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Abstract. The second smallest eigenvalue of the Laplacian matrig, laiewn
as the algebraic connectivity, plays a special role for diristness of networks
since it measures the extent to which it is difficult to cut tfegwork into inde-
pendent components. In this paper we study the behavioe@lgebraic connec-
tivity in a well-known complex network model, the Erd6®i®/i random graph.
We estimate analytically the mean and the variance of thebadgc connectiv-
ity by approximating it with the minimum nodal degree. Theuiéing estimate
improves a known expression for the asymptotic behaviohefalgebraic con-
nectivity [18]. Simulations emphasize the accuracy of thalgtical estimation,
also for small graph sizes. Furthermore, we study the atgebonnectivity in re-
lation to the graph’s robustness to node and link failurestiie number of nodes
and links that have to be removed in order to disconnect ehgipese two mea-
sures are called the node and the link connectivity. Extensimulations show
that the node and the link connectivity converge to a digtidim identical to that
of the minimal nodal degree, already at small graph sizes.fmbkes the minimal
nodal degree a valuable estimate of the number of nodesksrWhose deletion
results into disconnected random graph. Moreover, thebedieconnectivity in-
creases with the increasing node and link connectivityijfjas the correctness
of our definition that the algebraic connectivity is a measafrthe robustness in
complex networks.

1 Introduction

Complex networks describe a wide range of natural and materagstems, e.g. the
Internet, the WWW, networks of food webs, social acquaicéanpaper citations, as
well as many others [5, 11, 28]. Although complex systemseateemely different in
their function, a proper knowledge of their topology is reqd to thoroughly under-
stand and predict the overall system performance. For ebeaimpomputer networks,
performance and scalability of protocols and applicatiooisustness to different types
of perturbations (such as failures and attacks), all dementhe network topology.
Consequently, network topology analysis, primarily aighat non-trivial topological
properties, has resulted in the definition of a variety ofcpeally important metrics,
capable of quantitatively characterizing certain topaabaspects of the studied sys-
tems [2, 24].
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In this paper, we rely on a spectral metric, i.e. the secorallest Laplacian eigen-
value, often also referred to as the algebraic connec{¥8}. Fiedler [13] showed that
the algebraic connectivity plays a special role: 1) a graptisconnected if and only if
the algebraic connectivity is zero, 2) the multiplicity @&» as an eigenvalue of a graph
is equal to the number of disconnected components. Theregastditerature on the al-
gebraic connectivity; see e.g. [9, 10, 19, 20, 22] for boaks surveys and e.g. [21, 23]
for applications to several difficult problems in graph thed#lowever, for the purpose
of this work, the most important is its application to the ustmess of a graph: 1) the
larger the algebraic connectivity is, the more difficulsitd cut a graph into independent
components, 2) its classical upper bound in terms of the aadehe link connectivity
provides worst case robustness to node and link failurgs f3mentioned in [6], the
second means that for every node or link connectivity, theednfinitely many graphs
for which the algebraic connectivity is not a sharp lowerfburhe node and the link
connectivity are important for the robustness becausedbantify the extent to which
a graph can accommodate to node and link failures. Heneawibiith investigating the
relationship between those three connectivity metrics.

Traditionally, the topology of complex networks has beerdeied as Erdds-Rényi
random graphs. However, the growing interest in complewars has prompted many
scientists to propose other, more complex models such adl'srld” [27] and "scale-
free” [4] networks. Despite the fact that various authorgehabserved that real-world
networks have power-law degree distribution, the ErdésyRrandom graph still has
many modeling applications. The modeling of wireless ad-awd sensor-networks,
peer-to-peer networks like Gnutella [8] and, generallgrtay-networks, provide well-
known examples [14]. Besides that, for the Erdés-Réngdeoem graph, most of the
interesting properties can be analytically expresseds &hin contrast to most other
graphs where computations are hardly possible.

