AQCS: Adaptive Queue-based Chunk Scheduling for
P2P Live Streaming

Yang Gud, Chao Liang, and Yong Litf

1 Corporate Research, Thomson, Princeton, NJ, USA 08540
Yang.Guo@thomson.net
2 ECE Dept., Polytechnic University,Brooklyn, NY, USA 11201
cliang@photon.poly.edu,yongliu@poly.edu

Abstract. P2P streaming has been popular and is expected to attrachewe
users. One major challenge for P2P streaming is to offeisusaisfactory Qual-
ity of Experience (QOoE) in terms of video resolution, startelay, and playback
smoothness, all require efficient utilization of bandwiddsources in P2P net-
works. In this paper, we propose AQCS, adaptive queue-bztaaik scheduling,
that can support the maximum streaming rate allowed by a B&&mwsing system
with small signaling overhead and short startup delay. AQECSdistributed al-
gorithm with minimum requirement on peers. Queue-basejdenables peers
to be self-adaptive to the bandwidth variations and peengland automatically
converges to the optimal operating point. The prototype@C5 is implemented
and various implementation issues are examined. The empets over the Plan-
etLab further demonstrate AQCS’s optimality and its robass against changing
system/network environment.

1 Introduction

Video-over-IP applications have recently attracted adargmber of users on the In-
ternet. Youtube [1] alone hosted sodieterabytes of videos and attracted3 billion
views by the end of Augugi006. With the fast deployment of high-speed residential ac-
cess, such as Fiber-To-The-Home, video traffic is expecteidininate the Internet in
near future. Traditionally, video content can be streanmedrd users either directly
from video source servers or indirectly from servers in @mttDelivery Networks
(CDNSs). Peer-to-Peer video streaming has emerged as anadite with low server
infrastructure cost. P2P video streaming systems, suclsi&[E], CoolStreaming [3],
and PPLive [4], have attracted millions of users to watch tiv on-demand video pro-
grams on the Internet [5].

The P2P design philosophy seeks to utilize peers’ uploadiwith to reduce
servers’ workload. However, the upload bandwidth utilizatmight be throttled by the
so calleccontent bottleneclkhere a peer may not have any content that can be uploaded
to its neighbors even if its link is idle. The mechanism agddty P2P file sharing ap-
plications is to increase the content diversity among péensexample, thearest-first
policy of BitTorrent [6] encourages peers to retrieve the chunkh Wie lowest avail-
ability among their neighbors. Network coding has also bexqriored to mitigate the
content bottleneck problem [7]. The content bottleneckbfam in live streaming is

even more severe. Video content in live streaming has gitéstback deadlines. Even
temporary decrease in peer bandwidth utilization leadstyr playback quality degra-
dation, such as video playback freezing or skipping. To nthi®ys worse, at any given
moment, peers are only interested in downloading a smatifstunks falling into the
current playback window. This greatly increases the pdyilof content bottleneck.
One way to address this problem is to compromise user vieguadjty. For example, a
lower video playback rate would impose lower peer bandwidifization requirement.
Allowing a longer playback delay also allows a larger set lafirks to be exchanged
among peers. The opposite solution lies in designing mdieesft peering strategies
and chunk scheduling methods.

This paper deals with the second solution. Our focus is orddsggn of a chunk
scheduling method that can support high resolution videzasting service. We as-
sume collaborative P2P systems. Peers help each other amdrdoreceived video
chunks to other peers. Motivated by the effectiveness dfebufontrol on switches
and Active Queue Management (AQM) on routers, we proposeval mueue-based
chunk scheduling algorithm, AQCS, to adaptively eliminatatent bottlenecks in P2P
streaming. Using queue-based signaling between peerdarmbhtent source server,
the amount of workload assigned to a peer is proportionastavailable upload capac-
ity, which leads to high bandwidth utilization. The quewsséd signaling also enables
the proposed scheme to adapt to the changing network emvéon The data chunks
are relayed at most once by intermediate peers. Hence tle® widntent can be dis-
seminated to all peers quickly. The simplicity of the desidgo reduces the signaling
overhead. Our contributions are three-fold:

— We propose a simple queue-based chunk scheduling meth@Viamghhigh band-
width utilization in P2P live streaming. We theoreticallyosv that the proposed
scheme can support the optimal streaming rate in idealizéslark environments.
A practical algorithm is designed to achieve the closegtimoum performance in
realistic network environment.

