Resilience to Dropping Nodes in Mobile Ad Hoc
Networks with Link-State Routing

Ignacy Gawedzki and Khaldoun Al Agha

Laboratoire de Recherche en Informatique
Université Paris-Sud 11, CNRS
F-91405 Orsay, France
i@lri.fr alagha@lri.fr

Abstract. Currently emerging standard routing protocols for MANETSs
do not perform well in presence of malicious nodes that intentionally
drop data traffic but otherwise behave correctly with respect to control
messages of the routing protocol. In this paper, we address the problem
of coping with the presence of such nodes in networks that use a link-
state routing protocol. The solution, based on the verification of the
principle of flow conservation, is purely protocolar and does not rely on
any specific underlying OSI layer 1 or 2 technical feature. In addition,
it is well suited for integration into existing link-state routing protocols
for ad hoc networks, by using existing periodic control messages and by
not requiring any clock synchronization between the nodes. The method,
once implemented in an actual routing protocol, proves to increase the
ratio of successfully delivered data packets significantly.

Key words: ad hoc networks, link-state routing, security, resilience.

1 Introduction

Routing protocols for mobile ad hoc networks (MANETS) have received much
attention in the past decade, but currently the most mature solutions still rely
on the full cooperation of the participating nodes. The presence of one or more
malicious nodes may have negative consequences on the proper operation of the
network. In the case of proactive protocols, nodes exchange control messages
allowing them to maintain their routing table and data packet forwarding is
performed on a hop-by-hop basis, using a traditional protocol stack (most com-
monly TCP/IP). This makes these protocols easy to implement as userspace
processes while the operating system’s kernel remains unchanged. The downside
is that securing the protocol itself is not enough to make the network resilient
to malicious nodes, since they can always play nice with control packets, while
not as much with data packets.

The presented solution aims to reduce the impact of malicious nodes as much
as possible, allowing others to route data packets around nodes that tend to lose
traffic, provided that malicious nodes are not colluding.

After related work in the field is summarized in Sect. 2, the solution is detailed
in Sect. 3. Performance evaluation is presented in Sect. 4, followed finally by a
conclusion and some perspectives in Sect. 5.

2 Related Work

The issue of Byzantine robustness of network operations has received attention
for as long as the network administration of the Internet has become more decen-
tralized and thus more exposed to attacks. The problem reemerged for MANETS,
since the direct application of solutions for wired networks appeared to be either
impossible or ineffective.

In the family of reactive routing protocols — of which DSR [9] and AODV
[13] are notorious examples — various solutions have been proposed [2,7,1] to
provide Byzantine robustness. Since route discovery and maintenance as well as
data packet forwarding is taken care of by the protocol, cryptographic methods
can be used to ensure that every packet has been forwarded to the destination,
without being corrupted, misrouted nor forged.

As for proactive routing protocols, the OLSR, [5] protocol has received atten-
tion from Raffo et al. [14] who proposed to secure the content of control messages
to prevent nodes from advertising false or expired information. Fourati et al. also
proposed a way to secure control messages [6] by requiring neighbors to validate
and sign TC messages using threshold cryptography. While these propositions
aim to guarantee the correctness of the protocol in presence of malicious nodes,
they do not protect against data packet dropping. Protecting data packets in the
same (intrusive) way as proposed for reactive protocols would break the principle
of separate table-driven hop-by-hop routing, so it is not desirable in this case.
Additional cryptographic tools such as key distribution systems to allow sender
authentication should be used, but they still do not enable the prevention or
detection of intentional packet dropping.

In order to make packet dropping detectable, Marti et al. proposed [12] to
exploit the ability of nodes to overhear the transmissions of their neighbors to
check whether they have retransmitted the packets as requested. Unfortunately,
such an approach does not work anymore when directional antennae or multiple
network interfaces (or simply different communication channels) are used on
nodes. Other approaches, based on active probing of nodes to detect droppers,
have also been proposed [10,2,11]. They rely on the inability of nodes to either
distinguish probes from plain data packets or identify their originator.

It is worth noting that many solutions to encourage cooperation [4,15] have
been proposed as well. Although they may be very effective to discourage self-
ishness, they do not protect against malicious nodes that drop data traffic, be it
at their own expense.