Taking the above arguments into consideration, in the fartqd this work we study
the behavior of algebraic connectivity in the Erdés-Réapdom graph. By using the
basic approximation that the algebraic connectivity egjttz¢ minimum nodal degree,
we estimate the mean and the variance of the algebraic ctiwibheélereby we improve
an already existing theorem concerning its behavior [18the second part, we study
the relationship between the algebraic connectivity aaghlg’s robustness to node and
link failures. Extensive simulations show that the alg@bcannectivity increases with
the increasing node and link connectivity, implying thereotness of our definition that
the algebraic connectivity is a measure of the robustnessmplex networks.

The paper is organized as follows. In Section 3, we presenttiboretical back-
ground on the algebraic connectivity, and the node and titkeclhnnectivity. In Section
3, we analytically derive the estimation of the mean and timéance of the algebraic
connectivity for the Erdés-Rényi model, which we verify imulations. Prior to ana-
lytical derivation, we describe in Section 3.1 the commaootogical properties that are
observed in the random graph of Erdés-Rényi, how they a@sured and why they are
believed to be important in the context of this paper. In Bect, we present additional
simulation results: by exploring the relation between thgelraic connectivity, and
the node and the link connectivity, the existing relatiomstfie connected Erdés-Rényi
graph are refined. Section 5 summarizes our main results.



2 Background

A graph theoretic approach is used to model the topology afraptex system as a
network with a collection of node&” and a collection of linksC that connect pairs
of nodes. A network is represented as an undirected gtagh (N, £) consisting of
N = |N| nodes and. = |£] links, respectively. The Laplacian matrix of a gragh
with NV nodes is anV x N matrix@ = A — A whereA = diag(D;). D; denotes the
nodal degree of the node= A/ and A is the adjacency matrix af.

The eigenvalues @ are called the Laplacian eigenvalues. The Laplacian eaenv
uesiy =0 < Ay_1 < ... < )\ are all real and nonnegative [21]. The second smallest
Laplacian eigenvalugy_1, also known as the algebraic connectivity, was first studied
by Fiedler in [13]. Fiedler showed that the algebraic cotiniyg is very important for
the classical connectivity, a basic measure of the robastaka grapit:: 1) the alge-
braic connectivity is only equal to zerod is disconnected, 2) the multiplicity of zero
as an eigenvalue @ is equal to the number of disconnected components. dif [13],
Fiedler also proved the following upper bound on the algetrannectivityAy_; in
terms of the minimum nodal degré#,,;, of a graphG: 0 < Ay_;1 < %Dmin.

In addition, we introduce two connectivity characteristaf a graphG: the link
connectivity, i.e. the minimal number of links whose remlaesults in losing connec-
tivity, is denoted bys;, and the node connectivity, which is defined analogously ésod
together with adjacent links are removed) is denoted by The following inequality
in terms of the node connectivityy (and obviously the link connectivity;) is to be
foundin [13]:A\y_1 < kn. Hence, the minimum nodal degrék,;,, of an incompleté
graphG is an upper bound on bothw_; as well ascy andky. If ky = K = Duin,
we say that the connectivity of a graph is optimal.

3 Algebraic connectivity in random graph of Erd6s-Rényi

In this section we give an analytical estimate of the algielmannectivity in the Erdds-
Rényi random graph. The analytical estimate relies on thmlkty with the minimum
nodal degree. This approximation is verified by a comprekerset of simulations,
presented in Subsection 3.4. Prior to analyzing the minimadal degree in Subsection
3.2, we give some details on the Erd6s-Rényi random grayhtlae corresponding
theorems.

3.1 Random graph of Erdds-Renyi

The random graph as proposed by Erdés-Rényi [12] is a kvedivn model to describe
a complex network. The most frequently occurring realatf this model is7, (),
whereN is the number of nodes andis the probability of having a link between any
two nodes (or shortly the link probability). In fadk, (N) is the ensemble of all such
graphs in which the links are chosen independently and taériamber of links is on
average equal toL,, ., whereL ., = (];7) is the maximum possible number of links.

! The node connectivity ;- of a complete grapiK n is A1 (Kn) = N > sy (Kn) = N—1.