— Afull-feature prototype is developed to test the feadipiind efficiency of the pro-
posed scheduling algorithm. Various design considerataye explored to handle
dynamics in realistic network environments, includingmpaeurns, peer bandwidth
variations, and inside network congestion.

— The performance of the prototype system is examined threxgleriments over
PlanetLab [8]. Both the optimality and the adaptivenesshef proposed chunk
scheduling method are demonstrated.

The remaining part of this paper is organized as follows.Kgazsund and related
work is included in Section 2. The queuing model and schadwigorithm of queue-
based chunk scheduling are described in Section 3. Impleti@m considerations are
explored in Section 4. The experiment results are reporiegeiction 5. Finally, Sec-
tion 6 ends the paper with concluding remarks.

2 Background and Related Work

In [9], we propose HCPS - Hierarchically Clustered P2P Stieg system that can
support the streaming rate approaching the optimum uppandwith short delay, yet

is simple enough to be implemented in practice. In HCPS, gwrare grouped into
small size clusters and a hierarchy is formed among cluttgetrieve video data from
the source server. By actively balancing the uploading ciéipa among clusters, and
executing the perfect scheduling algorithm [10] withinlealuster, the system resource
can be efficiently utilized.

Fig. 1 depicts a two-level HCPS system. At the lower levélpakrs are organized
into bandwidth-balanced clusters. Each cluster consistsauster head and a small
number, e.g. from 20 to 40 normal peers. Cluster heads ofiadtars form a super
cluster at upper level and retrieve video from the video sewserver in P2P fashion.
After obtaining video at the upper level, a cluster head ast& local video proxy server
for normal peers in its cluster at lower level. Normal peeithin the same cluster
collaborate according to the perfect scheduling algoritbmetrieve video from their
cluster head. In this new architecture, the server onlyitisies video to cluster heads;
a normal peer only maintains connections to its neighbotbénsame cluster; and a
cluster head connects to both other cluster heads and npeees in its own cluster.
Two-level HCPS already has the ability to support a large Inemof peers with mild
requirement on the number of connections on the servetgelheads and normal peers.

Q© Cluster Head
) Head Mapping
1 2
¢

Top Level

.-, Base Level

Fig. 1. Hierarchically Clustered P2P Streaming System

The perfect scheduling employed in HCPS does not work wedtagtical, though.
It requires a central controller that collects all peerdoggl capacity information, and
computes the sub-stream rates sent from the server to éhdi/peers. In practice,
available upload capacity may not be known and can vary éner.tThe central co-
ordinator needs to continuously monitor peers’ upload cepand re-compute the
sub-stream rates. The adaptive queue-based chunk saigedudithod is a distributed
solution. Peers only exchange information with the servet make local decisions.
Upload capacity information of peers/source is not reqiiennd the scheme adapts to
the changing peer membership and network environment aiioafly. Hence AQCS
is a more suitable peer scheduling method for HCPS at cliestet.

There have been ongoing efforts intending to improve resoutilization in P2P
live streaming. To improve the resource utilization in méstsed P2P streaming, [11]
proposes a two-phase swarming scheme where the fresh t@tpnckly diffused to
the entire system in the first phase, and peers exchangalaieadiontent in the second
phase. Network coding is also applied to P2P live streanfiti?j. performs a reality
check by using network coding for P2P live streaming. Néwaddss neither approach
can provably achieve the maximum streaming rate. The asiihdrl3] design a ran-
domized distributed algorithm, Random Useful Packet Fotmg (RUPF), that can
converge to the maximum streaming rate. They also studyetesy dhat users must en-
dure in order to play the stream with a small amount of missiag. The queue-based
chunk scheduling method is a deterministic distributecdalgm with small control
overhead. No data chunk need to be skipped to achieve shduastdelay. AQCS also
incurs less signaling overhead since no bit-maps carnfiegdata chunk availability
information are exchanged between peers. Our initial exparts show that AQCS
out-performs the randomized broadcasting scheme.

3 Adaptive queue-based chunk scheduling

It is desirable to support high streaming rate in P2P stregntiligher streaming rate
allows the system to broadcast video with better qualigldd provides more cushion to
absorb the bandwidth variations (caused by peer churnanktwongestion, etc.) when
constant-bit-rate (CBR) video is broadcasted. The key toeae high streaming rate
is to better utilize peers’ uploading bandwidth. In thistgat, we describe the queue-
based chunk scheduling algorithm that can achieve closgtimal peer uploading
bandwidth utilization in practical P2P networking enviroent.