In the context of static wired networks, Bradley et al. proposed [3] that nodes
should periodically verify that each of their neighbors satisfies the principle of
flow conservation based on their advertised packet counters. Nodes that fail
to pass these tests are flagged as bad and excluded from the network. Their
assumptions about the network have later been criticized as being too strong
and a few possible attacks have been exposed by Hughes et al. [8]. However,
this solution is also hardly applicable to MANETS, because of mobility and the
difficulty to maintain tightly synchronized clocks between nodes.

3 Proposed Solution

3.1 Motivations and Assumptions

Our experience in implementation of MANET routing protocols taught us that
the less a solution is intrusive in the existing framework the easier it is to imple-
ment, maintain and port. Besides, relying only on basic features of drivers allows
wider hardware support. With a protocolar approach, we sought a solution easy
to implement by requiring little or no change at all in the OS kernel while no
cross-layer requirement eases support for a wide range of network interface cards.

The solution assumes that cryptographic mechanisms allow any node, be
it the destination host or an intermediate router, to check a packet’s integrity
and authenticate its source. The network is assumed to be running a link-state
routing protocol that exchanges periodic control packets. The bound P on the
time separating two successive control packets is assumed to be finite and known.

3.2 Solution Outline

The solution is composed of three distinct phases, that are performed continu-
ously during the operation of the network. First, perform unicast packet account-
ing, exchange counters periodically and verify the principle of flow conservation.
Second, maintain a local degree of distrust in each other node, based on how
often it fails the flow conservation tests and diffuse that value in the network.
Third, combine local degrees of distrust from other nodes into a single, uniform
metric (i.e. every other node comes up with the same values) and use it for
routing table calculation.

Note that intentional and unintentional packet droppings are not distin-
guished, which is desirable since in the third phase, intentional as well as unin-
tentional packet droppers are simply avoided. This should have a positive effect
on the overall operation of the network.

3.3 Checking Flow Conservation

In this section, the method used to check whether nodes’ counter values do not
satisfy the flow conservation principle is presented.

Definition 1. Let the network be a graph G = (V, E) with V the set of vertices
(the nodes) and E : RT — V x V a function mapping instants in time t to sets
of arcs E(t) (the one-way links) existing at these instants.

Definition 2. Let Ifj(t) and IZJJ(t) be respectively i’s and j’s counter of the
amount of bytes that flowed on link (i,j) up to instant t in packets which des-
tination was not j. Similarly, let Ojfj(t) and ij(t) be respectively i’s and j’s
counter of what flowed on (i,j) up to t in packets which source was not i.

The flow conservation principle states that

VEVi, Y (IL(t) — OL(1) =0 . (1)

J

If i advertised its counters I7,(t) and O (t) periodically, its neighbors could check
(1) for each instant ¢ at which ¢ sent an advertisement. But since that simple
check is based on i’s counters only, 7 could as well have advertised false values.
Additional checks are thus needed to ensure that these are correct, namely:

Vt, Vi, §, 1(t) = Ijj-i(t) and Oj;(t) = Of-j(t) and T}(t) = Ti]j(t) , (2
where T};(t) and lej(t) are respectively i’s and j’s counter of the total amount
of bytes that flowed on (7,) up to .

Because of mobility, the neighborhoods are changing and so absolute values
of counters are inconvenient. Differential values are better advertised instead: a
differential value is simply the difference between the current absolute value of
a counter and its absolute value at the time of last advertisement.

Definition 3. Let S;(t) be the value of i’s sequence counter at instant t and let
T;(n) be the instant at which the sequence counter is incremented from n—1 to
n and i’s advertisement set with sequence number n is transmitted.

In the following, X is used to represent either I, O or T, to avoid repeating
three times each formula that holds for each type of counter.

Definition 4. For each counter in the form X[(t) or ij(t), let Xf](t) and
ij (t) be their differential values.

Ve, i G Yk € (i g X(8) = X5 () — X5 (Te (Sk(t)) (3)

Definition 5. Let T; (n) be the instant right before i’s nth advertisement set is
sent. This notation is used only with differential values to avoid ambiguity.