Many properties of the random graph can be determined asyfitgty, as was
shown by Erd6s-Rényi in the series of papers in the 196@slaer by Bollobas in
[6]. For example, for a random graph to be connected there huld, for largeN,
thatp > % = p.. Moreover, the probability that a random graph for larfges
connected, equaBr|[G,(N) = connected)] ~ e~ N 2],

Then, the probability that the node connectivity equals the link:;, connectivity,
which in turn equals the minimum nodal degiBg,;,,, approaches as N approaches
infinity or thatPr[xny = k. = Dmin] — 1 @SN — oo is also proved in [6] and holds
without any restriction op. This was also shown by Bollobas and Thomason in [7]. On
the other hand, the asymptotic behavior of the algebrainectivity in the Erdés-Rényi
random graplt7, (V) is proved by Juh az in [18]: For aay> 0,

An_1=pN +o (N%+5) (1)

where the algebraic connectivity converges in probabdgyw — oc.

3.2 Minimum nodal degree in random graph of Erdés-Rényi

In G, (V) each node has a degre®; that is binomially distributed. Before proceeding,
we first need to show that degrees in the sequ¢iize, ., , are aimost independent

random variables. In any grap‘ﬁf\;l D; = 2L holds, thus degrees in the sequence
{D;}1<i<n are not independent. However, ¥ is large enoughD; and D; are al-
most independent far# j and we can assume that &l are almost i.i.d. binomially
distributed (see also [6, p. 60]). The following Lemma qifsed this weak dependence:

Lemma 1.The correlation coefficient of the degr&g andD; of two random nodes
iandjin G, (N)forO<p<1is

COV[Z)Z'7 DJ] 1

- VVar[D;]\/Var[D;] N -1

p(DlaDJ)

Proof: see Appendix A of [16]. For larg& and constanp, independent ofV, the
normalized i.i.d. binomially distributed sequenid®; }, . ,; of all degrees irG,(NV)
tends to be Gaussian distributed. The minimum of the sequigBf}, _, -\, possesses
the distribution

N

i ¥ * * N
< = — 5 — _ * )
Pr{ min Di <z] =1 _|7|1 Pr[D; > z] =1 — (Pr[D} > a])

After considering the limiting process of the minimum of & §&;}, ., when
N — oo, we derive [16] the appropriate solution o

2
-Y —2log N +log <\/27rlog JQV—W)

min V2log N




whereY is a Gumbel random variable [26]. WitP,,;, = o[D].D*. + E[D] =

V(N = 1)p(1 —p).Df — 1), we obtain

Y +2log N —log (1/27r10g]2\7—;>

v2log N

Dmin:p(N_l)_ (N_l)p(l_p)

Finally, let D...;, (p) denote the minimum degree @, (V). Since the complement
of G, (N) is G1_, (N), there holds that

Dmin(p) :N_l_Dmax(l_p)'

The law of D, has been derived by Bollobas [6, Corollary 3.4 (p. 65)] viather
method. Using the above relation, Bollobas’ results pedgiagrees with ours.

3.3 Analytical approximation for algebraic connectivity in random graph of
Erd 6s-Renyi

In Section 2 we saw thaty_1 < 5 Duin. Our basic approximation isy_; ~
Dy for large N. A comprehensive set of simulation results, presented bs&etion
3.4, supports the quality of this assumption. With this agpnation we arrive, for large
N, at

An—1 = p(N —1) = /2p(1 = p)(N — 1) log N

(N —1)p(1 —p) N?
+ Slog N log 27 log o

N—-1)p(1l—p
(N = 1)p(1 — p) 2
2log N

By taking the expectation on both sides and taking into agtthat the mean of
a Gumbel random variabl®[Y] = v = 0.5772..., our estimate of the mean of the
algebraic connectivity iid7, (V') becomes, for larg&/ and constang,

E[AN-1] \/2p 1-p)(N-1) logN
N-Up lo 2 lo
21ogN & m g
— 3
21ogN ’Y 3)

Similarly, by taking into account thafar[Y] = %2 the estimate of the variance of the
algebraic connectivity id7, (V) is

(N = 1)p(l —p) =

VGT[)\N_l] = 210gN 6 .