In AQCS, data chunks are pulled/pushed from server to peard)ed at peers’
queue, and relayed from peers to its neighbors. The avhiyabf upload capacity is
inferred from the queue status such as the queue size orjtidnge is empty. Signals are
passed between peers and server to convey the informatigreir’'s upload capacity is
available. Fig. 2 depicts a P2P streaming system using go@sed chunk scheduling
with one source server and three peers. Each peer maingiesasqueues including a
forward queue. Using peeras an example, the signal and data flow is described next.
Pull signals are sent from peerto the server whenever the queues become empty (or
have fallen below a threshold) (step 1 in Fig. 2). The sergsponds to the pull signal
by sending three data chunks back to pe&tep 2). These chunks will be stored in the
forward queue (step 3) and be relayed to gesnd peer: (step 4). When the server has
responded to all 'pull’ signals on its ’pull’ signal queugserves one duplicated data
chunks to all peers (step 5). These data chunks will not regia forward queue and
will not be relayed further.

Next we first describe in detail the queue-based scheduleahanism at the source
server and peers. The optimality of the scheme is shownvedtels.

3.1 Peer side scheduling and its queuing model

Fig. 3(a) depicts the queuing model for peers in the quesedacheduling method.
A peer maintains a playback buffer that stores all receivexhaing content from the

[[[l Chunks in response to pull signal

[l Chunks with no pull signal

Fig. 2. Queue-based chunk scheduling example with four nodes

source server and other peers. The received content frdemetift nodes is assembled in
the playback buffer in playback order. The peer's mediaglagnders/displays the con-
tent from this buffer. Meanwhile, the peer maintains a faitlag queue which is used
to forward content to all other peers. The source server gidudk data content either as
F-marked content or NF-marked content before transmittiegn.F (forwarding)rep-
resents content that should be relayed/forwarded to otbersgNF (non-forwarding)
indicates that content is intended for this peer only andamwvdirding is requiredNF
contentis filtered out at peefs.content is stored into the forward queue, marked as NF
content, and forwarded to other peers. Because the relay@eért is always marked
asNF at the relaying peer, data content is relayed at most onced€6 % which re-
duces the content distribution time and startup delay. teoto fully utilize a peer’s
upload capacity, the peer’s forwarding queue should belkepyt. A signal is sent to the
source server to request more content whenever the foragglieue becomes empty.
This is termed a "pull’ signal. The rules for marking the cemtat the source server are
described next.

~T 10—
"pull’ signal queue
"pull’ signal >
Filter F marked
content F marked content serv
—> — —P 1
Playback buffer Forwarding queue Content buffer
—>
Forwarding server
(a) Queue Model of Peers (b) Queue Model of Source Server

Fig. 3. Queue Models of Peers and Source Server

3.2 Server side scheduling algorithm and its queuing model

Fig. 3(b) illustrates the server-side queuing model of AQU%e source server has two
gueues: a content queue and a signal queue. The signal quiéers kthe 'pull’ signals
issued by peers. The content queue is a multi-server quethetwd dispatchers: an
F-marked content dispatcher and a forward dispatcher. Wtispatcher is invoked
depends on the status of the 'pull’ signal queue. Speciidéthere are 'pull’ signals in
the signal queue, a small chunk of content is taken off fraactintent buffer, marked as
F content, and dispatched by the F-marked content dispatthiee peer that issued the
pull’ signal. The 'pull’ signal is then removed from the sigl queue. In contrast, if the
signal queue is empty, the server takes a small chunk of nbfitenm the content buffer
and puts that chunk of content into the forwarding queue. fohwarding dispatcher
marks the chunk adF and sends it to all peers in the system.

3.3 Optimality of queue-based chunk scheduling

Given a content source server and a set of peers with knowsadpapacities, the
maximum streaming rate*** , is governed by the following formula [10]:

us + D00 U !

n

r™ = min{us,

1)
whereu, is content source server’s upload capaaityis peeri’s upload capacity, and
is the number of peers in the system. The second term on thiehrgnd side of equation,

us+y i

Zzzl , Is the average upload capacity per peer. The maximum/apsitreaming
us+ Us+ ;g if u

rate isr’ " = u, if ug < # andrme® = ZI ! us >

The first case is termed aerver resource poor scenarwhere the server’s upload

capacity is the bottleneck. The second case is termaér@gr resource rich scenario
where the peers’ average upload capacity is the bottleneck.