VeV, S (Ty (Silt)) = Silt) — 1 (4)

7

Using periodic messages of the routing protocol, nodes advertise successive
differential values of their counters.

Definition 6. An advertised values of counters (AVC) tuple from i for neighbor
j with sequence number n has the following form:

(f'fj (To (), Ol (T (m), T35 (T (n)))

Between two successive transmissions of an AVC tuple for some neighbor j,
a node i may receive zero or more AVC tuples regarding itself from j.

Vi(n)= (5)

Definition 7. Let 83- (n) be the (possibly empty) set of sequence numbers of j’s
AVC tuples received by i between its (n — 1)th and nth advertisements.

Vi, j,¥n, 8i(n)={m:T;i(n—1) < T;(m) <Ti(n)A(j,i) € E(T;(m))} (6)

J

P
P < > P
< > < >

Ti(n) Ti(n+1) Ti(n+2) Ti(n+3)

} from ¢

l l : : l E : l > time
T T T T } from j

Tim=2) Tim-1) T;(m) T;(m+1)

> <

<
P < > P
P

>

Fig. 1. Desynchronized advertisements: differential counter values from i and j are
not advertised at the same time and thus do not represent flow on the same interval.
Vertical arrows indicate instants at which advertisements from ¢ (above) and j (below)
are sent. Upper bound on the advertisement interval P is shown as well.

To allow neighbors of ¢ to verify (2), ¢ has to retransmit, along with each
AVC tuple about a neighbor j, a set of reverse AVC tuples. In all, values of
counters are diffused to the whole 2-hop neighborhood.

Definition 8. Node i’s nth advertisement set contains nth link advertisements
about each of its neighbor j.

Ay =3 | mvim, U “mWwﬁ (7)
)

J me8k(n

Given that advertisements are sent asynchronously, (1) can be performed
directly, whereas (2) most probably cannot. The question is then how to decide
that those equations are not satisfied, based on desynchronized counters, i.e.
differential counter values over different intervals of time (see Fig. 1). The idea
is to consider what can be called desynchronized link balances.

Definition 9. A desynchronized link balance in terms of counter X for the link
(k,l) (either (i,7) or (j,1)), computed from advertisement number n from node
1 about node j has the following form:

Vi, j,Yn,V(k,1), BXj,(n) =X, (Ty(n) = > X}, (Tym) . (8)
mES;(n)

_ When a node k receives the nth advertisement set from i, it can compute
BX;(n), since Xf] (T; (n)) and every XfJ(T; (m)) with m € 8%(n) are contained
in A#(n). Obviously, BX i;(n) and gx;(n) are seldom zero, unless the counters
in A%(n) are zero themselves. Instead of looking at desynchronized link balances
for individual advertisements, let us consider the sum of several desynchronized
link balances for successive advertisements. It appears that these accumulated
link balances have interesting properties.

Definition 10. Let Al(n) be the difference in time between the instant A’(n)
is sent and last j’s advertisement set was received by i.

, T;(n) — max T;(m) if $i(n) #0
Vi, j,¥n, Aj(n) = mes (n) | o)
Ti(n) = Ti(n —1) + Ai(n —1) otherwise.

Suppose that k receives M successive advertisement sets from i, calculates
the desynchronized link balances and sums them. That sum is expressed quite
simply in terms of absolute counters. The intuitive argument can be seen on
Fig. 1: the summed desynchronized link balance (the gray rectangles) from i’s
advertisements n +2 to n+3 (i’s (n + 2)th advertisement contains j’s (m —1)th
counters and i’s (n+3)th advertisement contains j’s mth and (m+1)th counters),
is clearly equal to the difference between the amount of bytes that flowed on
interval [T;(m + 1), T;(n + 3)) and on interval [T;(m — 2), T;(n + 1)).