(4)
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Fig. 1. A comparison between the estimation of the mean (3) as wtikestandard deviation (5),
plotted in lines and error bars, and the theorem of Juh apl¢ijed in markers, for the algebraic
connectivity Ay —1 as a function ofx = p/p. in the Erdés-Rényi random gragh,(N) with
N = 200, 400 and800 nodes.

An interesting observation is that the standard deviation

N
U[)\N—l] = \/V@T[)\N_l] =0 ( 1 ) (5)
og N
is much smaller than the mean (3). This implies that ; tends to the mean rapidly, or
that, for largeN, Ay _1 behaves almost deterministically and is closely approtecha
by the first three terms in (2). Hence, the relation (2) is nameurate than (1) (see also
Figure 1).

3.4 \Verification of analytical approximation by simulations

In all simulations we consider exclusively the Erdés-R&andom graptG, (N) with
various combinations of the number of nod€sand the link probabilitie®. N can
takes the following value200, 400 and800. The link probabilityp = ap. = al"]gVN,
whereq is varying from1 to 20. From each combination @f andp, we compute the
algebraic connectivitp\y_; and the minimum nodal degréde,,;,,. Then, we classify
the simulated graphs according to their valuexphs shown in Figures 2 and 3. Subse-
quently, from generated graphs with a givgnwe are interested in the extreme values,
i.e.min Ay _; andmax A\n_1, as shown in Figures 4 and 5.

In Figures 2 and 3, we have plotted the simulated nfégvy 1], the corresponding
standard deviatios [Ay_1], and our estimate for the mean, Eq. (3), and the standard
deviation, Eq. (5), of the algebraic connectivity as a fiorcof a. As illustrated in Fig-
ures in Figures 2 and 3 there is a remarkable correspondetwedn the simulations
and our estimate: the standard deviation is much smallerttteamean, implying that




for N — oo, A —1 will rapidly approachE [y —1]. Moreover, our basic approximation
that, for largeN, Ay _1 ~ Dy is verified by the simulations shown in Figures 4 and
5. We found thaimin A\y_; or max Ay_1 grows linearly withD,,;,,. Note in Figure

4 that, in the probability range around the connectivitegioldp., the minimum al-
gebraic connectivity is always equal to zero, indicatingga-aconnected random graph
(for details see Section 4).

From Figures 4 and 5 it is clear that if the value of the algetmannectivity is larger
than zero, the random graph has nodes of minimum degree sllagyer than zero
too, referring to{An_1 > 0} < {G,(N) is connectefl. However, by scrutinizing
only degree-related simulation results, we see that thdidatpn { Dy, > 1} =
{G,(N) is connectedlis not always true, i.e. for larg&” and certairp which depends
on N, the implication is almost surely (a.s.) correct [26]. Fraumple, the percentage of
graphs withD,,;, > 1 that leads to a connectéd,(50) increases frord8% for p = p..
to 100% for 2p., while the percentage fa¥,(400) increases fron99% for p = p. to
100% for 2p.. Hence, the simulation results confirm that, for lafgeand rather small
p= "2~ the latter implication a.s. is equivalent.
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Fig. 2. A comparison between the estima-
tion (3), plotted in lines, and the simulation
results, plotterd in markers, for the mean
of the algebraic connectivity?[An_1] as

a function ofa. In the upper left corner of
the figure, we show the difference between
the estimation and the simulation results as
a function ofa.

Fig. 3. A comparison between the estima-
tion (5), plotted in lines, and the simulation
results, plotterd in markers, for the stan-
dard deviation of the algebraic connectivity
o[An-1] as a function otv.