Theorem 1. Assume that the signal propagation delay between a peertanderver
is negligible and the data content can be transmitted at dniteary small amount, then
the queue-based decentralized scheduling algorithm asrithesl above achieves the
maximum streaming rate possible in the system.

Sketch of proofin server resource poor scenario, the source server baltiulvg the
bottleneck and cannot handle all 'pull’ signals issued bgrpeThe signal queue at the
server side is hence non-empty and the entire server batidigidised to transmit F-
marked content to peers. In contrast, a peer’s forward ghecemes idle while waiting
for the new data content from the source server. Since eashhae sufficient upload
bandwidth to relay the F-marked content (received from @reey) to all other peers,
the supportable streaming rate is equal to the server'sagptapacity. Optimal rate is
achieved.

In server resource rich scenario, the server has the bathlddervice the 'pull’
signals. During the time period when the 'pull’ signal quésiempty, the server trans-
mits duplicate NF-marked content to all peers. It can be shilwat the streaming rate

"ﬁz Ll ™ . Optimal rate is again reached. The detailed proof can bedau[14].

4 Implementation considerations

The architecture of content source server and peers usingubue-based data chunk
scheduling are now described with an eye toward practicplémentation considera-
tions including the impact of chunk size, propagation defestwork congestion, and
peer churn.

In the optimality proof, it was assumed that the chunk siaddtbe arbitrarily small
and the propagation delay was negligible. In practice, thenk size is on the order of
kilo-bytes to avoid excessive transmission overhead chbgeprotocol headers. The
propagation delay is on the order of tens to hundreds ofseitlbnds. Hence, it is nec-
essary to adjust the timing of issuing 'pull’ signals by theeps and increase the num-
ber of F-marked chunks served at the content source senaiote the decentralized
scheduling method to achieve close to the optimal live stieg rate.

At the server side’ F-marked chunks are transmitted as a batch in response to a
'pull’ signal from a requesting peer (via the F-marked contgueue). A larger value
of K would reduce the 'pull’ signal frequency and thus reducesilgjealing overhead.
This, however, increases peers’ threshold to be shown irati@u (2). Denote byi’;
the threshold for peerto issue 'pull’ signal. A 'pull’ signal is sent to server wharer
the number of chunks in the queue is less than or equa).tdhe time to empty the
forwarding queue withl; chunks ist{™"" = (n — 1)T;6/u;. Meanwhile, it takes
treceive = 2t + K& /us + t, for peeri to receive K chunks after it issues a pull
signal. Here ,; is the propagation delay between the source server and pEer/ u
is the time required for server to transndit chunks, and, is queuing delay seen by
the 'pull’ signal at the server pull signal queue. In orderggeive the chunks before
the forwarding queue becomes fully drained;”* > t7e¢ive_ This leads to:

(Qtsi + K(S/?.I,S + tq)ui
(n—1)8 '

T; > (2)

All quantities are known excep}, the queuing delay incurred at the server side signal
queue. In server resource poor scenario where the souregerseithe bottleneck, the
selection off; would not affect the streaming rate as long as the servewigyal busy.

In server resource rich scenario, since the service ratgpébkqueue is faster than the
pull signal ratet, is very small. So we sdf, to be zero. This leads to the following
'pull’ signal threshold formula that can be used to guidettiveshold selection:

(Qtsi + K(S/us)ul

- >
iz =)

3)

The architectures of source server and peer are describeédrigure 4 illustrates
the architecture of the source server. Using the 'seled¢trma@chanism to monitor the
connections with peers, the server maintains a set of ingfteis to store received data.
There are three types of incoming messages: managemerdageegsull’ signal, and
missing chunk recovery request. Correspondingly threepeddent queues are formed
for these messages. If the output of handling these meseagés to be transmitted to
remote peers, the output is put on the per-peer out-unit.

Select Call

\ |
| |
|- com l - o |

|
el Packet Handler - |
i»:— *]i

o7 o ==
I !) o
| . o |
[PULL SIG .
> Cmm - !
g— RECOV REQ o E
= - !
| |

Fig. 4. Server Architecture

There is one out-unit for each destination peer to handlel#ta transmission pro-
cess. Each out-unit has four queues for a given peer. mareagenessage queue, F-
marked content queue, NF-marked content queue, and mislsintk recovery queue.
The management message queue stores responses to martaggoesis. An example
of a management requestis when a new peer has just joine@khgyBtem and requests
the peer list. The F/NF marked content queue stores the F/étked content intended
for this peer. Finally, chunk recovery queue stores the imisshunks requested by the
peer.