Definition 11. Let FX};(n) (resp. F¥%;(n)) bei’s end flow on link (i,) (resp.
(4,4)), i.e. the quantity expressed by:

Vi, 4,V V(K 1), FXj(n) = Xp (Ti(n) = Xj (Ti(n) = A5(n)) . (10)

Theorem 1. If X}, (t) = X,zl(t) (for any i, 3, (k,1) = (i,7) or (k,1) = (4,%) and
any t), the summed values of desynchronized link balances over an interval of
sequence numbers [n,n + M] are exactly:

n+M
Vi, j,¥n, VM > 0,Y(k,1), Y BXj(p) = F¥jy(n+ M) — FXj,(n—1) . (11)

p=n

Proof. By induction on M > 0. The case of M = 0 is trivially shown:
Vi, 3,90, ¥ (k, 1), BXj(n) =Xjy(Ti(n)) = Xjy(Tiln) —Aj(n)) (12)

— X},(Ti(n—1)) + X1, (Ti(n—1) —A%(n—1)) .

The induction hypothesis holds since we have that X},(t) = X7, (t). O

From the expression of (11), bounds on the accumulated desynchronized link
balances can be expressed as follows.

Theorem 2. If X},(t) = X,zl(t) (for any i, j, (k,1) = (i,5) or (k,1) = (4,17)
and any t), then the accumulated desynchronized link balances are bound in the
following way:

n+M
Vi, 7,¥n,YM > 0,Y(k, 1), BXi,(p) — FXi < Bxi
i\ j,¥n (kD) max (Z (Q)> ; 1 (p)

mln <ZBX >+fx ((n+ M) . (13)

[n,n+M]

The proof of Theorem 2 is straightforward but omitted for brevity.

Definition 12. Let Fj(n), be the minimum difference in time between the in-
stant A*(n) is sent and first j’s advertisement set was received by i since A*(n—1)

was sent. ‘ ‘
Vi, j,Vn : 85(n) # 0, I'j(n)=Ti(n)—minT;(m) (14)
mes(n)
In A’(n), the quantities X};(T; (n)) and X% (T; (n)) are i’s claim about how
much has flowed on links (¢,7) and (j,4) respectively for each class X, during

interval [T;(n—1), T;(n)). If that advertisement also contains at least one reverse

AVC tuple for the links (i.e. 8%(n) # 0), then the quantities Xj-(Tf (n)—I7j(n))

(i
and XJ (T, (n) — ()) are j’s corresponding claim on interval [T;(n — 1) —
Aj(n — 1), Ti(n) = Ij(n)).
Definition 13. Let L)(n) and N’(n) be the sequence numbers defined as follows.
Li(n) = max{m :m < n A S (m 1]
ViV {J() { j(m) # 0}

N;(n) = min{m:m > n/\Sé-(m) #0}

(15)

It appears that we have the following properties:

Vi, 4, Vn,

{[Ti(n) — A%(n),Ti(n)) C [Ti (Li(n) — 1), Ti(n)) (16)
[Ti(n) — A5(n), Ti(n)) C [Ti(n) — A%(n), Ti (Nj(n)) — I} (Nj(n)))

It immediately follows that bounds for the end flow can be expressed in terms
of differential values of counters contained in advertisements.

Vi, j,vnV(k 1), ;.
Fialn) <min |7 (X (7)) X4 (70 (N) = 17 (N5 ()| (17)

p=L%(n)

If there is no discrepancy between i and j’s counters about link (k,1) (either
(i,7) or (j,1)), then the bounds on the accumulated desynchronized link balances
of (13) are verified. Even more so if upper bounds of the end flows from (17)
are used instead of their actual values. In the following we call this verification
the link coherence check. When such a check fails, the absolute value of the
excess of accumulated desynchronized link balances with respect to the (loose)
bounds is itself a lower bound on the amount of actual discrepancy, which is
used directly in the second phase of the solution (detailed in Sect. 3.4). Then
the corresponding accumulated values have to be reset to zero and the bounds
to be initialized anew upon reception of the next advertisement.

3.4 Distrust System

A failed check is a proof of counter discrepancy, caused by dropped data traffic
or false AVCs. Since usually some data packet loss is to be legitimately expected,
a check failure should not be a direct reason for the exclusion of nodes. Nodes
that drop data traffic should thus be avoided if possible, but not excluded.

In the second phase of the solution, tests from the first phase are used to
maintain a distrust metric on nodes which is used for path calculation. Unlike in
usual trust or reputation systems, this metric cannot be individually maintained
by each node, based on first-hand observations combined with second-hand ob-
servations from neighbors. The metric has to be uniform across all the nodes, so
that every node tends to know of the same value for any given node in the topol-
ogy, otherwise hop-by-hop routing may not be loop-free. Therefore, the metric
is a combination of all the nodes’ local observations, diffused in the network.