Simulations demonstrate also that, for a particular fixed p%, the mean of the
algebraic connectivity increases with the size of the ramdpaph: a higher value of
the graph sizeV implies a higher mean of the algebraic connectivity, whatuim
indicates that the probability of having a more robust grapdpproaching asN —
oo. Theorem given in Subsection 3.1, stating thatcy = kK, = Dyin] — 1 asSN —
oo, clarifies this observation in a slightly different way: givthatNV is approaching



oo, the node and the link connectivity will become as high asiids, i.e. equal to the
minimum nodal degree, and therefore the graph will becontienafly connected.
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Fig. 4. The relationship between the min-
imum algebraic connectivitymin Ax_1
(maximum algebraic connectivity
maxAy_1) and the minimum nodal
degree D, in the Erd6s-Rényi random
graphG,(N). For each combination oV
andp = ap., a = 0.1,0.2,0.3,...,2, we
generatel0? random graphs. Then, from

the generated graphs, having a given value

of a, we takemin A\y_1 (max Any—_1) and
the corresponding@min, resulting in one
point for each consideredl.
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Fig.5. The relationship between the min-
imum algebraic connectivitymin Ax_1
(maximum algebraic connectivity
max Ay—1) and the minimum nodal
degree Dmin in the Erdés-Rényi random
graph G,(N). For each combination of
N andp = ap., a = 1,2,3,...,20, we
generatel0? random graphs. Then, from
the generated graphs, having a given value
of a, we takemin Ay_; (max Any_1) and
the correspondingmuin, resulting in one
point for each considered.

4 Relationship between algebraic, node and link connectity in

random graph of Erd 6s-Renyi

In the previous section we analytically estimated the binaf the algebraic connec-
tivity in the Erdés-Rényi random graph. In this section avealyze the relation among
the three connectivity measures: the algebraic connggtihie node connectivity and

the link connectivity.

We have used the polynomial time algorithm, explained in,[i& find the node
and the link connectivity by solving the maximum-flow praileThe maximum-flow
problem can be solved with several algorithms, e.g. DinitmBnds & Karp, Goldberg,
etc. If Goldberg’'s push-relabel algorithm is utilized, asfprmed in our simulations,
the link connectivity algorithm ha®(N3+/L)-complexity, while the node connectivity
algorithm hasO(N?L+/L)-complexity. We have used the LAPACK implementation
of the QR-algorithm for computing all the eigenvalues of ttaplacian matrix. For
linear algebra problems involving the computation of a fedreme eigenvalues of



large symmetric matrices, algorithms (e.g. Lanczos) wihosdime and storage cost is
lower compared to the algorithms for calculation of all eiggues (QR algorithm has
O (n®)-complexity) are known [3].

We simulate for each combination 8f andp, 10* independené,(N) graphs.N
is 50, 100, 200 and400 nodes and the link probability = ap., wherea varies from
1 to 10. From each combination d¥ andp, we compute the minimum nodal degree
D, the algebraic, the node and the link connectivity, denoesgectively byAn_1,
kn andkr. Then, we classify graphs according to their valueof
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Fig. 6. Simulated results on Erdés-Rényi random graph{ V) for N = 50, 100, 200, 400 and

the link probabilityp = ap., showing the mean of the algebraic connectiitf\ 1], the mean

of the nodeE [ n] and the linkE[x.] connectivity and the mean of the minimum nodal degree
E[Dmin] as a function ofy, wherea = 1,2, ..., 10. Note that fora = 1, E[kn] = E[xz] but
E[kn] # E[Dmin].

Figure 6 shows the mean value of the algebraic conneci#/ftyx 1] as a function
of increasingy = pﬂ In addition, Figure 6 shows the mean of the node connegtivit
E[ky], the link connectivityE[x 1] and the minimum nodal degrée D,y |.

The first conclusion we can draw after analyzing simulatiatads that for all gen-
erated random graphs from= p. to p = 10p. the convergence to a surely connected
random graph, i.eAx_1 > 0, is surprisingly rapid. Results concerning connectivity
percentages are plotted in Figure 7. For example, the pegef connected random
graphs with50 nodes increases from abd#t% and98% for p. andp = 2p., respec-
tively, to 99% for p = 3p., where forp = 4p, the graph is connected. These results are
consistent with the Erdés-Rényi asymptotic expresdt@nN — oo, as observable in
Figure 7, the simulated data as well as the Erdés-Réngidita confirm a well known
result [17] that the random gragh, (V) is a.s. disconnected if the link densityis
below the connectivity threshoja. ~ 2~ and connected far > p..