Different queues are used for different types of traffic iderto prioritize the traf-
fic types. Specifically, management messages have the highesty, followed by
F-marked content, and NF-marked content. The priority @bwery chunks can be
adjusted based on the design requirement. Managementgesdsave the highest pri-
ority because it is important for the system to run smoofthhe content source server
replies to each 'pull’ signal with F-marked chunks. F-markéunks are further relayed
to other peers by the receiving peer. The content sourcessends out a NF-marked
chunk to all peers when the 'pull’ signal queue is empty. N&rked chunks are used by
the destination peer only and will not be relayed furthererBfore, serving F-marked
chunk promptly improves the utilization of peers’ uploagaaity and increases the
overall P2P system streaming rate.

Another reason for using separate queues is to deal withviadttdfluctuation and
congestion inside the network. Many P2P researchers ashanserver/peer’s upload
capacity is the bottleneck. In our experiments over Plaaletit has been observed that
some peers may slow down significantly due to congestionl tha peers share the
same queue, the uploading to the slowest peer will block fHeading to remaining
peers. This is similar to the head-of-line blocking problenmput-queued switch de-
sign. Separate queues avoid inefficient blocking causedblyzeers.

Peers’ architecture is similar to the server’s and is odittere. In addition, we
design the missing chunk recovery scheme that enables éng fgerecover the missing
chunks to avoid viewing quality degradation. Refer to [1gt]more details.

5 Experiment results

In this section, we examine the performance of AQCS via erpents over Planet-
Lab [8]. 40+ nodes (one content source server, one public sink and 48/psers) are
used with most of them located in North America. All connenrs between nodes are

TCP connections. TCP connections avoid network layer detsels, and allow us to
use software package Trickle [15] to set a node’s uploadaipén our experiments,
we observe the obtained upload bandwidth is slightly lafge8%) than the value we
set using Trickle. To account for this error, we measure tttaa upload bandwidth,
and use the measured rate for plotting the graphs. The umapacity of peers are
assigned randomly according to the distribution obtaimethfthe measurement study
conducted in [16]. The largest uplink speed is reduced fra®05kbps to 4000 kbps,
which ensures that PlanetLab nodes have sufficient banklwicdiupport the targeted
rate. Specifically20% of peers have upload capacity of 128 kbfis7 have 384 kbps,
25% have 1 Mbps, and5% have 4 Mbps.
e«Optimality evaluation. All 40 peers join the system at the beginning of the exper-

iment, and stay for the entire duration of the experimene Tantent source server’'s
upload capacity is varied from 320 kbps to 5.6 Mbps. For eaches upload capacity
setting, we run an experiment for 5 mins. The achieved stimgrate is collected every
10 seconds and the average value is reported at the end okrpeliment. Fig. 5(a)

x10°

1301 7 Hl F-marked Chunk

! 1 NF-marked Chunk
1200 1 s 3 Unigue Chunk

i

Server resource rich region

Rate(kbps)
o
8
N

-

| .
- Server resource poor region
I

400 I —v— Achieved Rate ﬂ
i —e- Perfect Rate o = [l
0 1000 2000 3000 4000 5000 6000 560 1600 3200 4800
Server Bandwidth (kbps) Server Bandwidth(kbps)

(a) Achieved Rate vs. Optimal Rate (b) Distribution of Chunks from Server

Fig. 5. Optimality Evaluation Results

shows the achieved streaming rate vs. the optimal rate \iffdrent server bandwidths.
The difference never exceeds 10% of the optimal rate passilthe system. The curves
exhibit two segments with turning point at around 1.1 Mbpscdrding to Equation (1),
the server bandwidth is the bottleneck when it is smallem tha Mbps (server resource
poor scenario). The streaming rate is equal to the soureeAatthe server bandwidth
becomes greater than 1.1 Mbps, the peers’ average uploaditsapecomes the bottle-
neck (server resource rich scenario). The streaming rifltesteases linearly, however,
with a smaller slope. Notice that AQCS performs better indbiver resource poor sce-
nario than in the server resource rich scenario. We plot tirabers of F-marked and
NF-marked chunks sent out by the source server to explain gguses the difference.
As shown in Fig. 5(b), when the server bandwidth is 560 kbpsre resource poor
scenario), very few NF-marked chunks are transmitted.g¢oj no NF-marked chunks
should be sent in this scenario since signal queue is alwaysempty. We do see sev-
eral NF-marked chunks, which is caused by the bandwidtfatiari in the network. The