The local observations (failures to pass checks from the first phase) are used
to maintain a local degree of distrust. This value is initially zero and each time
a check fails, it is incremented as follows:

D; —max(1,D;)- (1+ L -r) | (18)

where D;, L; and v+ are respectively the degree of distrust in 7, the lower bound
on the amount of actual discrepancy and the ratio used as a parameter of the
system set to how fast a degree has to increase. The value recovers over time in
the following way:

D; —max (0,D; — At-r~) (19)

where D;, At and r~ are respectively the degree of distrust in 4, the interval of
time elapsed since last update and the ratio used as a parameter of the system
set to how quickly a degree has to decrease with time.

The local degree of distrust is diffused to other nodes, to allow them to
compute the distrust metric for each other node. To make the calculation resilient
to slander, we propose to combine the different degrees by calculating a kind of
median value, which is insensitive to pathological samples that deviate too much.

Using the local degrees of distrust directly is too simplistic and we require
nodes to advertise a confidence factor along. That factor is used to enable each
node to say to what extent its degree has to be taken into account in the cal-
culation of the median. It is based on the amount of traffic that the observed
node supposedly transmitted, according to its counters. The confidence factor
increases with traffic:

ci—c;+Tp-r't (20)

(with ¢;, T; and 7't being respectively the confidence factor for D;, the amount
of traffic of ¢ and the ratio used as a parameter of the system set to how quickly
the confidence has to grow) and decreases with time passing:

¢; — max(0,¢; — At -r'7) (21)

(with ¢;, At and 7'~ being respectively the confidence factor of D;, the interval of
time elapsed since last update and the ratio used as a parameter of the system
set to how quickly the confidence has to decrease with time). This way, the
more (alleged) traffic goes through a node, the higher the confidence factor of
its neighbors in their degree of distrust in that node. The value of the confidence
factor that is actually advertised is required to be in the interval [0, 1),

1

Cimel1— — —
’ 14c¢re

(22)

where C;, ¢; and r, are respectively the advertised confidence factor of D;, the
(internal) confidence factor of D; and the ratio used as a parameter of the system
set to how quickly an advertised confidence factor has to come close to 1.
The actual calculation of the metric based on individual couples (D!, C7)
(distrust and associated confidence in ¢ diffused by j) is a weighted median:

vi, {(D;,C}),....(D'\C"},

ZCig%ZCZJ and ZC{S%-ZCZJQ (23)

§:DI<w; J §:DI>W; J

where W; is the combined metric for node 1.

A simple route calculation using a shortest path algorithm on the global
topology graph is to set the weight w;; of each link (7,7) to 1 + W; (instead of
1 for a simple hop-count metric).

4 Performance Evaluation

4.1 Simulation Model

We have implemented our solution on top of a model of the OLSR protocol for
the OPNET 12.0 simulator. Mobile nodes move on an area of 1000 m x 1000 m,
with constant velocity (chosen uniformly on [0,1] m/s) and constant direction
(chosen uniformly on [0, 27)) during an interval of time chosen exponentially with
rate 1/600 per second. Data packets are generated exponentially with rate 5 per
second, source and destination are chosen uniformly and data length is chosen
uniformly between 40 and 1500 bytes. Cheaters, also chosen uniformly among the
nodes, drop data packets with a parametrized probability. A IEEE 802.11 MAC
layer is used on all nodes with 11 Mbps carrier, 50 mW transmission power, flow
control (RTS/CTS) and default power thresholds (-85 dBm for carrier sense and
-70 dBm for reception, resulting in ranges of respectively 1200 m and 214 m).

The method presented in Sect. 3.3 and 3.4 has been implemented, along
with a simple retransmission protocol for lost advertisements (omitted here for
brevity), with r* = 1/50, '+ =1, r~ =+~ = 1/10 and 7, = 107°. The MPR
selection heuristic has been adapted so as to prefer neighbors with lower local
distrust (details omitted here as well). MPRs diffuse local degrees of distrust
and confidence factors of their selectors in TC messages. Cheaters do slander by
always advertising a very high degree of distrust and a confidence factor of 1.