The second conclusion is that our results, regarding theiliiton range of the
algebraic connectivity and the minimum nodal degree, iddmenply with the bounds



0<Anv_1 < %Dmin: the distribution of the algebraic connectivikyy _; is con-
tained in the closed intervfl), N], or to be more precisgy_; is 0 for a disconnected
graph and above bounded %ﬁi—lein for all those link probabilitiep for which the
graph is connected but not compfet&hen, obviouslyE[ Ay 1] < E[Dminl-

The third conclusion is that the distribution range of thgeslraic connectivity also
complies with the bounday_; < xpy. Moreover, in Figure 6, fop > p. and all
simulatedN, the distributions of the nodey and the link«;, connectivity are equal to
the distribution of the minimum nodal degrék,;,, (recall that in Figure 6 fop = p.,
the distributions ok, x;, andD,,;,, are almost equal but not the same). Convergence
here to a graph wherey = k1 = Dy, IS surprisingly rapid. For example, from
the simulation results plotted in Figure 8 with= p. and size of the random graph
ranging fromN = 5to N = 400, we found that with probability approachirigthe
random graph becomes optimally connected at rather snmegbhgsizes. For all other
link probabilities,p > p., the convergence toy = x; = Dy IS faster (see Figure 8
for p = 2p.). Hence, the simulation results show that the random g€atvV) a.s. is
constructed in such a way that deleting all the neighborsh@finks to its neighbors)
of a minimum nodal degree node will lead to the minimum nurndfemodes (links)
whose deletion from a graph will result into a disconnectettiom graph. Hence, the
minimum nodal degree is a valuable estimate of the numbeodés or links whose
deletion results into a disconnected graph.
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Fig.7. Percentage of the connected Fig. 8. Percentage of the Erdés-Rényi ran-
Erdds-Rényi random graphsG,(N), dom graphsG,(N) with p = p. and
i.e. An—1 > 0: a comparison between p = 2p. in which the node connectiv-
the simulation results, plotted in mark- ity kn, the link connectivityxz and the
ers, and the Erdos’ asymptotic formula minimum nodal degreé®,,in converge to
Pr[G,(N) =connectefi~ e Ve " kN = K1 = Dmin for small graph sizes
plotted in lines, in the probability range N.

a=p/p.=0.1,02,...2.

2 If a graphG' is a complete grapx thenA\y_1 = N > Dpin = N — 1.



5 Conclusion

We studied the algebraic connectivity and its relation sribde and the link connec-
tivity in the Erdés-Rényi random graph. The analyticaidst shows that the variance
of the algebraic connectivity is much smaller than its meanplying that, for large
graph sizeN, the distribution of the algebraic connectivity will rapicapproach the
mean value. Through extensive simulations, we verifiedttr@atlgebraic connectivity
behaves almost deterministically and is closely approteahhy our basic estimate, Eq.
(2). Simulations also show that, for larg& the distribution of the algebraic connectiv-
ity grows linearly with the minimum nodal degree, confirmimg basic approximation
that)\N,l ~ Dmin-

Moreover, for a given value ofy = %, a higher value of the graph si2é means
a higher value of the algebraic connectivity. This traredanto a higher probability of
having a more connected, or to say robust, grapiVas> co. On the other hand, the
larger the graph size, the more the Erdés-Rényi randophgsaconstructed in such a
way that deleting all the neighbors (or the links to its néigis) of a minimum nodal
degree node leads to the minimum number of nodes (links) avtieletion disconnects
the graph. However, the simulation results show that thisyad connectivity, occurs,
regardless of the link probability, at already small graph sizéé. Hence, the larger
the value of the algebraic connectivity, the better the y'sapbustness to node and
link failures.
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