variation occasionally causes the server’s pull signalguzcomes empty. In contrast,
more and more NF-marked chunks are sent by the server adiit& ogppacity increases
beyond 1.1 Mbps (source resource rich scenarios). In thvesersource poor scenario,
the server sends out F-marked chunks exclusively. As lortgeapull signhal queue is
not empty, the optimal streaming rate can be achieved. Ise¢heer resource rich sce-
nario, the server sends out both F-marked and NF-markedkshifr--marked chunks
are delayed at server or along the route from the server tosghkee to the bandwidth
variations or peer churn, peers can not receive F-markedkshpromptly. Peers’ for-
ward queues become idle and upload bandwidth is wasted rilieless, AQCS always
achieve the streaming rate withif% of the theoretical optimal rate.

eAdaptiveness to peer churn and bandwidth variations Peer churn has been
identified as one of the major disruptions to the performarfqe2p system. We study
how AQCS performs in face of peer churns next. In this 10 néawgxperiment, the
server bandwidth is set to be 2.4 Mbps. Three peers with thewigth of 4 Mbps are
selected to leave the system at time of 200 seconds, 250d&camd 300 seconds,
respectively. Two peers rejoin the system at time of 400 isgéspand the third one
rejoins the system at time of 450 seconds. Fig. 6(a) depieta¢chieved rate vs. optimal

1 120, 1500

~v- F-marked Chunk
-+ _Noise Traffic

1000

100

Noise Traffic Rate(kbps)

Rate(kbps)
@
8
Marked Chunk Rate(kbps)
oy
8

i
:

—v Achieved Rate i

—+— Perfect Rate ; :

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Time(s) Time(s)

(a) Streaming Rate under Peer Chufb) Marked Chunk Receiving Rate with
Background Traffic

0

Fig. 6. Adaptiveness to Peer Churn and Bandwidth Variations

rate every 10 seconds. Although the departure and the joamder does introduce
disruptions to the achieved streaming rate, overall theezel streaming rate tracks
the optimal rate closely. The difference between them nexesedd 2% of the optimal
rate.

In addition to peer churn, the network bandwidth varies aivee due to cross traf-
fic. To evaluate AQCS’s adaptiveness to network bandwidttatrans, the following
experiment is conducted. We set up a sink on a separate Pédmebde not partici-
pating in P2P streaming. One peer in the streaming systemupibad capacity of 4
Mbps is selected to establish multiple parallel TCP corinastto the sink. Each TCP
connection sends out garbage data to the sink. The noifie taherated by those TCP
connections causes variations in the bandwidth availablénke P2P video threads on
the selected peer.

10

Fig. 6(b) depicts the rate at which the F-marked chunks areived at the selected
peer together with the sending rate of noise traffic. Duringetperiods of (120 sec,
280 sec) and (380 sec, 450 sec), the noise traffic threadmafde queue-based chunk
scheduling method adapts quickly to the decreasing avaitemdwidth by reducing its
pull signal rate. Consequently, the server reduces theofdtfemarked chunks sent to
the selected peer. When the noise traffic is turned off, tnessends more F-marked
chunks to the selected peer to fully utilize its availabléaging bandwidth. The self-
adaptiveness of the queue-based chunk scheduling methaebtee overall achieved
streaming rate close to the optimal rate.

e Optimality comparison. Finally the performance of AQCS is compared with
that of the Random Useful Packet Forwarding (RUPF) scherg flso proved to
be optimal theoretically. We implemented the prototypeafdomized broadcasting
scheme, and carefully tune the configuration parametensatattperforms at its peak
performance. The server bandwidth is chosen t8.B&bps, however, the conclusion
is true for different scenarios we tested.

