This is because of the fact that in order to know SKj ,
any user Us ∈ Rj needs to know either vj .Φ(GM) or KB

m−j+1. Determining
vj .Φ(GM) requires knowledge of values {vj .Φ(Uk) : Uk ∈ B for some B ∈ Γ}.
But the coalition Rj knows only the values {vj .Φ(Us) : Us ∈ Rj} which is
insufficient as Rj /∈ Γ . Hence Rj is unable to compute SKj .
Besides, because of the one-way property of H, it is computationally infea-
sible to compute KB

j1
from KB

j2
for j1 < j2. The users in Rj might know the

sequence of backward keys KB
m, . . . ,KB

m−j+2, but cannot compute KB
m−j+1

and consequently SKj from this sequence. Hence our construction is R-wise
forward secure.

2) (R-wise backward secrecy) Let Jj ⊆ U , where Jj ∈ R and all user Us ∈ Jj

join after the current session j. The coalition Jj can not get any information
about any previous session key SKj1 for j1 ≤ j even with the knowledge
of group keys after session j. This is because of the fact that in order to
know SKj1 , any user Us ∈ Jj requires the knowledge of j1-th forward key
KF

j1
= H(KF

j1−1) = Hj1−1(SF ). Now when a new member Uv joins the



group starting from session j + 1, the GM gives (j + 1)-th forward key KF
j+1

instead of the initial forward key seed SF , together with the values Sv =
(vj .Φ(Uv), . . . , vm.Φ(Uv)) ∈ GF(q)m−j+1. Note that KF

j+1 = H(KF
j ). Hence

it is computationally infeasible for the newly joint member to trace back for
previous forward keys KF

j1
for j1 ≤ j because of the one-way property of the

function H. Consequently, our protocol is R-wise backward secure. In fact,
this backward secrecy is independent of R. ut

5 Performance Analysis

The existing work to deal with self-healing key distribution using monotone
decreasing family of revoked subset of users instead of monotone decreasing
threshold structure is by Saez [6]. In this section, we discuss the comparison
of storage overhead, communication complexity and computation cost of each
user (not the GM) in our construction with [6]. In contrast to the family of the
self-healing key distribution schemes proposed in [6], our general construction
uses a different self-healing approach which is more efficient in terms of com-
putation and communication without any further trade-off in storage, yielding
more flexible self-healing key distribution scheme that can provide better prop-
erties. Unlike [6], the length of the broadcast message in our scheme does not
depend on the history of revoked subsets of users to perform self-healing. This
feature provides significant reduction in the communication cost, which is one
of the main improvement of our scheme over the previous works. For simplicity,
we compare a special case of our construction with the other similar schemes
considering Shamir’s (t, n)-threshold secret sharing.

In one hand our construction reduces the communication complexity (band-
width) to O(t), whereas optimal communication complexity achieved by the
previous schemes [1, 6, 7] is O(tj) at the j-th session. Achieving less computa-
tion cost is on the other side of the coin. For a user Ui at the j-th session, the
computation cost is incurred by recovering all previous session keys upto the
j-th session (worst case) by self-healing mechanism. The backward key used at
the j-th session in our construction is KB

m−j+1 = Zj − vj .Φ(GM). Thus compu-
tation complexity for each user is 2{(t + 1)2 − (t + 1)} = 2(t2 + t), which is the
number of multiplication operations needed to recover a t-degree polynomial by
using Lagrange formulation. After obtaining KB

m−j+1, user Ui can easily com-
pute KB

m−j+2,K
B
m−j+3, . . . ,K

B
m−1,K

B
m by applying the one-way function H each

time. Then Ui is able to compute all previous session keys SKj1 = KF
j1

+KB
m−j1+1

for all 1 ≤ j1 ≤ j. Thus the communication complexity and computation cost
in this special construction do not increase as the number of session grows.
These are the most prominent improvements of our scheme over the previous
secret sharing based self-healing key distributions [1, 6, 7]. The storage require-
ment in our scheme comes from Setup phase and after receiving the session
key distribution message. The storage overhead of each user for personal key is
O((m− j + 1) log q), which is same as that of [1, 6, 7].



If we consider a secret sharing scheme realizing a specific bipartite access
structure defined in the set of users, the previous self-healing mechanisms allow
to improve the efficiency of revocations of a small number of users, say less
than j, for some positive integer j ≤ t − 1, t is the threshold on the number of
revoked users. This is because of the fact that in all the previous self-healing key
distribution schemes, a part of the broadcast message of every session contains a
history of revoked subsets of users in order to perform self-healing. This part of
broadcast message has a proportional amount of information to t− 1 in all the
previous self-healing key distribution schemes, despite only two or three users
must be revoked. We overcome this overhead on broadcast message length in
our general construction since our self-healing mechanism does not need to send
any such history.

6 Conclusion

This paper presents an efficient computationally secure generalized self-healing
key distribution scheme with revocation capability, enabling a very large and
dynamic group of users to establish a common key for secure communication
over an insecure wireless network. Our proposed key distribution mechanism
reduces communication and computation costs over the previous approaches,
without any additional increase in the storage complexity compared to the pre-
vious works, and is scalable to very large groups in highly mobile, volatile, and
hostile wireless network. Our scheme is properly analyzed in an appropriate secu-
rity model to prove that it is computationally secure and achieves both forward
secrecy and backward secrecy.
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