The data packet delivery rate (total received data packets over total gen-
erated data packets) has been measured in each run and compared to several
reference runs: in the No Cheater run, plain OLSR is used and the drop prob-
ability is forced to zero to see what OLSR achieves at best without cheaters; in
the Plain run, plain OLSR is faced with non-zero drop probability to see how
bad it does alone; in the Known run, OLSR has an oracle telling which node is
a cheater and routing table calculation is performed as suggested at the end of
Sect. 3.4 with W; = 9 for each cheater ¢. That last reference run is used to see
what performance could be achieved at best.

Cheaters that intentionally drop data packets have many possible ways in
which they can manipulate their counters. Among possible strategies, we have
chosen four different ones: increment counters as though the packets were for-
warded indeed; increment counters on all outgoing links so that the total added
sum is the amount of lost data bytes; do not increment counters on outgoing
links; increment counters only for every second packet.

4.2 Simulation Results

In the first batch of simulations, there were 100 nodes with 10% of cheaters.
We have checked that the system stabilizes pretty quickly and after a few dozen
seconds, the delivery ratio of our method is stable (though we checked for up to 10
hours) and much closer to the Known case than to the Plain one. Lowering the
drop probability, apart from raising the Plain curve, only lengthened by a small
factor the time required for the delivery ratio to be as close to the Known curve
(approximately 3 minutes for a drop probability of 0.25). The average delivery
ratios of the Plain, Known and the average of the four cheating strategies
(which results turned out to be very similar) after one hour of simulation, with
100 nodes, 10% cheaters with 1.0 drop probability, are presented in Fig. 2 (left).
It appears clearly that in dense networks, the performance of our method sticks
to the Known reference.

To evaluate the performance of our method with respect to varying network
density, we have run a batch of simulations with a different total number of nodes
but a (almost) constant ratio of 10% of cheaters, each dropping with a probability
of 1.0. The results presented in Fig. 2 (right) show that while the delivery ratio
degrades with decreasing density, the performance of our method is still very
close to the Known reference. The reason why maximum achievable performance
decreases with the density is that there are fewer and fewer alternative paths for
a given destination, hence fewer ways to avoid the cheaters.

A last batch of simulations has been run with a duration of 15 minutes,
a total number of 100 nodes but a varying number of cheaters with 1.0 drop
probability. Results show (see Fig. 3) that our method improves the delivery

1.0
0.9 1 6:9\.‘%). F — ‘
O.g - T & -
2 £
pe] pe]
g 2 0.8 F
0.8 L =
2 2 074 -
© ©
~ —6— Known ~
0.7 —@— Average L 0.6 4 —+— No Cheater —@— Average
. —»— Plain —6— Known —— Plain
T T T T 0.5 T T T T
0.25 0.5 0.75 1.0 25 (3) 50 (5) 75 (8) 100 (10)
drop probability total nodes (cheaters)

Fig. 2. Delivery ratio: with fixed density of 100 nodes and variable drop probability
(left); with variable density and fixed drop probability of 1.0 (right).

1.0

0.8 4

0.6

delivery ratio

0.4 4 —6— Known
—@— Average
—x— Plain
02 T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50 55 60

percentage of cheaters

Fig. 3. Delivery ratio vs. cheaters: 1.0 drop probability and a total of 100 nodes.

ratio significantly, but less and less than the Known reference as the number of
cheaters increases.

4.3 Discussion

Hughes et al. strongly criticized [8] the use of the principle of flow conservation
as a way to detect malicious nodes in a network. They presented a number of
attack scenarios which make simplistic approaches fail anyway.

In our solution, we require all packets to be checked for integrity and their
source address to be authenticated by all intermediate nodes, to exclude the
possibility of packet modification or forgery going unnoticed. Some attacks, like
“ghost routers” or the ones based on the reactivity of link-state routing protocols,
are targeted at the routing protocol itself, which we assume here to be already
protected. Note that the “kamikaze” attack, in which a malicious node intention-
ally advertises false counter values in order to be excluded along with some of its
neighbors is simply handled by our solution, in which nodes are never excluded.