1
0.14 — AQCS
0.12) >~ RUPF o0l
[=}
= 0.1r
4 0.6
< o008t u
6 o
> 0.06¢ 0.4r
£
£ .04 A
0.2} e
0.02} '
) 900 11Q0 1300 8s 085 08 095 .
Streaming Rate(kbps) Bandwidth Utilization
(a) Chunk Missing Ratio (b) Bandwidth Utilization

Fig. 7. Comparison with RUPF

Fig. 7(a) depicts the chunk missing ratio, the fraction afrtks that are lost or miss
the playback deadline, with different streaming rates hBataptive queue-based chunk
scheduling (AQCS) and the randomized scheduling (RUPH®aelzero loss when the
streaming rate is low. However, as the streaming rate iserégyond Mbps, AQCS
remains no loss while RUPF starts to experiences missingkshin fact, AQCS main-
tains zero loss until the streaming rate reachédlbps, the maximum streaming rate
allowed by the system. The missing ratio of AQCS does inadiasar after that due
to un-sufficient bandwidth in P2P system. Fig. 7(b) explahy AQCS out-performs
RUPF consistently. The CDFs of peer bandwidth utilizationtfoth AQCS and RUPF
are plotted at streaming rafel2Mbps. It is evident that peers in AQCS are able to
utilize their upload bandwidth more efficiently than the eie RUPF.

11

6 Conclusions

In this paper, we propose a simple queue-based chunk séhgdutthod that supports
the streaming rate close to the maximum rate allowed by a B2Bnsing system. A
prototype is implemented and various design considersitioa explored to ensure that
the algorithm works in realistic network environment. Thg@eriments over PlanetLab
further demonstrate the optimality and the adaptivenesheproposed queue-based
chunk scheduling method.

Future work can develop along several avenues. As the firsinat of applying
queue management to P2P streaming, we used simple queuel schemes. We will
explore queue control design space to further improve itlop@ance. The other direc-
tion is to apply this approach to other P2P content distidouapplications such as file
sharing and video-on-demand. Our work demonstrated tleet@féness of application
layer queue management in eliminating content bottlenigcR2P live streaming. It is
a natural extension to explore its applicability in othePRepplications.

References

[EnY

. Youtube: (Youtube Homepagbitp://www.youtube.com
2. Chu, Y.H., G.Rao, S., Zhang, H.: A case for end system oadti In: Proceedings of ACM
SIGMETRICS. (2000)
3. Zhang, X., Liu, J., Li, B., Yum, T.S.P.. DONet/CoolStréam A data-driven overlay net-
work for live media streaming. In: Proceedings of IEEE INFQI@. (2005)
4. PPLive: (PPLive Homepagéjtp://www.pplive.com .
5. Hei, X, Liang, C., Liang, J., Liu, Y., Ross, K.: A Measurem Study of a Large-Scale P2P
IPTV System. |IEEE Transactions on Multimedia (2007)
6. BT: (Bittorent Homepage)ttp://www.bittorrent.com
7. Gkantsidis, C., Rodriguez, P.R.: Network Coding for LeaEg:aIe Content Distribution. In:
Proceedings of IEEE INFOCOM. (2005)
. PlanetLab: (PlanetLab Homepadpfp://www.planet-lab.org
9. Liang, C., Guo, Y., Liu, Y.: Hierarchically clustered p&peaming system. In: Proceedings
of GLOBECOM. (2007)
10. Kumar, R., Liu, Y., Ross, K.: Stochastic fluid theory f@pgstreaming systems. In: Proceed-
ings of IEEE INFOCOM. (2007)
11. Magharei, N., Rejaie, R.: PRIME: Peer-to-Peer Recalvien MEsh-based Streaming. In:
Proceedings of IEEE INFOCOM. (2007)
12. Wang, M., Li, B.: Lava: A reality check of network coding peer-to-peer live streaming.
In: Proceedings of IEEE INFOCOM. (2007)
13. Massoulie, L., Twigg, A., Gkantsidis, C., Rodriguez, Randomized decentralized broad-
casting algorithms. In: Proceedings of IEEE INFOCOM. (2007
14. Guo, Y., Liang, C., Liu, Y.: Adaptive Queue-based Chuche&luling for P2P Live Stream-
ing. Polytechnic U., Tech. Rep., (2007)
15. Trickle: (Trickle Homepagehttp://monkey.org/"marius/pages/?page=
trickle
16. Ashwin R. Bharambe, C.H., Padmanabhan, V.N.: Analyzing Improving a BitTorrent
Network Performance Mechanisms. In: Proceedings of IEBEOROM. (2006)

oo

12