5 Conclusion

We have presented a way to augment a link-state routing protocol to make it
resilient to the presence of nodes intentionally dropping data traffic. The method
consists in three parallel operations: detect flow non-conservation on neighboring
nodes, maintain a degree of distrust in all checked nodes, combine all degrees of
distrust into a metric for routing table calculation.

The method is very little intrusive into the system, provided that necessary
cryptographic tools are available and that the routing protocol itself is protected.
It is independent of OSI Data Link and Physical layers which makes it easier to
implement and workable with different hardware setups (unidirectional antennae,
multiple interfaces, etc). The method showed satisfactory performance, very close
to an ideal case in which all cheating nodes are known to an oracle.

Among the possible future works, we intend to explore the possibility of mak-
ing the method work even in the presence of colluding cheaters. The interaction
with some intrusion detection system can also be studied, in order to counter
the “premature aging” attack.

References

1.

10.

11.

12.

13.

14.

15.

Ioannis Avramopoulos, Hisashi Kobayashi, Randolph Wang, and Arvind Krishna-
murthy. Highly secure and efficient routing. In IEEE, editor, INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications
Societies, volume 1, pages 208-220. IEEE, IEEE, March 2004.

Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru, and Herbert Rubens. An
on-demand secure routing protocol resilient to byzantine failures. In WiSE ’02:
Proceedings of the 8rd ACM workshop on Wireless security, pages 21-30, New York,
NY, USA, 2002. ACM Press.

Kirk A. Bradley, Steven Cheung, Nick Puketza, Biswanath Mukherjee, and
Ronald A. Olsson. Detecting disruptive routers: a distributed network monitoring
approach. Network, IEEFE, 12(5):50-60, Sep/Oct 1998.

Levente Buttyan and Jean-Pierre Hubaux. Stimulating cooperation in self-
organizing mobile ad hoc networks. MONET, 8(5):579-592, 2003.

T. Clausen and P. Jacquet. Optimized link state routing (OLSR) protocol. RFC
3626, IETF, October 2003.

Alia Fourati and Khaldoun Al Agha. A shared secret-based algorithm for securing
the OLSR routing protocol. Telecommunication Systems, 31(2-3):213-226, March
2006.

Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne:: a secure on-demand
routing protocol for ad hoc networks. In MobiCom ’02: Proceedings of the 8th
annual international conference on Mobile computing and networking, pages 12—
23, New York, NY, USA, 2002. ACM Press.

John R. Hughes, Tuomas Aura, and Matt Bishop. Using conservation of flow as
a security mechanism in network protocols. In IEEE Symposium on Security and
Privacy, pages 132-141, 2000.

David B. Johnson, David A. Maltz, and Yih-Chun Hu. The dynamic source routing
protocol (DSR) for mobile ad hoc networks for IPv4. RFC 4728, IETF, February
2007.

Mike Just, Evangelos Kranakis, and Tao Wan. Resisting malicious packet drop-
ping in wireless ad hoc networks. In Samuel Pierre, Michel Barbeau, and Evangelos
Kranakis, editors, Ad-Hoc, Mobile, and Wireless Networks, Second International
Conference, ADHOC-NOW 2003 Montreal, Canada, October 8-10, 2008, Proceed-
ings, LNCS vol. 2865, pages 151-163. Springer, 2003.

Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan. Sustaining
cooperation in multi-hop wireless networks. 2nd Symposium on Networked System
Design and Implementation, Boston, MA, USA, May, 2005.

Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing misbe-
havior in mobile ad hoc networks. In MobiCom ’00: Proceedings of the 6th annual
international conference on Mobile computing and networking, pages 255-265, New
York, NY, USA, 2000. ACM Press.

C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector
(AODV) routing. RFC 3561, IETF, July 2003.

Daniele Raffo, Cédric Adjih, Thomas Clausen, and Paul Miihlethaler. An advanced
signature system for olsr. In SASN ’0/: Proceedings of the 2nd ACM workshop on
Security of ad hoc and sensor networks, pages 10-16, New York, NY, USA, 2004.
ACM Press.

Sheng Zhong, Jiang Chen, and Yang Richard Yang. Sprite: A simple, cheat-proof,
credit-based system for mobile ad-hoc networks. In INFOCOM, 2003.

